
Lifetime Estimation of Events from Dynamic Vision Sensors

Elias Mueggler, Christian Forster, Nathan Baumli, Guillermo Gallego and Davide Scaramuzza

Abstract— We propose an algorithm to estimate the “life-
time” of events from retinal cameras, such as a Dynamic Vision
Sensor (DVS). Unlike standard CMOS cameras, a DVS only
transmits pixel-level brightness changes (“events”) at the time
they occur with micro-second resolution. Due to its low latency
and sparse output, this sensor is very promising for high-
speed mobile robotic applications. We develop an algorithm
that augments each event with its lifetime, which is computed
from the event’s velocity on the image plane. The generated
stream of augmented events gives a continuous representation
of events in time, hence enabling the design of new algorithms
that outperform those based on the accumulation of events
over fixed, artificially-chosen time intervals. A direct appli-
cation of this augmented stream is the construction of sharp
gradient (edge-like) images at any time instant. We successfully
demonstrate our method in different scenarios, including high-
speed quadrotor flips, and compare it to standard visualization
methods.

I. INTRODUCTION

A. Motivation

Event-based (retinal) vision sensors [1], such as the Dy-
namic Vision Sensor [2], offer great potential for robotic
applications: since only pixel-level brightness changes are
transmitted, less bandwidth is required and less data must be
processed. In addition, these changes are transmitted at the
time they occur with minimal latency, which is in the order
of a few micro-seconds. Due to the asynchronous nature of
these changes, they are called events.

However, since an event stream is fundamentally differ-
ent from video streams of standard CMOS cameras, new
algorithms are required to deal with this data. Event-based
adaptations of iterative closest points [3] and optical flow [4],
[5] have been proposed. Recently, event-based visual odom-
etry [6], [7], tracking [8], [9], and Simultaneous Localization
And Mapping (SLAM) [10] algorithms were also presented.
The design goal of such algorithms is that each incoming
event can asynchronously change the estimated state, thus
preserving the event-based nature of the sensor.

While all of these algorithms implicitly buffer a certain
number of past events, we propose to explicitly model the
set of active events. We consider an event active as long
as the brightness gradient causing this event is visible by
the pixel. The estimation of such a set of active events has
several applications, such as the generation of sharp gradient
images at any point in time, clustering of events for tracking
of multiple objects, etc. Here, we focus on the first one (see

The authors are with the Robotics and Perception Group, University
of Zurich, Switzerland—http://rpg.ifi.uzh.ch. This research was
supported by the Swiss National Science Foundation through project num-
ber 200021-143607 (Swarm of Flying Cameras), the National Centre of
Competence in Research Robotics, and Google.

(a) Image of the scene (b) 30 ms

(c) 1 ms (d) Our method

Fig. 1: The Dynamic Vision Sensor (DVS) is moved in front of a
window frame diagonally, from bottom-left to top-right (a). Since
the window frame is much closer than the buildings, its apparent
motion is significantly larger. Thus, if we use a fixed accumulation
interval, the images will either be blurred, if the interval is too
long (b), or some structures will not be clearly visible, if the interval
is too short (c). Our method estimates the lifetime of each event
independently and displays the event for that period of time (d).

Fig. 1). This also allows applying standard computer-vision
algorithms on these images without modification.

B. Related Work

Due to its low latency and low bandwidth, the DVS [2]
is a promising sensor for robotic systems with limited
computational power and short time constants. An impressive
demonstration of these capabilities was presented in [11].
Using two DVS, the authors implemented a pencil-balancing
system on a highly-reactive platform free to move on a
plane. A robotic goalkeeper with a reaction time of 3 ms
was presented in [12]. More recently, robot localization was
demonstrated using a DVS during high-speed maneuvers [9],
where rotational speeds of up to 1,200 ◦/s were measured
during quadrotor flips.

Standard computer-vision algorithms cannot be applied
directly to the output of event-based vision sensors, since

they do not provide grayscale intensity images. A straight-
forward workaround is to generate such intensity images
by accumulating events over a fixed time interval and
then apply standard frame-based algorithms. An event-to-
frame converter was presented in [13] and tested on two
conventional stereo-vision algorithms. Another example of
DVS event accumulation was shown in [14], where events
were accumulated in artificial time slots of 5–50 ms and
used in stereo vision for tracking moving objects. In both
cases, the event-to-frame conversion was a time-consuming
process that introduced some latency and, therefore, the
asynchronous data delivery and high temporal resolution of
the DVS was not used very efficiently.

