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Abstract

Event cameras deliver visual data with high temporal resolution, low latency, and
minimal redundancy, yet their asynchronous, sparse sequential nature challenges
standard tensor-based machine learning (ML). While the recent asynchronous-to-
synchronous (A2S) paradigm aims to bridge this gap by asynchronously encoding
events into learned representations for ML pipelines, existing A2S approaches
often sacrifice representation expressivity and generalizability compared to dense,
synchronous methods. This paper introduces EVA(EVent Asynchronous repre-
sentation learning), a novel A2S framework to generate highly expressive and
generalizable event-by-event representations. Inspired by the analogy between
events and language, EVA uniquely adapts advances from language modeling in
linear attention and self-supervised learning for its construction. In demonstra-
tion, EVA outperforms prior A2S methods on recognition tasks (DVS128-Gesture
and N-Cars), and represents the first A2S framework to successfully master de-
manding detection tasks, achieving a remarkable 47.7 mAP on the Gen1 dataset.
These results underscore EVA’s transformative potential for advancing real-time
event-based vision applications.

1 Introduction

Traditional frame-based cameras synchronously capture dense visual intensity data at fixed rates.
In contrast, event cameras asynchronously detect pixel-level intensity changes, resulting in event
sequences characterized by high temporal resolution (up to 1 µs) and low spatial redundancy [10].
Due to their ability to capture rapid movements with minimal latency and reduced bandwidth
requirements, event cameras have garnered widespread attention in autonomous driving [13], robotics
[16], and biomedical analysis [19]. However, the asynchronous and sparse nature of event data
inherently complicates its direct and efficient use with standard machine learning (ML) algorithms,
which typically demand tensor-based inputs. Current approaches to utilize event data in vision
tasks predominantly fall into two categories: converting event sequences into dense, image-like
representations aggregated over fixed time windows [42, 26, 12, 20, 50], or employing spiking neural
networks (SNNs) [19]. The former often fails to fully exploit the inherent sparsity and rich temporal
information, while the latter relies on specialized hardware and encounters challenges in training
high-performance models effectively [30].

To better leverage the fine-grained temporal feature and inherent sparsity of events while benefiting
from advancements in standard ML, the asynchronous-to-synchronous (A2S) paradigm has recently
emerged [30]. This paradigm focuses on designing an efficient asynchronous encoder that recurrently
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Figure 1: Overview of the proposed EVA A2S framework. It features an asynchronous LA-based
encoder (top middle) producing event-by-event updated representations for synchronous downstream
tasks (right). These representations are learned via a self-supervised module (bottom middle) and are
event-by-event updated during inference to be sampled on-demand by downstream tasks.

integrates events into a tensor-based representation on an event-by-event basis in real time. This
representation can then be synchronously sampled at flexible, on-demand rates by downstream
ML tasks. However, existing A2S methodologies [30] rely on preliminary models with limited
expressivity as a compromise for computational efficiency. Consequently, they achieve suboptimal
performance on complex tasks compared to dense, tensor-based approaches [14, 12, 51]. Furthermore,
these representations are typically learned in a supervised manner, limiting their generalizability
across diverse downstream applications.

To design an efficient A2S framework with more expressivity and generalizability, we take inspiration
from the analogy between events and language [43]. On one hand, events and language are both
organized in sequences. Events record incremental visual changes, similar to words in a sentence,
incrementally contributing to the semantic meaning. This inspires us to treat each event as a
discrete token and leverage recent advances in natural language processing (NLP), including linear
attention (LA) for efficient sequence modeling [22, 47, 32, 45] and auto-regressive prediction [38]
for self-supervised learning. On the other hand, crucial distinctions between events and language
exist, primarily in information density and spatial locality. A single language token inherently
possesses significant semantic meaning, whereas an individual event offers limited information,
gaining significance primarily through aggregation within its historical context. This distinction steers
our focus towards the aggregated global information rather than isolated event instances. Additionally,
events typically signify spatially localized changes, contrasting with language, which lacks inherent
spatial attributes. This motivates modeling correlations primarily between spatially adjacent events to
reduce complexity.

In this work, we introduce a new A2S framework with a more expressive asynchronous encoder,
which achieves event-by-event representation updating, and a self-supervised method for highly
generalizable representation learning. Our asynchronous encoder is built on the basis of LA, which
enables recurrent inference and parallel training. We propose to use the matrix-value hidden state
(MVHS) introduced in LA as output to expand the model’s expressivity on the aggregated global
information and propose patch-wise encoding to leverage the locality. For ease of implementation and
better performance, our model is built on a high-performance open source LA architecture RWKV-6
[33], which implements MVHS and is stable to train. We propose a self-supervised method for
generalizable representation learning, which consists of two tasks: multi-representation prediction
(MRP) and next-representation prediction (NRP). The former encourages the representation to learn
diverse information from multiple handcrafted (converted) representations [26, 42] comprehensively,
and the latter, motivated by next-token prediction strategies prevalent in NLP [38], pushes the
model beyond simple memorization. Our framework is superior to the previous A2S work [30] on
recognition tasks, and it is the first A2S framework, to the best of our knowledge, that successfully
masters demanding detection tasks, achieving a remarkable 47.7 mAP on the Gen1 dataset. We name
our framework as EVent Asynchronous representation learning (EVA). Our contributions include:

1. An asynchronous LA-based encoder architecture derived from RWKV-6, enabling efficient
event-by-event representation updating with improved expressivity.

