
This paper has been accepted for publication at the
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver,

2023. c©IEEE

Neuromorphic Optical Flow and Real-time Implementation with Event Cameras
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Abstract

Optical flow provides information on relative motion
that is an important component in many computer vision
pipelines. Neural networks provide high accuracy opti-
cal flow, yet their complexity is often prohibitive for ap-
plication at the edge or in robots, where efficiency and la-
tency play crucial role. To address this challenge, we build
on the latest developments in event-based vision and spik-
ing neural networks. We propose a new network architec-
ture, inspired by Timelens, that improves the state-of-the-art
self-supervised optical flow accuracy when operated both
in spiking and non-spiking mode. To implement a real-
time pipeline with a physical event camera, we propose a
methodology for principled model simplification based on
activity and latency analysis. We demonstrate high speed
optical flow prediction with almost two orders of magnitude
reduced complexity while maintaining the accuracy, open-
ing the path for real-time deployments.

Video: https://youtu.be/jDGDxKabj0o

1. Introduction
Optical flow is defined as an apparent motion of objects,

edges and surfaces in a visual scene registered by the ob-
server. It is caused by the relative motion between the ob-
server and the scene and does not distinguish between ac-
tual motion in the visual scene and change in the observer’s
pose. The applications of optical flow in the field of com-
puter science include motion estimation and video compres-
sion [1, 7]. In machine perception as well as in robotics,
optical flow is used for both object detection and track-
ing [3, 14, 27], robot navigation and even for control of mi-
cro air vehicles [9, 17, 31].

Deployment of optical flow in real-time robotic scenar-
ios requires low-latency processing and energy efficiency.
Existing algorithms usually calculate optical flow at discrete
rates based on frames obtained from conventional cameras
[13]. Neuromorphic dynamic vision sensors (DVS) oper-
ate similarly to the eye’s retina by providing a continuous
stream of events representing brightness changes rather than
absolute measurements at fixed time intervals [15]. Since
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Figure 1. Optical flow estimation from DVS events: We propose
a Timelens-based neural network architecture that in comparison
with prior art provides lower error and higher real-time framerates.

optical flow computation relies on regions and time instants
where brightness changes, DVS represents a viable alterna-
tive for fast optical flow prediction, demonstrated in recent
works [6, 26]. Moreover, the sparsity of the events can be
exploited by spiking neural networks (SNN) as opposed to
artificial neural networks (ANNs). The advantage of SNNs
deployed on neuromorphic hardware is low latency and en-
ergy efficiency coming from sparse computations [4].

Recently, researchers have presented an approach to pro-
duce sparse optical flow based on event data with SNNs
[18]. However, there is a disconnect between large-scale ar-
chitecture modelling and real-time deployments in efficient
hardware. Here, we present a novel approach of a Time-
lens [29]-like network for sparse optical flow predictions.
Apart from surpassing the optical flow baseline in terms of
the average endpoint error (AEE) [18], we also address the
deployment aspect through systematic model reduction and
demonstrate real-time operation with a physical DVS cam-
era, as schematically illustrated in Fig. 1.

This paper makes the following contributions:

1. We design an optical flow architecture inspired by the
Timelens architecture, enriched with spiking neurons
operating with DVS-based inputs.

2. We surpass the state-of-the-art self-supervised optical
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flow performance for SNNs and ANNs on the MVSEC
dataset [33] for event-based vision, reducing the pre-
diction error by 6.1% in spiking, 15.6% in analog-
valued spiking, and 5.5% in non-spiking mode.

3. We propose a principled methodology, involving activ-
ity and latency analysis, for reducing the network size
to fit into realistic real-time hardware constraints.

4. We demonstrate model reduction from 20.4M to
0.32M parameters with 0% penalty in error with re-
gard to the prior art [18], enabling real-time operation
with DVS inputs.

2. Related Work
2.1. Deep learning of SNNs

In recent years, SNN popularity in machine learning has
been increasing owing to research advancements that en-
abled easy modelling and training in deep learning frame-
works [23, 30]. Beyond the standard Leaky Integrate-
and-Fire (LIF) model, an even wider variety of neuro-
inspired spiking models has been explored. In particular,
a framework around so-called Spiking Neural Unit (SNU)
includes the plain SNU with LIF dynamics and typical axo-
dendritic synapses, as well as its variants that model fur-
ther biological aspects, such as axo-axonic and axo-somatic
synapses in SNUo and SNUa, respectively. These variants
demonstrated improvements in large-scale speech recogni-
tion models [5]. In the context of optical flow, modifi-
cations of a LIF implementation were also proposed and
called ALIF, XLIF, and PLIF [18].

2.2. Architectures for optical flow

Successful training of neural networks relies on a proper
loss definition, where historically supervised losses were
used [13, 16, 28]. Due to challenges with obtaining a large
number of high-quality labels, it is beneficial to reformu-
late the training in terms of a self-supervised loss [21, 32].
In [18], the optical flow prediction task was posed as a self-
supervised contrast maximization problem. This training
approach can be applied to popular network architectures
for optical flow prediction that include EV-FlowNet [32]
and FireNet [25]. State-of-the-art SNN implementations are
based on their adaptation to inputs from event-based cam-
eras and the operation with spiking neurons [18].

