Dynamic Vision Sensor

The Road to Market

June 2, 2017

Yoel Yaffe*, Nathan Levy, Evgeny Soloveichik, Sebastien Derhy, Ayal Keisar, Elad Rozin, Liron Artsi Jun-Seok Kim†, Keunju Park, Bongki Son, Yunjae Suh, Heejae Jung, Changwoo Shin, Jooyeon Woo, Yohan Roh, Hyunku Lee, Hyunsurk (Eric) Ryu

*Samsung Israel Research Center, Israel

†System LSI , South Korea

Samsung Electronics

Contact: yoel.yaffe@samsung.com

The Road Less Traveled

image by aosleading

Market Driven Requirements VS Early DVS Prototypes

Requirements	Early DVS Prototypes
Low Cost	Large Pixel No standard for Quality / Die sorting
Minimal Module Size	Large, due to large Pixel -> Large optical format
Ultra Low Power	Low power
Good Event Quality	Redundant events (especially at low light) Motion artifacts, Timing accuracy Noise, Flicker
Low Data Rate	Scene dependent; In some cases may exceed CIS typical throughput
Vision processing at Edge	Not available

The Road to Market - Overview

- Reducing Cost and Module Size
- Reducing Power
- Delivering Good Event Quality
- Data Throughput Reduction
- Event Processing Acceleration
- Summary

The Road to Market - Overview

- Reducing Cost and Module Size
- Reducing Power
- Delivering Good Event Quality
- Data Throughput Reduction
- Event Processing Acceleration
- Summary

Reducing Pixel Size and Optical format

Pixel Shrink

- BSI process
- Downsizing MIMCAP
 Without a decrease in minimum contrast sensitivity
- Stacked Cu-Cu Technology

18.5 x 18.5 μ m² \rightarrow 6 x 6 μ m2 ~90% pixel area reduction

Reducing Pixel Size and Optical format

o Photo Enhancement:

3μm x 3μm Photodiode / 9μm x 9μm Pixel

5μm x 5μm Photodiode / 6 μm x 6 μm Pixel / Wafer-stacking

Delivering Product to Market - Overview

- Reducing Cost and Module Size
- Reducing Power
- Delivering Good Event Quality
- Data Throughput Reduction
- Event Processing Acceleration
- Summary

Reducing Power

- Use Samsung's advanced process
- Subsampling modes
- Dynamic wakeup, window of interest

Reducing Power: Statistics for Dynamic Decisions

Spatial Histogram & Blocking Area:

640x480 Image Plane

Reducing Power: Statistics for Dynamic Decisions

Spatial Histogram Data

Reducing Power: Blocking, Subsampling

Reducing Power: Statistics Collection

Reducing Power: Wakeup

The Road to Market - Overview

- Reducing Cost and Module Size
- Reducing Power
- Delivering Good Event Quality
- Data Throughput Reduction
- Event Processing Acceleration
- Summary

Good Event Quality: Objective

Clean and perfect edge map

→ Obtained by subtracting frames on a High Frame-Rate CIS camera

Good Event Quality

Good Event Quality

Good Event Quality

Redundant Events: Bad Pixels; Noise

Basic model:

- O Bad Pixel: Specific Pixels that generate events at high frequency (regardless of the scene)
- Noise: Random pixels that generate events at low frequency (regardless of the scene)

Actual behavior:

Redundant Events: Bad Pixels; Noise

Bad Pixel Suppression Example:

Before chain

After chain

Redundant Events: Bad Pixels; Noise

Noise Suppression Example:

Redundant Events: Multiple detections

- Overall pixel BW (speed) is limited by LogAMP BW
- LogAMP BW is mainly affected by 1) Its structure; 2) The amount of photocurrent
- Redundant events generated at low light (I_{PD}) on @ large contrast change

Redundant Events: Multiple detections

- Overall pixel BW (speed) is limited by LogAMP BW
- LogAMP BW is mainly affected by 1) Its structure; 2) The amount of photocurrent
- Redundant events generated at low light (IPD) on @ large contrast change

Solutions:

- Structure:
 Increase ~x5-x10 LogAMP BW by new structure
- Limit photocurrent:
 Introduce "HOLD" signal to pixel

Redundant Events: Light Source Flicker

Light Source Flicker:

Events that are not generated by motion but by flickering lights (with different frequencies)

O Note:

This has to be differentiated from periodic motion (for example a waving hand)

Redundant Events: Light Source Flicker

Flicker Suppression Example:

Missing Events: Overflow, Timestamp Errors

Overflow:

Number of events describing the scene change, exceeds the circuit maximal throughput.