2. A novel multi-task SSL method that learns generalizable representations across various downstream
tasks.
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3. We present EVA, a new A2S framework that synergizes the asynchronous encoder with self-
supervised representation learning. Compared to the previous A2S work, EVA outperforms on
recognition tasks and, for the first time, successfully masters demanding detection tasks with a
remarkable 47.7 mAP on the Gen1 dataset.

2 Related Work

2.1 Asynchronous event processing

To fully leverage the sparsity and high temporal resolution of event data within deep learning, several
recent efforts have focused on asynchronous event processing. These include point cloud approaches
[41, 30], convolutional methods [31, 4], graph-based models [28, 40, 52], attention-based mechanisms
[21], and LSTM-based solutions [5, 39]. Specifically, EventNet [41] introduces an event-by-event
feature update mechanism based on PointNet [36]. However, features are encoded into a vector and
therefore limited in expressivity. Convolutional methods have explored deriving local update rules of
activations in standard [4] or sparse [31] convolution layers. While they can leverage sparsity and
reduce redundant computation, they often discard the temporal component of events. Graph-based
methods [28, 40, 52] transform spatio-temporal events into graphs and introduce local update rules
for event-by-event processing, thereby capturing both spatial and temporal information. However,
graph-based methods are known to suffer from over-smoothing, which limits their scalability and
performance on intricate patterns. An attention-based, memory-augmented method was proposed in
[21] to process batched events at each timestep. The LSTM-based Matrix-LSTM [5] method learns
and recurrently updates a representation with a pixel-wise LSTM for downstream tasks. FARSE-
CNN [39] integrates LSTMs within the neurons of convolutional layers to capture spatio-temporal
information and employs local update rules. Our work is most related to the A2S method ALERT-
Transformer [30]. In [30], a patch-wise EventNet is used for asynchronous feature encoding, and
the feature is forwarded to a synchronous Transformer for downstream tasks. Our method follows
the same A2S paradigm but introduces a new architecture with improved expressivity, solving the
problem of limited expressivity brought up by the EventNet encoder.

2.2 Event data-based self-supervised representation learning

Event camera data-based self-supervised representation learning can be broadly categorized into
methods that learn only from events and those that incorporate other modalities. For event-only pre-
training, MEM [25] uses the masked image modeling method [2] to event histograms for pretraining.
Other works [3, 49] utilize contrastive pretraining with joint embedding architectures [7, 17] on event
histograms. These methods typically treat event histograms as images and adapt established image
pretraining strategies to the event camera domain. When learning with other modalities, event data
are often paired with conventional intensity images for representation learning. In [48], contrastive
pretraining is explored on event data synthetically converted from RGB images and their source
images. EVRepSL [37] learns representations by exploiting the relationship between intensity images
and events recorded simultaneously by ATIS cameras. These approaches rely on the correlations
between paired visual modalities to guide representation learning.

3 Method

Our framework’s design leverages the event-language analogy. We first analyze their commonalities
and distinctions. On one hand, events and language are similar in their (i) sequential nature and
(ii) incremental manner of context contribution. Events convey local intensity changes, similar to
language tokens that incrementally build the context (Figure 2). On the other hand, key distinctions
exist in their (i) information density and (ii) spatial locality. An individual language token has
explicit semantics. In contrast, events only record pixel-level intensity changes and require temporal
aggregation to become informative.

As shown in Figure 3, our A2S framework first transforms events into tokens and embeds them
with their spatial and temporal attributes. These embeddings are then asynchronously encoded into
representations. The representations are learned via self-supervision during training and are generated
event-by-event at inference for real-time downstream applications.
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Figure 2: Parallels between event data and language: their sequential nature and incremental manner.

Figure 3: Architecture of the A2S framework: (a) Tokenizing and embedding events. (b) Asyn-
chronous encoding via LA. (c) MRP and NRP for self-supervised representation learning.

3.1 Architecture: asynchronous encoder

Key challenges in designing an asynchronous event encoder encompass: (i) allowing recurrent
inference for real-time representation updates and fast parallel training on long event sequences, (ii)
continuously encoding events with variable temporal intervals, and (iii) efficiently and expressively
aggregating information into the representation. To address the first challenge, drawing from the
event-language analogy, we find that recent linear attention (LA) in sequential language modeling
supports both recurrent inference and parallel training. Building on LA, we incorporate temporal
embedding, MVHS as output, and patch-wise encoding to resolve the other two challenges.

3.1.1 Event tokenization

We define an event sequence as E = {ei = (ti, xi, yi, pi) , i = 1, 2, . . . }, where t, x, y, p ∈ R signify
timestamp, coordinates, and polarity of events, with p ∈ {0, 1} indicating the two polarities. Each
event’s spatial component is tokenized using a bijection Tok as:

Tok : E → N
(x, y, p) 7→ p×H ×W + y ×W + x,

(1)

where H,W denote the height and width of the spatial area containing the event sequence. The
vocabulary size is thus 2×H ×W . This mapped token signifies the event’s spatial location.

