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Visual SLAM and General Spatial Perception

Simultaneous Localisation and Mapping: how does a robot

or device understand the space it is moving through using

on-board sensors?

My focus: a single camera in a small area; real-time,

closed loop systems (MonoSLAM 2003).

Initial emphasis on localisation as an output; now

increasingly dense mapping and semantic understanding.

SLAM is evolving towards general real-time spatial

perception, a crucial layer for AI or IA, (but it’s still SLAM!)



Modern Products and Systems

Dyson 360 Eye Google Project Tango Microsoft HoloLens

Positioning and sparse/semi dense reconstruction now

rather mature. . . and entering real products.

But much is still to be done to enable much more capable

and widespread devices.



Dense SLAM

ICCV 2011: DTAM (Dense Tracking and Mapping),

Newcombe, Lovegrove and Davison. Dense mapping

alternating with dense tracking (every pixel).

3DV 2016: Height Map Fusion with Dynamic Level of

Detail, Zienkiewicz, Tsiotsios, Davison, Leutenegger.



Towards Real-Time Semantic Labelling

ICRA 2017: SemanticFusion: McCormac, Handa, Davison,

Leutenegger.



Brute Force Vision

Rising processing allows increasingly computationally

expensive computer vision algorithms to be brought into

play in robot vision.

Bundle adjustment; image retrieval; regularised dense

reconstruction; CNNs.

However... real embedded applications need low power,

compactness and real-world robustness and usefulness.



Towards Pure Object-Level SLAM

SLAM++ (Salas-Moreno, et al CVPR 2013): bring object

recognition to the front of SLAM, and directly build a map

at that level to benefit from strong predictions immediately.

Predict, measure, update will be even stronger with object

or even whole scene priors.



The Future of SLAM

What is the perception capability we need?

Always on and aware geometric and semantic perception

of everything of importance to complete a task.

Hypothesis: a recognisable SLAM system building a

persistent, (metric) representation will still be useful.

Evaluate via task-oriented performance measures.

Methodology

Many components of the SLAM system learned rather than

designed, but overall architecture to remain familiar.

Model-based, closed loop prediction and inference to

enable efficiency and robustness.

What are the Constraints of Real Products in AI or IA?

Power usage; sensor/processor size, complexity and cost.



The Need for Efficiency in Advanced Real-Time Vision

SLAMBench (PAMELA Project, Universities of Manchester,

Edinburgh and Imperial College). Opening up research in

the joint development of real-time vision algorithms,

programming tools and architecture.

Looking towards unified design of algorithms,

processors. . . and sensors.



Future Embedded Vision

Smartphone system-on-chip technology will provide the

template for low power smart devices in the near term —

and computer vision will be a major driver.

CPUs, GPUs and increasingly specialised

application-specific ‘ASIC’ chips and low power vision

processors (e.g. Movidius).

But how will we achieve always on operation in tiny devices

with all day battery life?

I believe that the long-term way forward is to increasingly

look to neuromorphic principles.



Graph Processing (e.g. SpiNNaker, Graphcore)

AI, including vision, presents a new type of workload which

suits neither CPUs nor GPUs.

Sparse graph data structures and message passing

algorithms.



Graphcore’s ‘IPU’ or Graph Processor

Thousands of pure distributed scalar multiprocessors on a

single chip (digital, synchronous).

Memory should dominate the die to enable rapid,

temporary, distributed communication. Memory uses only

2–10% of the power of logic.

Other related projects (e.g. IBM Truenorth, Brainchip) are

more explicitly neuromorphic.



Visualising the Processing Graph of a Neural Network



Computational Structure of the Robot Vision Problem

Map Store

Real-Time Loop

Camera Interfaces

Sensor Interface

Actuator Interface

Camera Processors

What are the graphs in a generic SLAM system?

Components could be based on estimation or learned, but

the computational structure would be similar.



Our Approach to Event-Based SLAM

Generative

Forward model of event generation; and inference where

data is compared against a fully predictive model;

comparable to ‘direct’ methods with standard cameras.

This takes us on the route to ‘generally aware’ vision

systems, where we pay attention to every piece of data

Event by Event Processing

Purely event-based; minimise latency; use filtering

methods.

Dealing with very high event rates one by one is tough on a

CPU, but this problem should go away with future

integrated sensor/processor architectures.



Simultaneous Mosaicing and Tracking from Events

Alternating filters to estimate tracking and dense scene

gradient (upgraded to intensity). Using DVS128.

Kim, Handa, Ieng, Benosman, Davison, BMVC 2014 (Best

Industry Paper).



Tracking Filter Update from One Event
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Tracking Filter Update from One Event



Gradient Estimation



Pixel-wise EKF Gradient Estimation
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Pixel-wise EKF Gradient Estimation



Reconstruction from Gradients in 1D

Agrawal, A. and Rasker, R., 2007



Reconstruction from Gradients in 1D

Agrawal, A. and Rasker, R., 2007



Reconstruction from Gradients in 1D

Agrawal, A. and Rasker, R., 2007



Intensity Reconstruction from Gradients in 2D



Events Induced by Pure Rotation Motion



Events Induced by Translation Motion



3D Motion, Structure and Intensity from Event Data

Change pose representation to 6DoF; add depth map

estimation.

Kim, Leutenegger, Davison, ECCV 2016 (Best Paper).