2.3. Timelens

The Timelens architecture [29] was proposed in the con-
text of event-based video frame interpolation. The design it-
self has been inspired from the hourglass network with skip
connections for frame-based video interpolation – a prob-
lem posed initially in [19]. A peculiarity of the network

architecture is the reduction of the spatial dimensionality in
the encoding part using a pooling operator rather than ex-
ploiting strided convolutions. Another feature is the bigger
kernel sizes for the initial two convolutions compared with
the rest of the encoding/decoding blocks.

3. Network model
We propose an architecture for prediction of optical flow

based on SNNs receiving an event stream from DVS. De-
sign choices, such as spatial down- and up-sampling, chan-
nel dimensions, kernel sizes and skip connections, are in-
spired by the Timelens network [29]. Our network is refor-
mulated as an SNN by incorporating spiking spatial convo-
lutions featuring stateful neural cells and layer recurrency.
An overall architectural diagram is presented in Fig. 2 and
the details are described in the following subsections.

3.1. Neuron models

First, we implement an SNN using state equations that
describe the common neuroscientific LIF model in a form
trainable within the realm of deep learning [18, 23, 30]:

st = (1− d)(Wxt +Hyt−1) + dst−1(1− yt−1) (1)
yt = h(st − vth), (2)

where st is the state – membrane potential voltage of the
neuron, W and H are the input and optional recurrent
weights, respectively, d is membrane potential decay fac-
tor, yt is the output, vth is a firing voltage threshold, and h
is the step activation function. The model is trainable with
backpropagation-through-time assuming a smooth deriva-
tive of arctanspike(x, a) = 1/(1 + a · x2) for h, with
a = 10. Trainable parameters include W , H , d and vth.
This neuronal model is our main focus and we will quantify
architectures using it with the SNN prefix.

Secondly, we consider a more advanced biologically-
inspired extension of the basic LIF – the so-called SNUo
unit, which models the concept of axo-axonic synapses that
enrich neuronal connectivity by modulating the neuronal
outputs [5]. From implementation perspective, this leads to
emission of sparse analog-valued spikes, or graded spikes
in the nomenclature of Intel’s Loihi 2 implementation [24].
The equations of SNUo are [5]:

st = g(Wxt +Hyt−1 + dst−1(1− ỹt−1)) (3)
ỹt = h(st − vth) (4)
yt = ỹt o(Woxt +Hoyt−1 + bo), (5)

where ỹt is the unmodulated neuron output used for reset-
ting the membrane potential, yt is the modulated output
propagating to downstream units, and g is an additional acti-
vation function that we set to leaky ReLU with a leak of 0.1.
Wo, Ho and bo are additional trainable parameters. We use
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Figure 2. Spiking architecture inspired from Timelens: in the encoding part, we consider different layer-wise reccurency configurations.

the sigmoid function as activation o for output modulation
in Eq. 5 to mimic the inhibitory character of the axo-axonic
synapses as suggested in [5]. We will quantify networks
using this approach with the SNUo prefix.

Lastly, the benefits of neuromorphic internal dynamics
were demonstrated also in the non-spiking mode: by oper-
ating with real-values in the so-called soft SNU (sSNU) ap-
proach [30]. The idea is to replace the step activation func-
tion h with sigmoid function in Eq. 2. As sSNU operates
by continuously outputting real values, we will benchmark
it against non-spiking baselines. We will quantify networks
using this unit with the sSNU prefix.

3.2. Network structure

Spiking convolutions work similarly to conventional
convolutions found in ANNs except for the neural dynam-
ics applied to their outputs. The computed per pixel, per
channel outputs of the 2D convolutions serve as input cur-
rents (Wxt in Eq. 1) for the spiking neural units. Simulta-
neously, layer-wise recurrency (Hyt−1 in Eq. 1) is an addi-
tional feature to capture temporal dependencies that is not
always considered in SNN modelling. We explicitly men-
tion whenever we do include this term.

The network structure is illustrated in Fig. 2. Its first
stage comprises two spiking 2D convolutions expanding the
Nin input channels to 32 output channels featuring 7×7 ker-
nels. While the spatial dimension is retained for the spiking
convolution by using stride 1 and appropriate zero padding,
spatial down-sampling is performed afterwards using 2D
average pooling with kernel size 2 × 2. The remaining en-
coding parts of the network are five similar encoding blocks
consisting of two spiking convolutions followed by pool-
ing operators. The kernel sizes are 3 × 3, except for the
first encoding block (5 × 5). For each encoding block the
number of output channels is doubled while the spatial res-
olution is halved. For the two spiking convolutions in each
encoding block, we consider all combinations of layer-wise
recurrency, as marked in Fig. 2.