3.1.2 Embedding events with varied temporal intervals

Each tokenized event ei = (ti,Tok (xi, yi, pi)) is then embedded as an input vector xi ∈ RD to the
encoder. For event tokens that represent spatial locations, we employ a learnable linear embedding on
the tokens and get Embspatial (ei) ∈ RD. Events are inherently asynchronous, so temporal information
must be embedded in the input. Considering that event cameras generate events at high temporal
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resolution, the absolute timestamp (in µs) quickly grows large in continuous operation; embedding
the absolute timestamp would push the model beyond the range observed during the pretraining
period, leading to the same kind of length-extrapolation failures seen in language models [35, 44, 6].
We therefore embed the time difference ∆ti = ti − ti−1 instead of the absolute timestamp, using the
sinusoidal embedding [46] on the ∆ti as:

Embtemporal(ei)k =

{
sin(∆ti/10000

2k
D ), if k even,

cos(∆ti/10000
2k
D ), if k odd,

k = 0, 1, . . . , D − 1. (2)

The final embedding is then formed by summing the spatial and temporal embeddings:

Emb (ei) = Embspatial (ei) + Embtemporal(ei) ∈ RD. (3)

3.1.3 Modeling event sequence with linear attention

Background: Linear attention in RWKV-6. The asynchronous encoder is based on RWKV-6, a
high-performance linear attention architecture for language modeling[33]. For an input sequence
{xi ∈ RD×1}Ti=1 of length T , a single RWKV-6 block performs token mixing (TM) and channel
mixing (CM).

In TM, inputs are first mapped to {ri,wi,ki,vi ∈ RD×1}Ti=1. and subsequently mixed by the rwkv
operator:

yi =

 i−1∑
t=1

diag

 i−1⊗
j=t+1

wj

ktv
T
t + diag (u)kiv

T
i

 ri ∈ RD×1, (4)

where u ∈ RD×1 is a learnable parameter. This rwkv operator, involving only element-wise prefix
sums and products, enables fast training via parallel scan [29]. Equation 4 can be expressed in a
recurrent form as:

Si = diag (wi)Si−1 + kiv
T
i ∈ RD×D,

yi =
(
Si−1 + diag (u)kiv

T
i

)
ri ∈ RD×1.

(5)

Consequently, the hidden state S can be updated recursively at inference upon the arrival of each new
event token, allowing efficient training and recurrent inference on long, continuous event sequences.

To better capture diverse information aspects, RWKV-6 uses multi-head TM. Each input is split into
N heads of dimension Dhead = D/N , and the rwkv operator acts on each head individually. The
hidden state in multi-head TM is S ∈ RN×Dhead×Dhead .

The CM layer transforms TM outputs using a gated feed-forward network, similar to that in Trans-
formers [46]. Appendix A provides details.

Representing and training with matrix value hidden states (MVHS) as output. Typical NLP tasks
use sequence-to-sequence models mapping 1-D token embeddings to 1-D embeddings (or classifying
tokens). We propose direct training on the 2-D MVHS, rather than the 1-D output, and use the MVHS
as the event representation. Appendix A provides details of the MVHS layer. This practice offers
several benefits. First, MVHS, as the hidden state, naturally contains aggregated information. This
aggregated representation is precisely what we want to learn, instead of the mapping from event
embeddings to event embeddings in standard auto-regressive pretraining (our attempt to predict
the next single event failed to converge). Secondly, MVHS yields an expanded memory of size
N ×Dhead ×Dhead without increasing model width D, thus improving the representation expressivity
and enabling a lightweight architecture for real-time event processing. Using MVHS as output can
reduce model size by approximately Dmodel/N versus 1-D outputs (Appendix F). Moreover, the 2-D
structure of MVHS helps to learn fine-grained spatial representations, improving performance over
prior 1-D features [41, 30].

3.1.4 Patch-wise representation encoding

To exploit the locality of the event, we follow the practice in [29] and use patch-wise representation
encoding. For an event camera resolution (Hsensor,Wsensor) and patch size P , we divide events
into Hsensor ×Wsensor/P

2 sequences by coordinates. As Figure 4 illustrates, we learn and encode
representations for each patch separately. With patch-wise encoding, the model size of the encoder can
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be reduced by a factor of approximately # patches, which helps real-time inference (see Appendix
F for discussion). Furthermore, as the asynchronous encoder trains on fixed-size P patches, this
patch-wise encoding allows application to event cameras with differing resolutions [51].

3.2 Self-supervised representation learning on asynchronous events

Figure 4: Patch-wise representation encoding.
Events are partitioned and encoded by patch. Patch
representations could be concatenated for down-
stream tasks.

The available A2S method learns the representa-
tion in a fully supervised manner [30], leading to
limited generalizability to diverse downstream
tasks. Here, we propose a self-supervised rep-
resentation learning method composed of multi-
representation prediction (MRP) and next repre-
sentation prediction (NRP).

3.2.1 Multi-representation prediction

For MRP, we force the learned representation to
predict multiple handcrafted (converted) event
representations [26, 42, 20], such as event count
(EC) and time surface (TS), to learn a more
comprehensive representation. For events E =
{ei = (ti, xi, yi, pi)}, i = 1, 2, . . ., we expect
the asynchronous encoder Mθ parametrized by
θ to learn an event-by-event representation as
Rθ

i = Mθ({ej}j≤i). Given K handcrafted
representations {Rk}Kk=1, we predict these representations from Rθ with specific neural network
heads parameterized by Θ = {θk}Kk=1. The objective is:

argmax
θ,Θ

Ei

K∏
k=1

p
(
Rk ({ej}j≤i) |Mθ ({ej}j≤i) ,θk

)
. (6)

MRP is motivated by the insight that different handcrafted representations capture distinct raw event
information aspects and provide visual data for various tasks [50]. We anticipate that learning
to predict multiple converted representations will yield a representation generalizable to diverse
downstream tasks.