In [3], the events in a sliding window of fixed duration
were selected as input of an Iterative Closest Point (ICP)
algorithm that was used to guide a micro gripper to grasp an
object with a mean update rate of 4 kHz. In this particular
setup, such a fixed duration could be chosen for all the
pixels of the DVS, because the gripper was moving at almost
constant speed parallel to the image plane. In a general
configuration, however, such a time interval does not exist.

C. Contributions and Outline

In this paper, we present a method to augment data streams
from event-based cameras with their lifetime and the velocity
of each event, while simultaneously filtering noise. Our
method is based on the event-based optical flow [4], [5]
to estimate the velocity of an event from where we can
estimate its lifetime. As a direct application, this method
allows rendering sharp gradient images at any point in time,
as illustrated in Fig. 2.

In contrast to previous algorithms, our method does not
depend on a temporal window [t−∆t, t+ ∆t] around the
event time t. Thus, we eliminate both a tuning parameter
(∆t) and its corresponding latency (our method uses only
past events). Our method is also robust against noise because
we use RANSAC [15] and a regularization term. The output
of the method can be used to apply standard computer-vision
algorithms to the output of event-based cameras.

The remainder of the paper is organized as follows.
In Section II, we characterize the Dynamic Vision Sensor
(DVS). The developed algorithm to calculate the lifetime
of an event is described in Section III and evaluated in
Section IV.

II. DYNAMIC VISION SENSOR

Standard CMOS cameras send full frames at fixed frame
rates. On the other hand, event-based (retinal) cameras such
as the DVS [2] have independent pixels that generate spike
events at local relative brightness changes in continuous
time. These events are timestamped and transmitted asyn-
chronously at the time they occur using sophisticated digital
circuitry. Each event e is a tuple 〈x, y, t, p〉, where x, y are
the pixel coordinates of the event, t is the timestamp of the
event, and p ∈ {−1,+1} is the polarity of the event, which
is the sign of the brightness change. This representation is
sometimes also referred to as Address-Events Representation

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

∆t

t∗

time [ms]

pi
xe

l

(a) Raw event stream

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

t∗

time [ms]

pi
xe

l
(b) Event stream augmented with lifetime

Fig. 2: In this illustration, we consider a single pixel row of a
DVS, which observes two edges moving at different speeds (cf.
Fig. 4). The events are marked with crosses. To visualize the
events at time t∗, the active events at that time are plotted. If a
fixed accumulation interval ∆t is chosen (a), some regions become
blurred (the upper, fast edge is represented with two events) or
others are not complete (if we chose a shorter interval, the slow
edge would not be considered). Our method (b) assigns a lifetime
to each event (shown in red), thus the active events at t∗ are known.

Fig. 3: Visualization of the output of a DVS looking at a rotating
dot. Colored dots mark individual events. The polarity of the events
is not shown. Events that are not part of the spiral are caused by
sensor noise. Figure adapted from [16].

(AER). The DVS has a resolution of 128 × 128 pixels and
is connected via USB. A visualization of the output of the
DVS is shown in Fig. 3.

Due to its low latency and high temporal resolution,
both in the range of micro-seconds, the DVS is a very

promising sensor for high-speed mobile robot applications.
Since the data stream from the DVS is sparse (only changes
are reported), the bandwidth and computational load are
low. An additional advantage for robotic applications is the
DVS’ high dynamic range of 120 dB (compared to 60 dB
of expensive computer-vision cameras), which allows both
indoor and outdoor operation without changing parameters.
Since all pixels are independent, these contrasts can also take
place within the same scene.

III. ALGORITHM

In this section, we devise our algorithm to estimate the
lifetime of each incoming event. The basic idea is to deter-
mine each event’s velocity v = (vx, vy)> on the image plane
and use this information to calculate the time interval that
this event is considered active. The lifetime τ indicates how
long it will take for the brightness gradient at the current
event location to trigger a new event in a neighboring pixel.
We assign zero lifetime to noise events, τ = 0.