For decoding, five identical decoding blocks are used.
Each consists of 2D bilinear up-sampling by a factor of 2,

followed by two spiking convolutions. The number of out-
put channels gets halved with each decoding block and the
convolutional kernel sizes are 3 × 3. Skip connections be-
tween each encoder/decoder pair of the same resolution pro-
vide values which are concatenated channel-wise before the
second spiking convolution in each decoding block.

To obtain continuous optical flow values, the final layer
is a 1 × 1 convolution with tanh activation. This layer re-
duces 32 base channels to Nout = 2 channels representing
the optical flow components u and v that correspond to hor-
izontal and vertical optical flow magnitudes, respectively.

3.3. Input coding

The DVS event stream contains events of the form:

ei = (xi, yi, ti, pi) (6)

where xi and yi represent the pixel coordinates, ti the times-
tamp and pi the ON/OFF polarity of the event. Different
encoding strategies have been proposed to process the raw
event stream data prior to feeding it into a neural network.
Commonly used input coding techniques are the count en-
coding [22] and the voxel grid encoding [34], depicted in
Fig. 3. The count encoding loses the temporal information
of single events within the aggregation window. Events get

Figure 3. Different input event encodings: Count encoding (per
polarity, per pixel) and voxel grid encoding via temporal bi-linear
interpolation of combined events into N time bins.

3



accumulated per pixel and per polarity for the entire win-
dow width. On the other hand, a voxel-based representation
discretizes the time span of the aggregation window and
uses temporal bi-linear interpolation to populate the bins
with events. Polarity is not treated as a separate channel,
but negative OFF events (-1) and positive ON events (+1)
are summed in a single channel.

For our spiking architectures, we opted for the voxel
grid input coding. The number of discrete time bins is an
additional hyperparameter. Choosing the number of bins
too high yields overly sparse inputs while for a low num-
ber of bins the encoding collapses to a count representation
with a single channel. In the latter case, positive and nega-
tive events can annihilate each other leading to information
loss. For our spiking network, performance peaked at six
time bins (Nin = 6). However, when operating in the non-
spiking mode of sSNU, the count encoding with separate
ON/OFF channels (Nin = 2) performed better, so we use it
for sSNU-based networks. To ensure a fair comparison, the
aggregation window width is fixed and the set of encoded
events is therefore the same for both encoding approaches.

3.4. Training setup

All models are trained in a self-supervised fashion on the
UZH-FPV Drone Racing Dataset [11], using the approach
and configurations from [18]. Specifically, contrast maxi-
mization loss is applied there to compensate the motion and
predict optical flow from the input events. The loss is:

L = Lcontrast(t
fw
ref) + Lcontrast(t

bw
ref ) + λLsmoothing (7)

where contrast maximization is performed in a forward (tfwref)
as well as a backward (tbw

ref ) fashion w.r.t. the current refer-
ence time instance tref. Lsmoothing is a Charbonnier smooth-
ness prior [8] proposed in [32, 34] and λ = 0.001 is a bal-
ancing constant. Truncated back-propagation through time
(TBPTT) is performed after every 10 forward passes.

In the original approach [18], the loss included different
spatial resolutions of the optical flow maps. We analogously
extended our architecture with 2D convolutions with tanh
activation to produce optical flow predictions of different
resolutions at each decoding block. These intermediate op-
tical flow maps are then up-sampled to the initial spatial di-
mension using nearest neighbour interpolation for the loss
computation. Simultaneously, they are concatenated to the
input channels of the subsequent decoding blocks.

However, in contrast to the prior work, we also consid-
ered an architecture with the loss applied only to the last
output layer’s prediction. This approach is simpler, faster
and turned out to be beneficial for our architecture.

4. Simulation results
The quantitative performance and generalization abili-

ties of the trained models (self-supervised on the UZH-

FPV Drone Racing Dataset) are evaluated on the MVSEC
dataset [33] following the comparison approach from [18].
The predicted sparse optical flow is compared against the
ground truth optical flow provided by [32]. The ground
truth labels are available at timestamps corresponding with
conventional camera’s frames and quantify the optical flow
over one (dt = 1) or four (dt = 4) frames.

The well-established average end point error (AEE) in
pixels is used to evaluate the four sequences of the dataset:
outdoor day1 (od1), indoor flying1 (if1), indoor flying2
(if2), indoor flying3 (if3). For easier comparability, we in-
troduce a weighted average endpoint error (WAEE) to com-
bine the four metrics into a single scalar value:

WAEE =(
AEEod1

wod1
+

AEEif1

wif1
+

AEEif2

wif2
+

AEEif3

wif3
)/4,

(8)
where the four weights are based on the average AEE of the
best-performing spiking architectures of the prior art [18] –
see Supplementary Note 1 for the values for each dt setting.