3.2.2 Next representation prediction

Inspired by auto-regressive pretraining of language models, where models learn by next-token
prediction [38], NRP forces the encoder to predict handcrafted representations for a future time
interval. For a future time window ∆T , the objective of NRP is:

argmax
θ,Θ′

Ei

K′∏
k=1

p
(
Rk ({e|ti < t(e) ≤ ti +∆T}) |Mθ ({ej}j≤i) ,θ

′
k

)
. (7)

We aim for the model to understand inherent motion patterns and beyond just memorize the history
by learning to predict the future. In particular, individual events are ineffective prediction targets due
to their limited information and unpredictable noise. In contrast, converted representations are more
informative and noise-robust, offering a more reliable supervisory signal.

4 Experiments

4.1 Object recognition

Datasets. To compare with previous A2S work [30], we evaluate our work EVA on two event-based
recognition tasks: action recognition (DVS128-Gesture [1]) and binary classification (N-Cars [42]).
DVS128-Gesture provides 11 classes of human actions recorded by the DVS128 event camera,
containing 1342 files of around 6 seconds from 29 subjects under 3 different lighting conditions.
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N-Cars provides a benchmark for the binary classification task of car recognition, containing 24029
files of 100 ms recorded by the ATIS event camera.

Implementations. We present an asynchronous encoder composed of an event embedding with
D = 128, 3 RWKV-6 blocks of width D = 128, and one MVHS layer as output to generate the
learned representation. We use patch size P = 16. On DVS128-Gesture, to reduce the latency of
downstream classification, we use Dhead = 8 for a 2× shrink in height and width of the representation
and use a light-weighted 14 layer ResNet [18] (referred to as ResNet-14) for classification. On
N-Cars however, since the samples are already cropped small [42], we also present an encoder with
Dhead = 16 for a full height and weight representation. To maintain the representation size, we use
only half-channels of the MVHS output. The model implementation details are given in Appendix C.

On DVS128-Gesture, the encoder is pretrained on event sequences of length 8192 with batch size 32
and Adam optimizer [24] with learning rate 0.001. It takes around 10 hours to train 100 epochs with
an RTX 3090 GPU. We use EC and TS for MRP and EC for NRP as SSL targets. Calculating the loss
of the predictions and targets at every individual event would demand prohibitive GPU memory. To
mitigate this, we divide the event sequence into chunks of length Tchunk = 512, and calculate the loss
only at the end of each chunk. On N-Cars, the encoder is pretrained with a sequence length of 512
and chunk length 16 with batch size 32 and learning rate 0.001. It takes 1 hour to train 20 epochs on
an RTX 3090 GPU. We use EC and TS for MRP and EC for NRP as well. To balance the multi-task
losses, we use uncertainty weights [23]. The details of SSL objectives are given in Appendix D.

Metrics. On DVS128-Gesture, following previous work [30], we evaluate the model on samples of
length 8192 and report the accuracy on samples (sample accuracy, SA) and the accuracy after majority
voting on all the samples of each file (file voting accuracy, FVA). We also report the complexity
(MAC) and inference latency on the RTX 3090 GPU. On N-Cars, we report accuracy.

Results. On DVS128-Gesture, our model achieves 96.9% FVA and 92.9% SA (see Table 1),
outperforming the best result in previous A2S work (94.1% FVA and 84.6% SA) by 2.8% and 8.3%
respectively. Compared with ALERT-Tr. (+RM), our EVA achieves better performance with smaller
parameter size and complexity. ALERT-Tr. (+LMM) indeed has fewer parameters, but with a much
lower accuracy of 72.6% in SA, 20% less accuracy than ours. It is worth noting that our EVA, with
a lightweight ResNet classifier, has much lower inference time (1.5 ms) compared with both the
LMM and RM. Our asynchronous encoder has a larger inference latency compared with previous
work because of its complicated architecture. However, it is smaller than the duration time of an
8192-length sample, which is about 100 ms in DVS128-Gesture. On N-Cars, previous A2S work
[30] did not report the results with their larger model (RM), only gave the accuracy of LMM to show
its low complexity. Therefore, here we also compare our EVA with (i) synchronous tensor-based
methods[34, 25] and (ii) methods that learns the representation from raw events[12, 5]. In comparison
with ALERT-Tr. (+LMM), our method has better accuracy and less classifier latency. Since the files
in N-Cars are small in number of events and the pretraining on this dataset is not sufficient, we also
present the result with representations generated by an encoder pretrained on Gen1 for detection
tasks (EVA-L in Table 3). For a fair comparison with [12] and [5], we follow their practice and use
ResNet-34 pretrained on ImageNet[9] as the classifier. Our model, with the encoder pretrained on
Gen1 and ResNet-34, has an accuracy of 96.3%, higher than the methods with learned representations.

Table 1: Results on DVS128-Gesture. Latency refers to the time to process a sample of length 8192.

Model # Params MAC per Latency Acc.