Our algorithm augments the stream of events 〈x, y, t, p〉
with the the lifetime τ and the event’s velocity v,

〈x, y, t, p〉 7→ 〈x, y, t, p, τ, vx, vy〉. (1)

The velocity of the event v is computed using event-
based visual flow, which is estimated based on the method
introduced in [4], [5]. We first present our adaptation of
the event-based visual flow and the computation of the
lifetime for each event. Then, we detail the local plane-fitting
algorithm including outlier rejection and regularization.

A. Event-Based Visual Flow and Lifetime

The Surface of Active Events (SAE) is defined in the three-
dimensional spatio-temporal domain that is composed of the
two-dimensional sensor frame and an additional dimension
representing time [17]. Each incoming event generates or
updates a point on the surface, such that, for each pixel
position on the image plane, the time value of the surface
is equal to the timestamp of the last event at this position.
The SAE is given by the map Σe : R2 → R, t = Σe(p),
where p = (x, y)>. In space-time, a point of the SAE is
represented by the 3-vector S(p) = (x, y,Σe(x, y))>. In
this sense, Σe(p) represents the SAE as an “elevation map”.

Figure 4a shows the SAE of real data recorded with the
DVS in the spatio-temporal domain. The recorded sequence
contains two lines moving at different speeds, hence the
different slopes. Sensor noise is clearly visible as isolated
dots. Figure 4b shows the corresponding visualization of a
100 ms slice. The latter corresponds to what we refer to as
the naive method that accumulates events over a fixed time
interval.

The planar approximation of the SAE at an event’s loca-
tion p is given by the first order Taylor expansion

S(p + ∆p) ≈ S(p) +
(
Sx(p), Sy(p)

)
∆p, (2)

where Sx = ∂S
∂x = (1, 0, ∂Σe

∂x)>, Sy = ∂S
∂y = (0, 1, ∂Σe

∂y)>

are the first partial derivatives of S, representing vectors in
the tangent space to S.

(a) Surface of Active Events with a slice shown in (b).

(b) All events between t = 2 s and 2.1 s.

Fig. 4: Surface of Active Events (SAE) of two lines moving to the
right. The left line moves slower than the right one. Events caused
by sensor noise are visible as isolated dots. A 100 ms slice starting
at t = 2 s is shown in (b), which corresponds to the naive method
that accumulates events over a fixed time interval (here, 100 ms).
While the slow line appears sharp, the fast line is several pixels
wide, which corresponds to motion blur.

As illustrated in Fig. 5, we define the lifetime of the event
at (p, t) as the first order approximation of the maximum
temporal increment of S for a displacement ‖∆p‖ = 1 pixel:

τ(p) = max ∆t subject to ‖∆p‖ = 1, (3)

where ∆t = 〈S(p + ∆p)− S(p), e3〉, e3 = (0, 0, 1)> is
the direction of the time axis and 〈·, ·〉 is the standard inner
product in Rn.

The lifetime τ , therefore, indicates the maximum amount
of time before the brightness gradient at the current event
location will trigger a new event in a neighboring pixel.

Substituting (2) and the expressions for Sx, Sy in (3)
yields ∆t = e>3

(
Sx(p), Sy(p)

)
∆p = 〈∇Σe(p),∆p〉 , with

∇Σe(p) =
(
∂Σe

∂x (p), ∂Σe

∂y (p)
)>

. Hence we arrive at the
equivalent definition

τ(p) = max 〈∇Σe(p),∆p〉 subject to ‖∆p‖ = 1. (4)

Since t is an increasing function, Σe is a monotonically
increasing function of p, thus it has nonzero gradient at any

t

x

y

Sx

Sy

S

τ

Image plane

Direction of
steepest ascent

1px p
∂Σe
∂y

∂Σe
∂x
∂Σe
∂x

∇Σe

∆p

Surface of
active events

Fig. 5: Visualization of the lifetime τ : the maximum time increment
∆t of the planar approximation to the Surface of Active Events
(SAE) for a displacement of ‖∆p‖ = 1 pixel. Both the optimal unit
displacement ∆p and τ are directly related to ∇Σe, as summarized
in (6).

point p, and ∇Σe(p) is related to the velocities describing
the visual flow (see [5]) according to

∇Σe(p) =
(
v−1
x (p), v−1

y (p)
)>
. (5)

The local planar approximation is equivalent to assuming
constant velocities vx and vy .