Conclusions

Future Directions

SLAM will continue to evolve into general real-time spatial

perception for embedded AI and IA.

Co-design of sensors, processors and algorithms is the

path to the performance and efficiency we need.

Event-based reconstruction, SLAM and motion estimation

is a fascinating and important research direction towards

these goals.



Simultaneous Optical Flow and
Intensity Estimation from an Event Camera

Patrick Bardow, Andrew Davison and Stefan Leutenegger
27/06/2016

Dyson Robotics Laboratory, Imperial College London



Event Camera

1



Event Camera Scheme
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Silicon Retina

Event Cameras are
• bio-inspired
• captures only intensity changes
• asynchronous pixel (no frames)

1

DVS and EDVS from iniLabs

2

1[Untitled photograph of DVS128 and EDVS]. (n.d.). Retrieved June 01, 2016, from http://inilabs.com
2[Untitled anatomic drawing of an eye]. (n.d.). Retrieved May 10, 2016, from http://www.savesightcentre.com
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Vision Challenges

3

Overexposure

3Dangers of Driving Into Sun. (n.d.). Retrieved May 10, 2016, from http://echange.aaa.com

4

Events cameras do not suffer from:



Vision Challenges

Motion Blur

4

Events cameras do not suffer from:



Event-based, 6-DOF Pose Tracking for High-Speed Maneuvers3

3Elias Mueggler, Basil Huber, and Davide Scaramuzza. “Event-based, 6-DOF Pose Tracking for High-Speed
Maneuvers”. In: Intelligent Robots and Systems (IROS), 2014 IEEE/RSJ International Conference on. 2014.
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Simultaneous Mosaicing and Tracking with an Event Camera4

4Hanme Kim et al. “Simultaneous Mosaicing and Tracking with an Event Camera”. In: Proceedings of the British
Machine Vision Conference. BMVA Press, 2014.
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Our Method
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Proposed Method



Detecting Motion with an Event Camera
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Detecting Motion with an Event Camera
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Detecting Motion with an Event Camera
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Sliding Window
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Sliding Window
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Cost Function

min
u, L

∫

Ω

∫

T

(

λ1‖ux‖1 + λ2‖ut‖1 + λ3‖Lx‖1+

λ4‖〈Lx, δtu〉+ Lt‖1 + λ5 hθ(L− L(tp))
)

dt dx

+

∫

Ω

|P (x)|
∑

i=2

‖L(ti)− L(ti−1)− θρi‖1dx,

• Smoothness terms
• Optical flow term
• No-event term
• Event term

14



Cost Function

min
u, L

∫

Ω

∫

T

(

λ1‖ux‖1 + λ2‖ut‖1 + λ3‖Lx‖1+

λ4‖〈Lx, δtu〉+ Lt‖1 + λ5 hθ(L− L(tp))
)

dt dx

+

∫

Ω

|P (x)|
∑

i=2

‖L(ti)− L(ti−1)− θρi‖1dx,

• Smoothness terms

14



Cost Function

min
u, L

∫

Ω

∫

T

(

λ1‖ux‖1 + λ2‖ut‖1 + λ3‖Lx‖1+

λ4‖〈Lx, δtu〉+ Lt‖1 + λ5 hθ(L− L(tp))
)

dt dx

+

∫

Ω

|P (x)|
∑

i=2

‖L(ti)− L(ti−1)− θρi‖1dx,

• Smoothness terms
• Optical flow term

14



Cost Function

min
u, L

∫

Ω

∫

T

(

λ1‖ux‖1 + λ2‖ut‖1 + λ3‖Lx‖1+

λ4‖〈Lx, δtu〉+ Lt‖1 + λ5 hθ(L− L(tp))
)

dt dx

+

∫

Ω

|P (x)|
∑

i=2

‖L(ti)− L(ti−1)− θρi‖1dx,

• Smoothness terms
• Optical flow term
• No-event term

14



Cost Function

min
u, L

∫

Ω

∫

T

(

λ1‖ux‖1 + λ2‖ut‖1 + λ3‖Lx‖1+

λ4‖〈Lx, δtu〉+ Lt‖1 + λ5 hθ(L− L(tp))
)

dt dx

+

∫

Ω

|P (x)|
∑

i=2

‖L(ti)− L(ti−1)− θρi‖1dx,

• Smoothness terms
• Optical flow term
• No-event term
• Event term

14



Event term and no-event term

Event fire condition:

|L(t′)− L(e1)| ≥ θ,

L := log(I + b)
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Event term and no-event term

No-event term:

hθ(L(t
′)− L(e1)),

L := log(I + b)

15



Results



High Dynamic Range Sequence
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Rapid Motion Sequence
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Super-Resolution
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Conclusion

• New bio-inspired camera paradigm which overcomes
issues of motion blur and overexposure.

• Sends only essential data by discarding the concept of
frames

• Potential benifits to large areas of robotic vision

19



Conclusion

• New bio-inspired camera paradigm which overcomes
issues of motion blur and overexposure.

• Sends only essential data by discarding the concept of
frames

• Potential benifits to large areas of robotic vision

• First method for dense optical and intensity
reconstruction with any image motion from an event
camera

• A first proof-of-concept that the event data contains
enough image information

• Bridges the gap between event data and traditional
computer vision algorithms
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