Event Sample SA FVA

ALERT-Tr. [30] 1.41 M 1.22 M 8.83 G 5.8 ms 84.6% 94.1%(+RM) 13.96 M 1.30 M 9.42 G 9.6 ms

ALERT-Tr. 0.04 M 0.0040 M 0.03 G 3.9 ms 72.6% 89.2%(+LMM) 0.57 M 0.0074 M 0.06 G 6.0 ms

EVA (ours) 0.62 M 0.60 M 4.79 G 14.7 ms 92.9% 96.9%(+ResNet-14) 2.83 M 0.28 M 1.82 G 1.5 ms
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Table 2: Results on N-Cars. EVA (+ResNet-14) is pretrained on N-Cars, and EVA (+ResNet-34) is
pretrained on Gen1.

Model Event Repr. Acc.

GET [34] Event count → Token 96.9%
MEM [25] Event count 98.4%

EST [12] Learned 92.5%
Matrix-LSTM [5] Learned 95.8%
ALERT-Tr. (+LMM) Learned 85.6%

EVA (+ResNet-14) (ours) Learned 91.4%
EVA (+ResNet-14) (Dhead = 16) (ours) Learned 91.6%
EVA-L (+ResNet-34) (Dhead = 16) (ours) Learned 96.3%

4.2 Object detection

Dataset. We evaluate our work on the challenging automotive detection dataset Gen1 [8], which
includes 39 hours of data recorded by the Gen1 event camera with a sensor resolution of 304× 240.

Implementations. We present EVA of 3 RWKV-6 blocks, one MVHS layer with D = 128. We
also present a larger model with D = 192 (referred to as EVA-L). We use patch size P = 16 and
Dhead = 16 to keep the spatial resolution. Like N-Cars, we use only half of the output channels
of the MVHS layer. For the downstream detection task, we use RVT-B [14], a state-of-the-art
(SOTA) Transformer-based synchronous backbone and YOLOX detection head [11] on the learned
representations. The model implementation details are given in Appendix C.

We pretrain the encoder with sequence length T = 2048, chunk length Tchunk = 16 and batch size 64
on 4 RTX 3090 GPUs. The learning rate is initially 0.001 with a decay of γ = 0.9 every epoch. We
use EC and TS for MRP objectives and EC for NRP. The details are given in Appendix D.

Results. Existing A2S work did not report results on object detection tasks. Therefore, here we
compare our method with (i) synchronous tensor-based methods and (ii) end-to-end asynchronous
methods. The results are shown in Table 3. End-to-end asynchronous methods could predict results
in an event-by-event manner, but have a lower accuracy compared with synchronous methods. Our
best model achieves a remarkable 47.7 mAP, and improves the SOTA synchronous method [14] with
a lower number of channels of the event representation (6 for our EVA compared with 20 for RVT-B).
This is the first result by A2S methods on event-based detection tasks, demonstrating the effectiveness
of our method.

Table 3: Object detection performance on Gen1. Async. refers to end-to-end asynchronous methods.
Sync. refers to synchronous tensor-based methods.

Model Type mAP (%)

NVS-S [28] Async. 8.6
AEGNN [40] Async. 14.5
Asynet [31] Async. 16.3
FARSE-CNN [39] Async. 30.0

ASTMNet [27] Sync. 46.7
HMNet-L3 [15] Sync. 47.1
RVT-B [14] Sync. 47.2
GET [34] Sync. 47.9
EVA (+RVT-B) (ours) (D = 128, Dhead = 16) A2S 47.5
EVA-L (+RVT-B) (ours) (D = 192, Dhead = 16) A2S 47.7
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4.3 Ablation study

We ablate architecture components, including MVHS and temporal embedding, and SSL objectives
to check their contribution. The effect of patch size is also investigated. The ablation is conducted on
DVS128-Gesture, following the implementations in the object recognition experiment. We report the
loss items of SSL during pretraining and downstream task accuracy, including FVA and SA, on the
validation set.

Ablation of MVHS and temporal embedding. To remove MVHS, we keep the model width
D = 128 unchanged and let Dhead = 1 in the output layer. The output becomes a vector with shape
128× 1× 1. The results are shown in Tab 4. Models without MVHS or temporal embedding show a
decrease in both FVA and SA, and also have a larger pretraining loss.

Table 4: Ablation of MVHS and temporal embedding.

MVHS Tempo. Emb. MRP Loss NRP Loss Acc.

EC (↓) TS (↓) EC(↓) FVA (↑) SA (↑)

✓ ✓ 0.366 3.16×10−3 0.767 98.1% 94.7%
✓ 1.870 4.56×10−2 0.933 87.8% 81.1%

✓ 0.826 9.34×10−3 0.834 97.4% 94.1%

Ablation of SSL objective. We remove the SSL objectives to show their contribution to the learned
representation. Results in Table 5 show that removing the items of SSL decreases the performance
of the model. One interesting thing is that learning only one representation, such as EC, will not
contribute to a smaller pretraining loss compared with learning all the representations. This indicates
that learning one single representation could benefit from learning other representations.

Table 5: Ablation of objectives of MRP and NRP.

MRP NRP MRP Loss NRP Loss Acc.