Using the WAEE metric, we explored different configu-

SNN-Timelens sSNU-Timelens

dt = 1 WAEE %Outlier WAEE %Outlier

R/F 0.84 4.10 0.77 4.23
F/R 0.85 4.36 1.11 8.44
R/R 0.89 4.26 0.73 3.89
F/F 1.12 5.89 1.18 9.26

dt = 4

R/F 0.84 32.88 0.74 27.20
F/R 0.86 34.23 1.13 44.92
R/R 0.90 35.81 0.71 25.66
F/F 1.15 52.36 1.19 48.34

Table 1. Effects of layer recurrency placement on WAEE (the
lower, the better ↓) and %Outlier(↓) in the encoding blocks. Best
scores are in bold, while runner-ups are underlined.

Recurrency dt = 1 dt = 4

WAEE increase WAEE increase

R/F multi 0.92 9.52 % 0.92 9.52%
F/R multi 0.92 8.24 % 0.92 6.98%
R/R multi 0.94 5.62 % 0.95 5.56%
F/F multi 1.33 18.75 % 1.39 16.0%

Table 2. Effects of multi-layer loss function on intermediate up-
sampled flow predictions for different layer recurrency placement
in the encoder. WAEE(↓) and its relative increases with regard to
the last layer loss in Table 1 for SNN-Timelens.
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outdoor day1 indoor flying1 indoor flying2 indoor flying3 overall

dt = 1 AEE %Out. AEE %Out. AEE %Out. AEE %Out. WAEE %Out.

LIF-EV-FlowNet [18] 0.53 0.33 0.71 1.41 1.44 12.75 1.16 9.11 0.93 5.90
XLIF-EV-FlowNet [18] 0.45 0.16 0.73 0.92 1.45 12.18 1.17 8.35 0.90 5.40
LIF-FireNet [18] 0.57 0.40 0.98 2.48 1.77 16.40 1.50 12.81 1.15 8.02
PLIF-FireNet [18] 0.56 0.38 0.90 1.93 1.67 14.47 1.41 11.17 1.10 7.00
our SNN-Timelens 0.44 0.18 0.70 0.79 1.30 9.41 1.05 6.00 0.84 4.10
our SNUo-Timelens 0.39 0.17 0.64 0.96 1.17 7.71 0.96 4.92 0.76 3.44

EV-FlowNet [18] 0.47 0.25 0.60 0.51 1.17 8.06 0.93 5.64 0.78 3.61
RNN-EV-FlowNet [18] 0.56 1.09 0.62 0.97 1.20 8.82 0.93 5.51 0.83 4.10
our sSNU-Timelens 0.36 0.10 0.58 0.56 1.19 8.78 0.96 6.11 0.73 3.89

dt = 4

LIF-EV-FlowNet [18] 2.02 18.91 2.63 29.55 4.93 51.10 3.88 41.49 0.92 35.26
XLIF-EV-FlowNet [18] 1.67 12.69 2.72 31.69 4.93 51.36 3.91 42.52 0.89 34.57
LIF-FireNet [18] 2.12 21.00 3.72 48.27 6.27 64.16 5.23 58.43 1.17 47.97
PLIF-FireNet [18] 2.11 20.64 3.44 44.02 5.94 64.02 4.98 57.53 1.11 46.55
our SNN-Timelens 1.65 11.03 2.61 29.40 4.50 50.87 3.58 40.22 0.84 32.88
our SNUo-Timelens 1.44 8.98 2.36 24.18 3.98 44.71 3.25 36.01 0.75 28.47

EV-FlowNet [18] 1.69 12.50 2.16 21.51 3.90 40.72 3.00 29.60 0.74 26.08
RNN-EV-FlowNet [18] 1.91 16.39 2.23 22.10 4.01 41.74 3.07 30.87 0.78 27.78
our sSNU-Timelens 1.34 7.99 2.15 20.92 3.97 41.31 3.17 32.44 0.71 25.67

Table 3. Evaluation on the MVSEC dataset for comparable models trained on UZH-FPV Drone Racing Dataset: AEE (the lower, the better
↓), the percentage of outliers %Out.(↓) per sequence, and the overall WAEE(↓) as defined in Eq. 8 as well as the average percentage of
outliers %Out.(↓). Best scores are in bold, while runner-ups are underlined. Horizontal lines delimit the spiking and the non-spiking models.

rations of the layer recurrency in the convolutional blocks,
visualized in Fig. 2. As each block comprises two spiking
convolutions, there are four different combinations of recur-
rent (R) and feed-forward (F) convolutions: R/F, F/R, R/R
and F/F. Table 1 reports the results in terms of WAEE and
the average percentage of outliers %Outlier. When operating
in the spiking mode, having one convolution with layer re-
currency per block is favourable. In particular, best perfor-
mance is achieved with recurrent layers in the first convo-
lution (R/F). On the contrary, in the context of non-spiking
mode of sSNU, double layer recurrency (R/R) is beneficial.
We use these best configurations for the final models.