25% active area, 1ms refresh rate:

#109

#110

#110

Missing Events: Overflow, Timestamp Errors

Timestamp Errors:

Events grouped according to incorrect timestamp

Solution: Pixel Readout Revision

Readout controls	Gen1 & Gen2	Gen3
Column selection	Unfair arbitration scheme	Scanning scheme
In-pixel memory	Free running (no event hold)	Free running (no event memory)
		Global hold (all pixels in pixel array)
	Pixels with an event in a column	Pixels with an event in a column
Pixel reset	-	All pixels in a column
	-	Global reset (all pixels in pixel array)

640

Pixel Readout: Timestamp Error Comparison

The Road to Market - Overview

- Reducing Cost and Module Size
- Reducing Power
- Delivering Good Event Quality
- Data Throughput Reduction
- Event Processing Acceleration
- Summary

Data Throughput: DVS Low Event Rate Example

Less Events → Easier to process

Data Bandwidth @ 32 bit/event Encoding

DVS AER 32bit per event

Group Address Event Representation (GAER)

GAER (~64-4 bits/event – content dependent) AER (32 bits/event) Address Event Representation (TS, X, Y, event) Group AER (TS, X, G, group_event) P: packet encoding (2bit) P: packet encoding (10bit group, 12bit per col) TS: timestamp (10bit) TS: timestamp (10bit) X : column address : $0 \sim 639$ (10bit) X: column address: 1 ~ 640 (10bit) Y: row address: 0 ~ 479 (9bit) G: group address: 1 ~ 60 (6bit) event: 1-bit. on/off group event: a bundle of 8 events. 16-bits on evnet: 8-bits 640 off event: 8-bits (0,0)event group_event 480

Data throughput: AER 32 bit/event

DVS AER 32bit per event

Data throughput: GAER ~12 bit / event

DVS GAER 12bit per event (average)

Data throughput: Improved GAER ~8 bit / event

DVS GAER with offset based column 8 bit per event (average)

The Road to Market - Overview

- Reducing Cost and Module Size
- Reducing Power
- Delivering Good Event Quality
- Data Throughput Reduction
- Event Processing Acceleration
- Summary

Event Processing Acceleration

GPU/DSP are not optimized for event-based computer vision:

	GPU/DSP	Requirements for Event Processing
Optimized for	High arithmetic density and high throughput	Low latency
Memory access	Privilege coalesced data	Optimized for random access

Considering HW accelerator/processor with a DVS-specific architecture

Concept: Less but More Informative Events

- Programmable feature
- A feature event is sent by the sensor when the feature appears strongly
- For example: direction detection (can be used to produce Histogram of Gradients in the Host for *human detection*)

Horizontal (yellow) and vertical (cyan):

10.718 (mosh) 400.000

Slash (red) and Backslash (green):

Applied on Human captured is a DVS movie:

The Road to Market - Overview

- Reducing Cost and Module Size
- Reducing Power
- Delivering Good Event Quality
- Data Throughput Reduction
- Event Processing Acceleration
- Summary

Summary: Market Driven Requirements

Requirements	Samsung Early Prototypes	Samsung DVS Product Roadmap (2017,2018)
Low Cost	Large Pixel No standard for Quality / Die sorting	Similar size to 16-8MP mobile camera
Minimal Module Size	Large, due to large Pixel -> Large optical format	Smaller, Optical size reduced to 1/3" (VGA)
Ultra Low Power	Low power	Lower power
Minimal Optical Format	Large, due to large Pixel	Reduced to 1/3" (VGA)
Good Event Quality	Redundant events (especially at low light) Motion artifacts, Timing accuracy Noise, Flicker	Improved pixel circuit. On chip Bad Pixel, Noise and flicker suppression. External Triggered Scan, Global reset & hold capable
Low Data Rate	Scene dependent Might exceed CIS typical throughput	Compressed format in the bounds of slow CIS typical throughput
Edge device vision processing	Not available	Considering low level features

Thank You!