EC TS EC EC (↓) TS (↓) EC(↓) FVA (↑) SA (↑)

✓ ✓ ✓ 0.366 3.16×10−3 0.767 98.1% 94.7%
✓ ✓ 0.639 1.03×10−2 – 96.8% 94.4%
✓ 0.701 – – 96.8% 91.7%

✓ – 1.40×10−2 – 97.4% 91.6%
✓ – – 0.825 96.8% 91.8%

Effect of patch size. We change the patch size from 16 to 128 (w/o patching in this case), while
keeping the width of the encoder D = 128 and the sequence length T = 8192 for different patch
sizes. The results in Table 6 show that a small patch size gives better accuracy. Patch size P = 128
gives a smaller pretraining loss because the spatial sparsity makes a larger patch have more blank
areas.

Table 6: Effect of the choice of patch size

Patch Size MRP Loss NRP Loss Acc.

EC (↓) TS (↓) EC(↓) FVA (↑) SA (↑)

16 0.366 3.16×10−3 0.767 98.1% 94.7%
32 0.454 1.67×10−2 0.393 94.8% 91.0%
64 0.233 1.45×10−2 0.149 95.5% 89.6%

128 (w/o patching) 0.108 9.88×10−3 0.073 97.4% 89.3%
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5 Conclusion

We introduce a new A2S framework, EVA, for real-time event camera data processing. The framework
consists of an efficient and expressive linear attention-based asynchronous encoder for event-by-event
representation updating and an SSL method to learn a generalizable event representation. EVA
outperforms the previous A2S work [30], achieves remarkable performance on event-based detection
tasks, and learns generalizable representations applicable in diverse downstream tasks, demonstrating
its potential towards real-time event-based applications.

The limitations of our work are discussed in Appendix G.
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A Architecture details of the asynchronous encoder

RWKV-6 details. As described in [33], one RWKV-6 block is composed of token mixing (TM)
and channel mixing (CM). For input sequence {xi ∈ RD}Ti=1 of length T , TM first conduct a
data-dependent linear interpolation (ddlerp) between xi and xi−1 by

lora{r,k,v,g}(xi) = λ{r,k,v,g} + tanh(xiA{r,k,v,g})B{r,k,v,g},

ddlerp{r,k,v,g}(xi,xi−1) = xi + (xi−1 − xi)⊙ lora{r,k,v,g}(xi + (xi−1 − xi)⊙ µ),
(8)

where µ,λ{r,k,v,g} ∈ RD are learnable parameters and A{r,k,v,g} ∈ RD×Dlora ,B{r,k,v,g} ∈
RDlora×D are trainable weight matrices. The vectors in Equation 4 are calculated as

rt = ddlerpr(xi,xi−1)Wr,

kt = ddlerpk(xi,xi−1)Wk,

vt = ddlerpv(xi,xi−1)Wv,

gt = ddlerpg(xi,xi−1)Wg,

dt = lorad(ddlerpd(xi,xi−1)),

wt = exp(− exp(dt)),

(9)

where W{r,k,v,g} ∈ RD×D, Aw ∈ RD×Dw ,Bw ∈ RDw×D are trainable weight matrices. By
Equation 4 we have yi ∈ RD×1. The output of TM is given as

ot = concat (SiLU(gt)⊙ LayerNorm(yt))Wo ∈ RD×1. (10)

In CM, for inputs {x′
i ∈ RD}Ti=1, a linear interpolation (lerp) is first conducted as

lerp{r′,k′,v′}(x
′
i,x

′
i−1) = x′

i + (x′
i−1 − x′

i)µ{r′,k′,v′}, (11)

where µ{r′,k′,v′} ∈ RD is trainable parameter. CM is conducted as

r′t = lerpr′(x
′
i,x

′
i−1)Wr′ ∈ RD,

k′
t = lerpk′(x′

i,x
′
i−1)Wk′ ∈ RDffn ,

v′
t = ReLU(k′

t)
2Wv′ ∈ RD,

o′
t = σ(r′t)⊙ v′

t ∈ RD,

(12)

where Wr′ ∈ RD×D,Wk′ ∈ RD×Dffn ,Wv′ ∈ RDffn×D are trainable matrices.

MVHS layer. The MVHS layer is modified from the TM layer in RWKV-6. For input sequence
{xi ∈ RD}Ti=1 of length T , MVHS layer first maps them into kt,vt,wt as Equation 9. Then, given
number of heads N and dimension of head Dhead = D/N , the output S of the MVHS layer is given
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as
wh

i = wi [hDhead : (h+ 1)Dhead − 1] ∈ RDhead ,

kh
i = ki [hDhead : (h+ 1)Dhead − 1] ∈ RDhead ,

vh
i = vi [hDhead : (h+ 1)Dhead − 1] ∈ RDhead ,

Sh
i =

i∑
t=1

diag

 i⊗
j=t+1

wh
j

kh
t (v

h
t )

T ∈ RDhead×Dhead , h = 0, 1, · · · , N − 1,

Si = concat({Sh
i }N−1

h=0 ) ∈ RN×Dhead×Dhead .

(13)

This is equivalent to directly using the multi-channel MVHS of the TM in RWKV-6 as the output. The
hidden state preserves the aggregated information of the input events, which is precisely what we want
for event representation. Moreover, the multi-channel matrix shape matches the multi-channel image-
like handcrafted event representations and could convey expressive fine-grained spatial information.
Therefore, we think using MVHS as output is a key towards expressive event representation.