The maximum (4) is achieved for the unit vector ∆p =
∇Σe(p)/‖∇Σe(p)‖ (see Fig. 5). Hence,

τ(p) = ‖∇Σe(p)‖ =

√
v−2
x + v−2

y . (6)

Next, we give a formula for τ in terms of the normal to
the surface S at p (i.e., the normal of the tangent plane),
n(p) = (n1, n2, n3)>, which is assumed to be known by
fitting a plane to the data (this step will be described next
in Section III-B). We may further assume that n3 > 0 since
Σe is a monotonically increasing function. The normal is
given by n(p) ∝ Sx(p) × Sy(p) = (−(∇Σe(p))>, 1)>.
Substituting (5) gives n(p) ∝ (−v−1

x ,−v−1
y , 1)> in terms

of the motion velocity and, identifying coordinates with
n(p) = (n1, n2, n3)>, we obtain −v−1

x = n1/n3 and
−v−1

y = n2/n3, which finally implies

τ(p) =

√
v−2
x + v−2

y =
1

n3

√
n2

1 + n2
2. (7)

B. Local Plane-fitting Algorithm

Our plane-fitting algorithm is based on [5], where all
events in an N × N × 2∆t window, centered around the
current event, in the spatio-temporal domain are used to
estimate the local plane. However, their algorithm has two

xy

tim
e

Fig. 6: When a new event (green) arrives, the SAE on a 5 × 5
patch around it includes the red and blue events. The events in red
correspond to the brightness gradient that moves over this patch.
The events in blue correspond to another gradient that moved over
this patch previously. The events in magenta are future events to
which we do not have access. However, under the local planar
assumption, the magenta events will lie on the same plane (gray)
as the red events. To avoid latency in our algorithm, we only use
the newer half of events from the SAE (red events) to estimate the
plane, while the blue events are not considered (see Section III-B).

undesirable properties: first, it introduces a tuning parame-
ter (∆t) that limits the slowest detectable gradients (the slope
of the plane). Second, events from the future are included,
which translates to introducing a ∆t latency. To overcome
these issues, we only use past events in our estimation. Since
we assume local smoothness, we can only use half of the
events of the N ×N window around the current event. This
is illustrated in Fig. 6.

To robustly fit the plane, we use the RANSAC algo-
rithm [15]. We compute a candidate plane using the new
event and two additional past events that were chosen ran-
domly. We then check all other past events whether they
support the candidate plane. A past event is considered
an inlier, if its point-to-plane distance is below the inlier
threshold µ. The second tuning parameter of the RANSAC
algorithm is the estimated percentage of outliers ε, which
can further be used to estimate the necessary number of
iterations. If less than m inliers are found, the event is
considered as noise and its lifetime is set to zero. We
compute m as a function of half the events in the window
of size N and the percentage of outliers ε,

m = (1− ε)︸ ︷︷ ︸
inlier
ratio

N2/2︸ ︷︷ ︸
maximum

support

. (8)

Both parameters have to be empirically tuned and they
vary for different scenes and DVS settings. We found µ =
10−4 and ε = 0.4 to yield good results. Note that we split
incoming events by their polarity, i.e., we run our algorithm
separately for the positive and negative events, and combine
the output of both for the final result.

1) Plane Fitting: Let A be the matrix of the n inliers
obtained by the RANSAC algorithm,

A =

x1 y1 t1
...

...
...

xn yn tn

 , (9)

where here xi, yi, ti, i ∈ {1, . . . n} are local coordinates
relative to the current event.

The ordinary least-squares solution of the plane nor-
mal nLS is given by

nLS = arg min
n

‖An− b‖2, (10)

where b = (1 · · · 1)>.
2) Regularization: To refine the estimate of the plane

normal, we predict future events using the local constant-
velocity assumption, which serves as regularization. Using
the estimated velocity for a new event, we predict the time
t̂ for all neighboring pixels at which an event should occur.
We then compare the time an event actually occurs with the
predicted time. We use this difference as a measure of how
much we trust the previously fitted plane. The absolute error