We also evaluated an implementation of multi-resolution
loss, described in the training section. For both settings of
dt = 1 and dt = 4, the reported WAEE values in Table 2
demonstrate that using the simpler setup of the loss applied
only at the last layer is preferred for our architecture. A
possible interpretation of the observed deterioration is that
the multi-layer loss function trains the deeper decoders to
encode down-sampled optical flow rather than to develop
higher-level features. Furthermore, such a formulation is
inconsistent with the ultimate task of the network, which
is predicting high-resolution optical flow at the last layer

rather than outputting the flow predictions at multiple inter-
mediate stages. Imposing a loss only on the last layer, omits
this restriction. We use this approach for all our models.

The resulting AEEs, WAEEs and outlier percentages
(AEE > 3 pixels) for our Timelens-based architecture with
spiking (SNN), analog-valued spiking (SNUo) and non-
spiking (sSNU) units are reported in Table 3. Our model is
compared with the state-of-the-art spiking and non-spiking
architectures trained in the identical self-supervised setting
[18]. For an extended comparison with EV-FlowNet [32,34]
and Hybrid-EV-FlowNet [20] that use different training
datasets and setups, see Supplementary Note 2.

For spiking neural networks, our SNN-Timelens sur-
passes the performance of the LIF- and XLIF-EV-FlowNet
by 9.7%, 6.7% with regard to WAEE and lowers the per-
centage of outliers %Outlier by 30.5%, 24.1% for dt = 1, re-
spectively. As the improvement over the XLIF-EV-FlowNet
is 5.6% for dt = 4, the average prediction error is reduced
by 6.1%. Table 3 shows that our SNNs are not only better
on average, but outperform the comparable state-of-the-art
on each MVSEC sequence for dt = 1 and dt = 4.

Operating with analog-valued spikes, SNUo-Timelens
achieves a further substantial reduction in WAEE: 18.3%
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Figure 4. Spiking activity for an MVSEC test sequence: The fraction of spiking neurons is registered for all layers from input to prediction
layer. Left: An architecture with 5 encoding and decoding blocks, Right: a reduced architecture with 3 encoding and decoding blocks.

and 15.6% vs. LIF- and XLIF-EV-FlowNet for dt = 1, re-
spectively. Since the improvement over XLIF-EV-FlowNet
for dt = 4 is the same, an average decrease is 15.6%. It
is also remarkable that SNUo-Timelens demonstrates on-
par performance with the best non-spiking self-supervised
prior-art for comparable training configurations.

Lastly, the best performing model is the sSNU-Timelens
incorporating neuromorphic dynamics into the non-spiking
mode of operation. Despite featuring 8.5% less parame-
ters than the best baseline EV-FlowNet (32.9M), our sSNU-
TimeLens (30.1M) outperforms it with regard to WAEE for
both dt = 1, dt = 4 by 6.4%, 4.1%, respectively. The av-
erage improvement over the state-of-the-art for comparable
non-spiking models therefore equals 5.5%.

5. Model reduction for real-time operation
The state-of-the-art models listed in Table 3 involve tens

of millions of parameters and are executed on high-end
GPUs. To close the gap between large-scale architecture
modelling and real-time deployment, model reduction is re-
quired. We propose a principled approach for model reduc-
tion that includes analysis of the network activity and of the
relationships between the number of parameters and infer-
ence speed at different stages of the architecture.

We focus our exploration on the SNN-Timelens that
could benefit the most from efficient implementation on
SNN chips, such as TrueNorth [2], Loihi [10] or Kraken’s
SNE [12], that support the LIF equations used in the SNU.
If support for analog-valued spikes increases, as in Loihi 2,
the SNUo-Timelens architecture could become appealing.

5.1. Spiking activity analysis

A spiking activity analysis has been conducted to obtain
potential information about the importance of different net-

work building blocks. For a test sequence of the MVSEC
dataset, the fraction of neurons that produced spikes was
registered for each network layer: input layer, initial con-
volutional layers, encoding layers s[i], decoding layers
u[i] and the final prediction layer. Fig. 4 shows the
spiking activity in SNN-Timelens architecture with 5 en-
coding/decoding blocks (left) compared with a network re-
duced to 3 encoding/decoding blocks (right). In the follow-
ing we will refer to the number of encoding/decoding blocks
as the number of stages of the Timelens model.

In general, the fraction of non-zero outputs, which corre-
sponds to the fraction of neurons that spike, is almost con-
stant until time step 210. At this time step, the drone in the
DVS recording lifts off and the incoming events actually
come from movement rather than static noise. The spiking
activity for all layers fluctuates between 0 and 0.5 when op-
tical flow is predicted due to the actual movement. It has to
be noted that the activity of the last layer is 1.0 for all times
since the final prediction layer does not feature a step but
rather a continuous tanh activation function.