B Dataset preprocess

DVS128-Gesture. DVS128-Gesture has 11 classes of human actions of 29 different users. The
official split of the dataset uses users 0 to 23 as the train split and users 24 to 29 as the test split. We
follow this method and use users 21 to 23 in the original train split as a validation set. The pretraining
is conducted on the new training set (user 0 to 20) and validated on the val set (user 21 to 23). We
report the test accuracy of the best model on the validation set.

For pretraining the model on sequences of length 8192, we first split all the files into patches of patch
size P = 16. Then, we slice each patch into sequences of length 10240 with a stride of 8192 as
samples. In each sample, the first 8192 events are the inputs to the model, and the last 2048 events
are used to generate the NRP objectives. We save the samples in the data format of ∆t, x, y, p and
convert them into uint16 to save storage. The difference of timestamps ∆t may be clamped to the
numeric range of uint16, but this happens seldom and has little influence on the experiments.

N-Cars. N-Cars has files of duration 100 ms. Each file has around 4000 events. After splitting the
files into patches of size 16× 16, the average length of each patch is around 200, which is quite small.
Therefore, on this dataset, we split the patches into samples of length 768 with a stride of 512. The
first 512 events are inputs, and the last 256 events are used for NRP objectives. Following [12, 5],
we use 20% of the training set as the validation split. The samples are saved in the same format as
DVS128-Gesture.

Gen1. We first filter out all the hot pixels caused by event camera sensor errors in the dataset. For
every 10 ms in the file, the events in a pixel are deleted if they activate more than 40 times (we check
the normal files and find this value is no more than 10 regularly). This is similar to limiting the
maximum value in the event counts in the synchronous method [14]. We use the official train-val-test
split of Gen1 and split the files into patches of size 16 × 16. Since Gen1 is a large dataset with
sufficient events for pretraining the model, we do not use all the events for pretraining in one epoch.
Instead, we uniformly sample a slice of length 4096 from each patch. The first 2048 events are inputs,
and the last 2048 events are left for NRP objectives. For pretraining, we save the patches in the same
format as DVS128-Gesture. For training, all the generated representations are multiplied by a factor
of 1/8, converted to their absolute value of data type uint8 to be consistent with the numerical range
of the original inputs of RVT (0 to 20). We do this because we find that if we use the original float
data type of the representation, there will probably be a numerical NAN error caused by the YOLOX
head [11]. This could also help save storage.

C Implementations

Three asynchronous encoders are presented in the experiment. In the experiments on DVS128-Gesture,
we present an encoder (EVA) with 3 RWKV-6 blocks and 1 MVHS layer with D = 128, Dhead =
8, N = 16, Dffn = 256, Dlora = Dw = 16. The shape of the MVHS output is (16 × 8 × 8). To
predict the representation of shape (∗ × 16× 16), we use a ResNet head with 1 basic ResNet block
of width 64, 1 ConvTranspose2d(in = 64, out = 32, ks = 4, stride = 2) to upsample the 8 × 8
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hidden to 16 × 16 and 1 basic ResNet block of width 32. We use one 1 × 1 convolution layer as
output. In the experiment on N-Cars, except for the encoder (EVA) on DVS128-Gesture, we also
present an encoder with N = 8, Dhead = 16 (referred to as EVA (Dhead = 16) in the main context)
since the spatial resolution of files in N-Cars is already cropped and small in spatial resolution. Using
a shrunk hidden state as representation could indeed help reduce downstream tasks inference latency,
but will decrease the accuracy (see Table 2). To keep the same total size of the representation, we use
only half the channels in the MVHS layer, that is N = 4, Dhead = 16. The shape of the MVHS output
is 4 × 16 × 16. In this case, since there is no need for upsampling, we use a ResNet with 1 basic
ResNet block of width 32 as the head. In the experiment on Gen1, we also present a larger encoder
with D = 192, Dhead = 16, N = 8, Dffn = 384 (referred to as EVA-L (D = 192, Dhead = 16) in the
main context) in the RWKV-6 blocks and N = 6, Dhead = 16 in the MVHS layer. The same ResNet
head as N-Cars is used for pretraining.

For initialization, we use the official initialization method in RWKV-6 for the encoder and Kaiming
initialization for the ResNet. The asynchronous encoder, including the RWKV-6 blocks and MVHS
layer, is trained with bfloat16 precision as the default value in the original implementations in
RWKV-6.

In the recognition task on DVS128-Gesture, we use a 14-layer (ResNet-14) as the classifier by
removing the last stage of the original ResNet-18 [18] to reduce inference latency (see Table 7).
Interestingly, ResNet-14 has a higher accuracy on the validation set with a smaller parameter size and
lower latency. We think this is because a smaller model could help overcome overfitting. Despite
this, we find that ResNet-18 could also outperform previous work [30]. We use batch size 32, Adam
optimizer with learning rate 0.001, mixup augmentation, and train 200 epochs on a single RTX 3090
GPU with a decay of learning rate γ = 0.8 every 20 epochs. In the experiments on N-Cars, we follow

Table 7: Classification results on DVS128-Gesture with ResNet-18

Model Classifier # Params Latency Val. acc. (SA) Test acc. (SA)

ALERT-Tr. [30] RM 13.96 M 9.6 ms – 84.6%
EVA ResNet-18 11.28 M 2.0 ms 92.8% 92.0%
EVA ResNet-14 (used) 2.83 M 1.5 ms 94.1% 92.9%

[5, 12] to use a ResNet-34 pretrained on ImageNet as the classifier. Following the train settings of
previous work, we use a batch size of 64, Adam optimizer with a constant learning rate of 0.0001,
random flip as data augmentation, and train 100 epochs on an RTX 3090 GPU. In the experiments
on Gen1, we use the default training setups of RVT[14] for a fair comparison. We use batch size 8,
learning rate 2e-4, and train 400,000 steps on a single A800 GPU. The training takes about 2 days.