∆terr = |ti − t̂i| (11)

between the predicted time t̂i and the actual time ti is,
therefore, used for an error-dependent regularization weight
λ(∆terr). A regularized plane nR is computed,

nR = arg min
n

(
‖An− b‖2 + λ(∆terr)‖n− n̂i‖2

)
, (12)

where n̂i is the predicted plane normal.
The value of the error-dependent regularization

weight λ(∆terr) in (12) gives an indication about the
preference of the prior information, e.g., for small prediction
errors, the prior information is considered reliable and is
therefore weighted stronger. Therefore, λ(∆terr) should be
big for small errors. An exponential approach is chosen to
satisfy this condition. To enforce general smoothness on the
motion, a constant value can be added to the exponential
function. For the experiments described in this paper, the
following function is used:

λ(∆terr) = 9 + 100 exp(−0.005∆terr). (13)

3) Edge Thinning: If a gradient is accelerating and thus
violating the constant-velocity assumption, the lifetime will
be overestimated. Therefore, two neighboring events in the
direction of motion will be active at the same time, causing
a similar effect as motion blur. A simple solution to this
problem is to use the velocity information of the new event to
reset the lifetime of the neighboring pixel in negative velocity
direction. This technique effectively suppresses motion blur
caused by accelerating gradients.

Fig. 7: The DVS is mounted on a train cart to achieve constant
linear velocity. The scene is divided in three parts, which are at
different depths: two line patterns (at 0.1 m and 0.2 m) and the
background consisting of boxes and windows (at 5 m).

IV. EXPERIMENTAL EVALUATION

We evaluate our algorithm using four different experi-
ments, going from controlled environments to urban settings.
We visually compare the output of our method with that of
the naive method that accumulates events over a fixed time
interval.

A. Experiment 1: Line Pattern at Constant Velocity

1) Experimental Setup: The first experiment investigates
the response to straight lines at different depths when the
DVS moves parallel to the pattern at a constant velocity
(see Fig. 7). To enforce constant linear velocity, the DVS
is mounted on a train cart. Two boards with distinct vertical
black and white bars are installed in front of the DVS at
different distances. In the DVS, both boards as well as part
of the background containing cardboard boxes and windows
are visible.

2) Results: Figure 8 shows the event-stream visualization
using the naive method with a fixed accumulation interval
of 1 ms (a) and 30 ms (b) along with our algorithm both
without (c) and with (d) regularization. Both intervals are
not suitable for this setup, resulting in motion blur (30 ms) or
hardly recognizable structure (1 ms). Our algorithm detects
the lines and estimates their velocities coherently. The colors
in the visualization correspond to the lifetime. The slow
apparent background motion, visible in Fig. 8b, is only
partially captured by our method due to the bad signal-to-
noise ratio for slow apparent motion. Qualitative comparison
of the output with and without regularization shows that both
perform similarly, with regularization performing slightly
better when it comes to noise suppression. In this case of pure
translation, the lifetime is proportional to the inverse depth
of the scene. Hence, another application of the estimation
of the lifetime of the events is the recovery of the structure
(i.e., depth) of the scene.

(a) 1 ms (b) 30 ms

(c) Without regularization (d) With regularization

Fig. 8: Experiment 1: DVS moves at constant velocity in front
of a striped pattern. The experimental setup is shown in Fig. 7.
Accumulating events over a fixed time interval results in either
unclear structures (a) or motion blur (b). Since the apparent motion
changes over the image space, no fixed interval exists that can
render sharp images. Our method delivers sharp images as well
as suppresses noise. Long and short lifetimes are depicted in red
and blue, respectively.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

∆terr = |t− testimated|[ms]

C
D

F(
∆
t e

rr
) N = 3 w/o regularization

N = 3 w/ regularization
N = 5 w/o regularization
N = 5 w/ regularization
N = 7 w/o regularization
N = 7 w/ regularization

Fig. 9: Prediction error analysis of Experiment 1 for different
window sizes both with and without regularization.