For the bigger model comprising 5 stages the fraction
of non-zero outputs does not vary at all for the deep en-
coding s3 - s5 and decoding u1 - u3 layers. However,
evaluation of the gradients indicates that the weights get up-
dated during training. The question therefore arises whether
these deep layers are crucial for the overall model perfor-
mance. Reducing the number of stages from 5 to 3 shows
indeed almost on par performance, only 2.6 % WAEE drop
on MVSEC, while the spiking activity varies for all layers.
The smaller model features only 1.75M parameters, which
is 14.5 times less than the initial SNN architecture with
25.35M. The constant spiking activity for the layers can be
interpreted as a quasi-identity mapping between early en-
coding and late decoding layers. Thus, dropping these lay-
ers tends to have a minor effect on the network capabilities.
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5.2. Network profiling

In deep CNNs there is no simple linear relationship be-
tween the number of parameters and the inference latency.
Therefore, we profiled the contributions of the components
of the model to assess how the number of stages (encod-
ing/decoding blocks) and the size of convolution impacts
the inference frequency in frames per second (fps). Model
performance is monitored throughout the process to find a
balance between speed and quality of the predicted optical
flow. The fps values are calculated from timings of 100 for-
ward passes on 128×128 DVS inputs using Pytorch code
executed on a single core of Intel Core i7 2.6GHz CPU.

Reducing channels. Network profiling has revealed that
the first convolution and the first encoding block are partic-
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Figure 5. Impact of convolutional channels count: WAEE, net-
work parameters (in millions [M]), and inference frequency (in
frames per second [fps]) for SNN-Timelens with 5 stages.

# channels 32 28 24 20 16 12

5 stages

WAEE 0.84 0.89 0.89 0.93 0.94 1.02
parameters 25.3 19.4 14.3 9.9 6.3 3.6
frequency 5.9 7.3 9.9 12.8 19.4 26.1

3 stages

WAEE 0.86 0.88 0.90 0.91 0.93 1.00
parameters 1.75 1.34 0.98 0.68 0.44 0.25
frequency 9.8 11.1 14.8 17.2 26.2 32.7

2 stages

WAEE 0.86 0.89 0.90 0.93 0.94 1.10
parameters 0.57 0.44 0.32 0.23 0.15 0.08
frequency 11.4 13.2 18.7 21.4 30.1 36.3

Table 4. Impact of convolutional channels count: WAEE, number
of network parameters (in millions [M]), and inference frequency
(in frames per second [fps]) of our Timelens-based SNNs for 5, 3
and 2 stages (encoding/decoding blocks).

ularly costly in terms of computations. On one hand this is
due to large spatial input dimension, on the other hand it is
influenced by the big convolutional kernels (7×7 and 5×5).
Nevertheless, decreasing the number of output channels ef-
fectively reduces the computational costs. Fig. 5 illus-
trates a trade-off between the number of channels and per-
formance in terms of WAEE and fps for the SNN-Timelens
model with 5 stages. Note the non-linear relationship be-
tween convolutional channels and network parameters.

Reducing stages. The spiking analysis showed that less
than 5 stages, e.g. 3 stages, are sufficient to obtain reason-
able optical flow predictions. Table 4 extends the analysis,
reporting the WAEE (dt = 1), the number of network pa-
rameters and model inference frequency for different num-
ber of channels and stages. Comparing the WAEE between
5 and 2 stages, we observe minor performance degradation:
0.84 versus 0.86. The 2-stage model comes with 44.4 times
less parameters and increases the evaluation frequency by
93.2%. For further speedup, the number of channels of the
2-stage SNN-Timelens model can be decreased at the cost
of degrading performance in terms of WAEE.

6. Model reduction results
The comparison of our architecture before and after re-

duction is presented for a set of selected configurations in
Fig. 6. While our initial SNN-Timelens featured 5 stages
with 32 channels and used 25.35M parameters, our model
after reduction features only 2 stages with 32 channels and
0.57M parameters, thus reducing the number of trainable
parameters by a factor of 44.4. It involves a trade-off in

5 10 15 20 25 30 35
fps [Hz]
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0.90

0.95

1.00
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1.10

1.15

W
AE

E

5 stages/ 32 channels

2 stages/ 24 channels

2 stages/ 
16 channels

2 stages/ 32 channels

LIF-FireNet

PLIF-FireNet

LIF-EV-FlowNet

XLIF-EV-FlowNet

parameters
<5M
15M
25M

Timelens SNN
prior SOTA
Timelens SNN
prior SOTA

Figure 6. Model reduction results: SNN-Timelens compared with
state-of-the-art (SOTA) in our CPU setup. WAEE plotted versus
frames per second (fps); circle size indicates model size. For read-
ability, only selected SNN-Timelens from Table 4 are labeled.
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Figure 7. Real-time predictions: DVS events aggregated over one aggregation window and the corresponding optical flows from reduced
SNN-Timelens (0.32M) applied for different movements of a hand: (a) to the right, (b) to the left, (c) rotation, (d) approaching the camera.

terms of WAEE performance that degrades by just 2.6%
(0.84 versus 0.86). Remarkably, it still remains better than
the prior state-of-the-art large models of LIF- and XLIF-
EV-FlowNet (20.4M) with WAEE 0.90 and 0.93, respec-
tively. Note that to match prior art performance (WAEE
0.90), our SNN-Timelens needs only 2 stages with 24 chan-
nels (0.32M), featuring 63.75 times less parameters.