D Pretraining objectives

We use event count (EC) and time surface (TS) as the pretraining objectives. Consider events
E = {ei = (ti, xi, yi, pi)}Ti=1 and patch size P , EC of a given time window [ts, te] is constructed as
a 2 channel image of shape 2× P × P by

EC(p, x, y) =
∑
i

1xi=x,yi=y,pi=p,ti∈[ts,te] ∈ R2×P×P . (14)

and TS is calculated as

TS(p, x, y) = max
i

exp(
ti − tT

τ
)× 1xi=x,yi=y,pi=p ∈ R2×P×P , (15)

where τ > 0 is a time constant.

The objectives in the experiments are given in Table 8. On Gen1, we use multiple ECs and larger
TS τ because we find it could help converge at the initial period of pretraining to decrease the time
required to pretrain on the large dataset.

For a better understanding of the effects of the SSL objectives, here we give a study on DVS128-
Gesture. The results are given in Table 9. We change the SSL objectives and find that the validation
set accuracy (SA) is not heavily affected. The optimal configuration of the hyperparameter has not
been investigated yet, and we hope to leave it for future study.
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Table 8: Objectives for the SSL. For EC in MRP

Dataset MRP NRP

EC time window (ms) TS τ (ms) EC time window (ms)

DVS128-Gesture 100 100 20
N-Cars 100 100 20
Gen1 50, 25, 10, 5 200 10

Table 9: Effect of SSL objectives on DVS128-Gesture

MRP NRP MRP Loss NRP Loss Acc.

EC (ms) TS (ms) EC (ms) EC TS EC FVA SA

100 100 20 0.366 3.16×10−3 0.767 98.1% 94.7%
100 → 50 100 20 0.200 2.33×10−3 0.764 95.5% 94.3%

100 → 200 100 20 0.807 3.60×10−3 0.767 95.5% 94.3%
100 100 → 50 20 0.398 2.39×10−3 0.766 98.1% 94.1%
100 100 → 200 20 0.374 3.78×10−3 0.780 96.2% 94.4%
100 100 20 → 10 0.389 3.29×10−3 0.364 97.4% 94.2%
100 100 20 → 40 0.353 2.86×10−3 1.698 98.7% 94.3%

E Visualization

We visualize the handcrafted representations for SSL pretraining, the predicted results of the pretrain-
ing target, and the learned representations in Figure 5. The results are generated on DVS128-Gesture.
The comparison between Figure 5 (a) and (b) demonstrates that during SSL, our model could con-
sistently predict multiple handcrafted representations (EC, TS) of the events with high similarity.
Additionally, it shows favorable visualization results in predicting the EC for future time periods.
This indicates that our model is capable of predicting short-term motion patterns rather than merely
memorizing the history.

F Details of the MVHS and patch-wise encoding to reduce model size

Assume that we keep the size of the learned representation unchanged. For original vector-value
output, the output size is D, and the model parameter size is around O(D2) (since the majority of the
parameters come from the matrix). For MVHS output, the output size is N × (D′/N)× (D′/N) with
model size O(D′2). Let D = N × (D′/N)× (D′/N), we have O(D2)/O(D′2) = D/N = Dhead.
In our EVA, this factor is 8 or 16.

For patch-wise encoding, assume that we learn a representation that is proportional to the size of the
objective representations. Consider an event camera with resolution (H,W ) (assume H = W for
simplicity) and patch size P , the number of patches # patches is H2/P 2. Given the shape of the
learned representation as (N ×D ×D), if we use it to predict the objective representation of full
size, which is (∗ ×H ×H), then we have D = H and the model size is around O(H2). However, if
we use the learned representation to predict a the representations of a patch, which have the shape
of (∗ × P × P ), we have D = P , and the model size is around O(P 2). Therefore, the model size
decreases O(H2)/O(P 2) = # patches times. In the experiment on DVS128-Gesture, we have
H = W = 128 and P = 16. This factor is 64. On Gen1 with H = 240,W = 304 and P = 16, we
have # patches = 285.

G Limitations

Our work is limited in two aspects. First, while our EVA framework is evaluated on publicly available
datasets recorded in real-world settings, especially in automotive driving scenarios, a full exploration
of its utility in practical applications requires implementing the models on device-side, such as on
FPGAs, and testing the whole framework in actual deployment scenarios. These aspects are not
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Figure 5: Visualization on DVS128-Gesture. (a) Ground truth of the handcrafted representations. (b)
Predicted results of the handcrafted representations. (c) The learned representations.
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involved in the current study. Secondly, the models trained are relatively small in parameter size
compared to pretrained large language models (LLMs) with billions of parameters. Consequently,
the potential of self-supervised pretraining could not be fully exploited in our study. The parameter
size of the asynchronous encoder is constrained by the requirement for real-time processing of
high-temporal-resolution events. We aim to address this limitation in the future by decreasing the
per-event computational complexity, thereby enabling the design of larger pretrained models capable
of asynchronously processing events in real time.
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