Figure 9 shows the fraction of cumulated predictions
plotted against their absolute error. For instance, using N = 5
more than 90 % of all predictions have a smaller error than
10 ms. This quantitative evaluation for different window sizes
does not show a significant difference between the algorithm
with or without regularization for window sizes of N = 5
and N = 7. The effect of the regularization becomes much
clearer when looking at the distribution of the estimated
lifetimes (Fig. 10). There is a stronger segregation of the

0 5 10 15 20
0

2,000

4,000

6,000

Lifetime [ms]

N
um

be
r

of
co

un
ts

(a) Without regularization

0 5 10 15 20
0

2,000

4,000

6,000

Lifetime [ms]

N
um

be
r

of
co

un
ts

(b) With regularization

Fig. 10: Lifetime histogram of Experiment 1 for N = 5: events
with an assigned lifetime within 0.2 ms are binned. The two peaks
correspond to the close and far lines in the scene (cf. Fig. 7). Note
that with regularization (b), the two peaks are much sharper than
without (a).

two main expected lifetimes as a result of the regularization.

B. Experiment 2: Complex Patterns at Constant Velocity

1) Experimental Setup: The second experiment investi-
gates the response to complex patterns. We used the same
train cart to move the DVS at constant velocity parallel to a
complex pattern (see Fig. 11a). In this experiment, however,
the entire pattern has constant distance to the DVS.

2) Results: Figure 11b shows the output of our algorithm
for Experiment 2. The silhouette of “Garfield” is clearly
visible even though most edges are curved. Many details
are preserved well. However, some details are too small to
be captured by the low resolution of the DVS, which is
128×128 pixels. Horizontal edges are not visible, as they are
parallel to the apparent motion and, therefore, do not trigger
any events. In this setup, a well-tuned fixed lifetime would
achieve similar results, but without noise suppression.

C. Experiment 3: Quadrotor Flips

1) Experimental Setup: In this experiment, we mounted
the DVS on a quadrotor in a front-looking configuration. The
quadrotor first hovers in front of a black square attached
to a white wall. It then performs a flip around the optical
axis of the DVS and settles down to hover condition again.
Figure 12 shows the quadrotor performing a flip, when it
reaches rotational speeds of up to 1,200 ◦/s.

(a) Image of the scene (b) Output of our algorithm

Fig. 11: Experiment 2: DVS moves at constant velocity parallel to
the image shown in (a). The output of our algorithm captures many
details (b). However, fine details are not preserved due to the low
resolution of the DVS (128× 128 pixels).

Fig. 12: Setup of Experiment 3: a quadrotor equipped with a front-
looking DVS performs a flip in front of a square pattern. Rotational
speeds are measured to be as high as 1,200 ◦/s during the flip.

2) Results: Figures 13 and 14 compare the output of
both the naive and proposed methods at two different time
instances during the experiment. Figure 13 shows the output
during hovering, while Fig. 14 corresponds to the flip.

During hovering, a fixed accumulation interval of 1 ms
hardly captures any structure (Fig. 13a), while 30 ms yields
an almost sharp image (Fig. 13b). During the flip, an interval
of 1 ms yields a sharp image of the square (Fig. 14a), while
an interval of 30 ms causes heavy motion blur (Fig. 14b).
Thus, choosing such a accumulation interval results in a
trade-off between completeness of the image and motion
blur, which is visible as “thickening”. In contrast, our method
provides a sharp image in both situations, showing the
applicability and adaptability of the algorithm to varying
velocities in both rotational and translational motion.

D. Experiment 4: Urban Environment

Figure 1 shows an experiment in an urban environment.
The scene constists of a window frame at a close distance
with office buildings outside (cf. Fig. 1a). While the naive
method either misses elements in the scene (the buildings,
see Fig. 1c) or causes motion blur (the window frame,

Fig. 1b), our method performs well in capturing both fast
and slow edges (Fig. 1d).

V. CONCLUSION

We developed a method to augment the stream of events
from a retinal camera with a measure of the lifetime of
each event. Such a measure is defined based on the visual
flow in the image plane and is computed based on a local
planar approximation of the surface of active events. To
this end, we designed an event-based, robust plane fitting
algorithm with minimum latency (by considering only past
events in the neighborhood of the current event) and optional
regularization. In contrast to the previous work of visual-flow
estimation, we did not rely on any temporal window or the
use of future events.