6.1. Qualitative results

For qualitative performance assessment and validation of
the generalization ability of the last proposed network with
2 stages and 24 channels, a complete real-time pipeline was
implemented to process the event stream of a DVS128 cam-
era from iniVation AG. Fig. 7 shows the optical flow pre-
dictions of different hand movements in front of the DVS.
While color-coding is used to encode the optical flow, ad-
ditionally a sparse arrow grid is superimposed to the opti-
cal flow for instant intuitive validation of the predictions.
Arrow angles and magnitudes represent direction and mag-
nitude of the biggest optical flow within a local 10 × 10
neighborhood of pixels, respectively.

The predicted flow in Fig. 7 looks reasonable and coin-
cides with the expected dislocations caused by the moving
hand. Linear motion is correctly captured (left plots) and
the model generalizes well to more challenging scenarios
such as rotating or approaching hand (right plots).

7. Conclusion
In this work we proposed a neuromorphic solution for

optical flow estimation comprising an event camera com-

bined with a Timelens-inspired architecture. We demon-
strated SNN, SNUo and sSNU versions of our architecture,
operating with different biologically inspired neuron mod-
els. By tuning the architectural design, the event encoding,
the placement of recurrent connections, and the loss func-
tion formulation, we improved the performance in compar-
ison with prior art models on the MVSEC dataset. Our ar-
chitecture surpassed both SNN and ANN baselines when
operating in spiking and real-valued modes, respectively.
Remarkably, when operating with analog-valued spikes, it
demonstrated performance comparable to the ANN base-
line. Furthermore, a principled model reduction approach
was proposed to meet realistic real-time hardware con-
straints. Our SNN-Timelens model reduced to 0.32M pa-
rameters achieves WAEE on-par with the state-of-the-art
while decreasing the number of parameters by almost two
orders of magnitude. Finally, a real-time pipeline was
demonstrated with a physical DVS camera. Future work
includes deployment of the proposed architecture on a neu-
romorphic SNN chip to further decrease the latency and in-
crease energy efficiency.
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1. WAEE metric definiton

The weighted average end point error (WAEE) combines
the AEEs of the four sequences:

• outdoor day1 (od1)

• indoor flying1 (if1)

• indoor flying2 (if2)

• indoor flying3 (if3)

and is defined as:

WAEE =(
AEEod1

wod1
+

AEEif1

wif1
+

AEEif2

wif2
+

AEEif3

wif3
)/4.

The weights wod1, wif1, wif2, wif3 are the sequence spe-
cific average AEEs of the spiking EV-FlowNet variants:
LIF, ALIF, PLIF and XLIF for the modes dt = 1 and dt = 4
published in [1]:

dt = 1 :

wod1 = (0.53 + 0.57 + 0.60 + 0.45)/4.0 = 0.5375

wif1 = (0.71 + 1.00 + 0.75 + 0.73)/4.0 = 0.7975

wif2 = (1.44 + 1.78 + 1.52 + 1.45)/4.0 = 1.5475

wif3 = (1.16 + 1.55 + 1.23 + 1.17)/4.0 = 1.2775

dt = 4 :

wod1 = (2.02 + 2.13 + 2.24 + 1.67)/4.0 = 2.0150

wif1 = (2.63 + 3.81 + 2.80 + 2.72)/4.0 = 2.9900

wif2 = (4.93 + 6.40 + 5.21 + 4.93)/4.0 = 5.3675

wif3 = (3.88 + 5.53 + 4.12 + 3.91)/4.0 = 4.3600

(1)

2. Additional comparison
Table 1 includes an extended comparison with additional

prior art non-spiking models. In particular, EV-FlowNetPM
[3] was trained in comparable setting to ours, but used a
photometric loss (PM). The results had been only reported
for dt = 1 mode. Furthermore, several prior art architec-
tures were trained in a different setup using directly the
MVSEC dataset, as opposed to our architectures that were
trained on the UZH-FPV Drone Racing Dataset and eval-
uated on the MVSEC dataset. Results for models trained
directly on MVSEC, delimited by dashed lines, include:

• EV-FlowNetPM-MVSEC [4], trained in a self-supervised
manner with the photometric loss (PM),

• EV-FlowNetCM-MVSEC [5], trained in a self-supervised
manner with a contrast maximisation loss (CM),

• Hybrid-EV-FlowNetMVSEC [2], trained in a self-
supervised manner with the photometric loss.

Considering the extended comparison with non-spiking
ANN prior art models, the EV-FlowNetCM-MVSEC [5] yields
the best performance on all MVSEC sequences for dt = 1
with regard to WAEE and percentage of outliers. Its WAEE
of 0.67 is 8.2% lower than 0.73 of our sSNU-Timelens. In
turn, the Hybrid-EV-FlowNetMVSEC [2] is outperformed by
our sSNU-Timelens by 26.0% (0.73 vs. 0.92).

However, when evaluating in mode dt = 4, the Hybrid-
EV-FlowNetMVSEC [2] yields the best overall performance
with an WAEE of 0.68 compared to our sSNU-Timelens
with 0.71 (+4.4%). The sSNU-Timelens shows on par per-
formance in terms of WAEE with the EV-FlowNetCM-MVSEC
[5] (also 0.71) in this mode.

In summary, the EV-FlowNetCM-MVSEC [5] and the
Hybrid-EV-FlowNetMVSEC [2] perform best for MVSEC
evaluations with dt = 1 and dt = 4, respectively. Remark-
ably, our sSNU-Timelens is a runner-up in both cases, de-
spite being trained without access to the examples from the
MVSEC dataset.

1



outdoor day1 indoor flying1 indoor flying2 indoor flying3 overall

dt = 1 AEE %Out. AEE %Out. AEE %Out. AEE %Out. WAEE %Out.

LIF-EV-FlowNet [1] 0.53 0.33 0.71 1.41 1.44 12.75 1.16 9.11 0.93 5.90
XLIF-EV-FlowNet [1] 0.45 0.16 0.73 0.92 1.45 12.18 1.17 8.35 0.90 5.40
LIF-FireNet [1] 0.57 0.40 0.98 2.48 1.77 16.40 1.50 12.81 1.15 8.02
PLIF-FireNet [1] 0.56 0.38 0.90 1.93 1.67 14.47 1.41 11.17 1.10 7.00
our SNN-Timelens 0.44 0.18 0.70 0.79 1.30 9.41 1.05 6.00 0.84 4.10
our SNUo-Timelens 0.39 0.17 0.64 0.96 1.17 7.71 0.96 4.92 0.76 3.44

EV-FlowNetPM [3] 0.92 5.4 0.79 1.2 1.40 10.9 1.18 7.4 1.13 6.23
EV-FlowNet [1] 0.47 0.25 0.60 0.51 1.17 8.06 0.93 5.64 0.78 3.61
RNN-EV-FlowNet [1] 0.56 1.09 0.62 0.97 1.20 8.82 0.93 5.51 0.83 4.10
our sSNU-Timelens 0.36 0.10 0.58 0.56 1.19 8.78 0.96 6.11 0.73 3.89

EV-FlowNetPM-MVSEC [4] 0.49 0.20 1.03 2.20 1.72 15.10 1.53 11.90 1.13 7.35
EV-FlowNetCM-MVSEC [5] 0.32 0.00 0.58 0.00 1.02 4.00 0.87 3.00 0.67 1.75
Hybrid-EV-FlowNetMVSEC [2] 0.49 - 0.84 - 1.28 - 1.11 - 0.92 -

dt = 4

LIF-EV-FlowNet [1] 2.02 18.91 2.63 29.55 4.93 51.10 3.88 41.49 0.92 35.26
XLIF-EV-FlowNet [1] 1.67 12.69 2.72 31.69 4.93 51.36 3.91 42.52 0.89 34.57
LIF-FireNet [1] 2.12 21.00 3.72 48.27 6.27 64.16 5.23 58.43 1.17 47.97
PLIF-FireNet [1] 2.11 20.64 3.44 44.02 5.94 64.02 4.98 57.53 1.11 46.55
our SNN-Timelens 1.65 11.03 2.61 29.40 4.50 50.87 3.58 40.22 0.84 32.88
our SNUo-Timelens 1.44 8.98 2.36 24.18 3.98 44.71 3.25 36.01 0.75 28.47

EV-FlowNet [1] 1.69 12.50 2.16 21.51 3.90 40.72 3.00 29.60 0.74 26.08
RNN-EV-FlowNet [1] 1.91 16.39 2.23 22.10 4.01 41.74 3.07 30.87 0.78 27.78
our sSNU-Timelens 1.34 7.99 2.15 20.92 3.97 41.31 3.17 32.44 0.71 25.67

EV-FlowNetPM-MVSEC [4] 1.23 7.30 2.25 24.70 4.05 45.30 3.45 39.70 0.73 29.25
EV-FlowNetCM-MVSEC [5] 1.30 9.70 2.18 24.20 3.85 46.80 3.18 47.80 0.71 32.13
Hybrid-EV-FlowNetMVSEC [2] 1.09 - 2.24 - 3.83 - 3.18 - 0.68 -

Table 1. Extended evaluation on MVSEC: AEE (the lower, the better ↓), the percentage of outliers %Out.(↓) per sequence, and the overall
WAEE(↓) as defined in Eq. 1 as well as the average percentage of outliers %Out.(↓). Best scores are in bold, while runner-ups are underlined.
Horizontal lines delimit the spiking and the non-spiking models. Dashed line delimits not directly comparable prior art setups.
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