The generated stream of augmented events opens up
new possibilities to design other event-based algorithms that
operate on a continuous-time representation of the events.
This significantly departs from the algorithmic paradigm
of event accumulation over artificially-chosen intervals of
constant duration at discrete times, which suffer from the
“completeness – motion blur” trade-off. We demonstrated
the usefulness of our method with several experiments in
a visualization application: the rendering of sharp gradient
images at any time instant. Additionally, we included datasets
acquired by a DVS onboard a quadrotor during agile ma-
neuvers. Our method outperformed that of constant event-
accumulation interval, which implicitly assigns the same
lifetime to all events, since it can cope with scenes containing
structures at different apparent velocities. In addition, it is
able to filter a significant amount of events caused by sensor
noise. Our method performs well despite the low resolution
of the DVS (128× 128 pixels).

REFERENCES

[1] T. Delbruck, B. Linares-Barranco, E. Culurciello, and C. Posch,
“Activity-driven, event-based vision sensors,” in Intl. Conf. on Circuits
and Systems (ISCAS), May 2010, pp. 2426–2429.

[2] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 dB 15
µs latency asynchronous temporal contrast vision sensor,” IEEE J. of
Solid-State Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[3] Z. Ni, A. Bolopion, J. Agnus, R. Benosman, and S. Regnier, “Asyn-
chronous event-based visual shape tracking for stable haptic feedback
in microrobotics,” IEEE Trans. Robotics, vol. 28, pp. 1081–1089,
2012.

[4] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan,
“Asynchronous frameless event-based optical flow,” Neural Networks,
vol. 27, pp. 32–37, 2012.

[5] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi,
“Event-based visual flow,” IEEE Trans. Neural Networks and Learning
Systems, vol. 25, no. 2, pp. 407–417, 2014.

[6] A. Censi and D. Scaramuzza, “Low-latency event-based visual odom-
etry,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2014.

[7] H. Kim, A. Handa, R. Benosman, S.-H. Ieng, and A. J. Davison,
“Simultaneous mosaicing and tracking with an event camera,” in
British Machine Vision Conf. (BMVC), 2014.

[8] D. Weikersdorfer and J. Conradt, “Event-based particle filtering for
robot self-localization,” in IEEE Intl. Conf. on Robotics and Biomimet-
ics (ROBIO), 2012.

[9] E. Mueggler, B. Huber, and D. Scaramuzza, “Event-based, 6-DOF
pose tracking for high-speed maneuvers,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2014.

[10] D. Weikersdorfer, R. Hoffmann, and J. Conradt, “Simultaneous local-
ization and mapping for event-based vision systems,” in Intl. Conf. on
Computer Vision Systems (ICVS), 2013.

(a) 1 ms (b) 30 ms

(c) Without regularization (d) With regularization

Fig. 13: Experiment 3: Quadrotor during hovering. The experimental
setup is shown in Fig. 12. A fixed accumulation interval of 1 ms
captures hardly any structure (a), while an interval of 30 ms yields
a sharp image (b). Our method produces even sharper images and
reduces noise (c), (d).

(a) 1 ms (b) 30 ms

(c) Without regularization (d) With regularization

Fig. 14: Experiment 3: Quadrotor during the flip. The experimental
setup is shown in Fig. 12. A fixed accumulation interval of 1 ms
yields a sharp image (a), while an interval of 30 ms produces heavy
motion blur (b). Our method produces sharp images and reduces
noise (c), (d).

[11] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. Douglas, and
T. Delbruck, “A pencil balancing robot using a pair of AER dynamic
vision sensors,” in Intl. Conf. on Circuits and Systems (ISCAS), 2009.

[12] T. Delbruck and M. Lang, “Robotic goalie with 3ms reaction time at
4% CPU load using event-based dynamic vision sensor,” Frontiers in
Neuroscience, vol. 7, no. 223, 2013.

[13] J. Kogler, C. Sulzbachner, and W. Kubinger, “Bio-inspired stereo vi-
sion system with silicon retina imagers,” in Computer Vision Systems,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2009, vol. 5815, pp. 174–183.

[14] S. Schraml, A. Belbachir, N. Milosevic, and P. Schön, “Dynamic stereo
vision system for real-time tracking,” in Intl. Conf. on Circuits and
Systems (ISCAS), 2010.

[15] M. Fischler and R. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[16] S.-C. Liu and T. Delbruck, “Neuromorphic sensory systems,” Current
Opinion in Neurobiology, vol. 20, no. 3, pp. 288–295, 2010.

[17] E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for
the perception of motion,” J. Opt. Soc. Am. A, vol. 2, no. 2, pp. 284–
299, 1985.

