Asynchronous Convolutions and Image Reconstruction

Robert Mahony

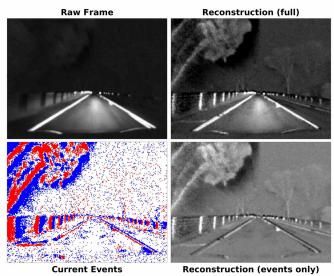
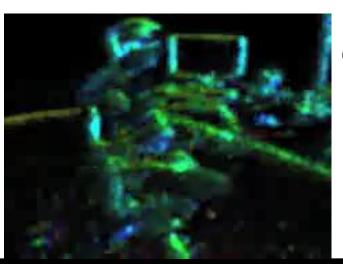


Image reconstruction

Image Gradient

https://github.com/cedric-scheerlinck/dvs_image_reconstruction



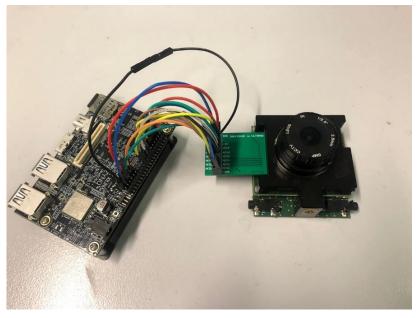
Optic Flow

Feature Tracking

Embedded implementation

DAVIS240C

 Direct access to events through parallel bus.



P	'L Clock	<300MHz	
Processing System			
Application Processing Unit ARM® Cortex™-A53 Floating Point Unit 32KB I-Cache WPanty WECC Management Unit Memory Management Unit Lembedded Trace Macrocell 1 2 3 4	Memory DDR4/3/3L,	Graphics Processing Unit ARM Malr™-400 MP2 Geometry Pixel	High-Speed Connectivity DisplayPort v1.2a
	LPDDR4/3 32/64 bit w/ECC 4 256KB OCM with ECC	Processor Processor 1 2 Memory Management Unit	USB 3.0 SATA 3.1 PCle® 1.0 / 2.0
GIC-400 SCU CCI/SMMU 1MB L2 WECC	Platform	64KB L2 Cache Configuration and System	PS-GTR General Connectivity GigE
ARM Vector Floating Point Unit	Management Unit System Management Power	Security Unit Config AES Decryption, Authentication, Secure Boot Functions Multichannel DMA	USB 2.0 CAN UART SPI
TCM w/ECC w/ECC 1 2	Management Functional Safety	Voltage/Temp Monitor TrustZone TrustZone Timers, WDT, Resets, Clocking & Debug	Quad SPI NOR NAND SD/eMMC

System Monitor

General-Purpose I/O

High-Performance HP I/O

High-Density HD I/O

ULTRA96

2G LPDDR4

-200MILI-

192,000 logic slices

1.5 GHz quad-core Cortex-A53

Feature

Processor

Memory

DI Clask

PL

ULTRA96

- Read events direct to FPGA.
- Write events and derived information to shared memory.

Programmable Logic

Storage & Signal Processing

Block RAM

UltraRAM

DSP

High-Speed Connectivity
Interlaken

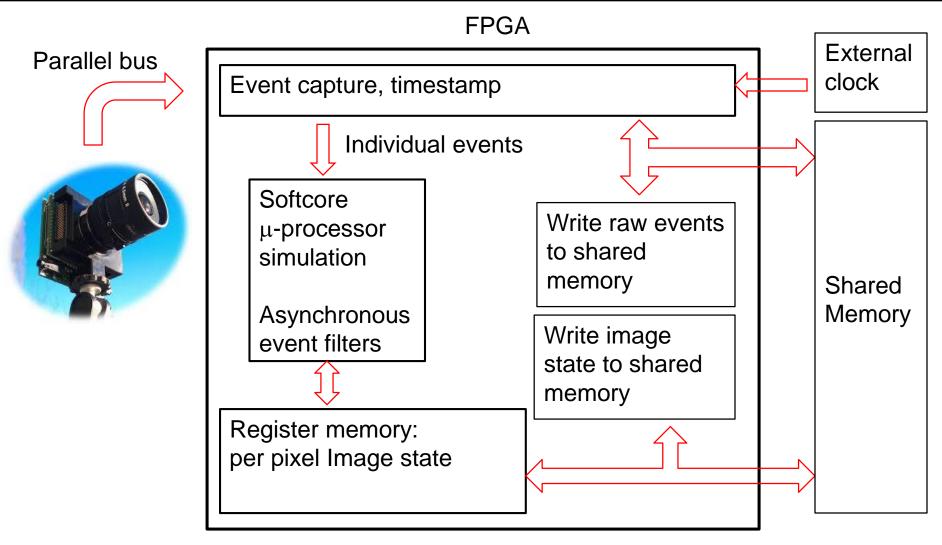
GTH

GTY

100G EMAC

PCle Gen4

FPGA architecture

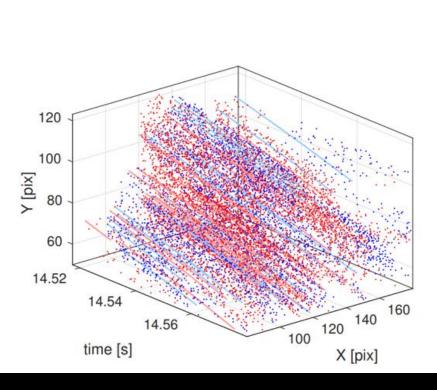


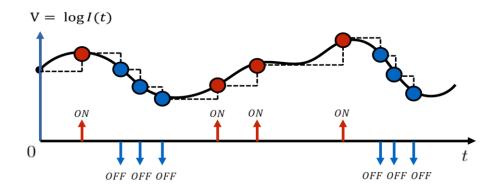
Output of an event camera

An event camera yields a series of events $\{e_k\}$

$$e_k = (\sigma_k, t_k, u_k, v_k)$$

where $(\sigma_k, t_k, u_k, v_k)$ are the polarity, time stamp and pixel location of event k.





What is an event

Define a function $E_k: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ by

$$E_k(u,v) \coloneqq \sigma_k \delta_{(u_k,v_k)}(u,v)$$

where $\delta_{(u_k,v_k)}$ is the Kroneker delta function

$$\delta_{(u_k,v_k)}(u,v) = \begin{cases} 1 & (u,v) = (u_k,v_k) \\ 0 & (u,v) \neq (u_k,v_k) \end{cases}$$

Event stream
$$E(t,u,v)\coloneqq\sum_{k=1}^\infty E_k(u,v)\delta(t-t_k)$$

where δ is the Dirac delta function

$$\int_{-\infty}^{\infty} \delta(t-\tau) f(\tau) d\tau = f(t)$$

The time coordinate t is a continuous-time variable

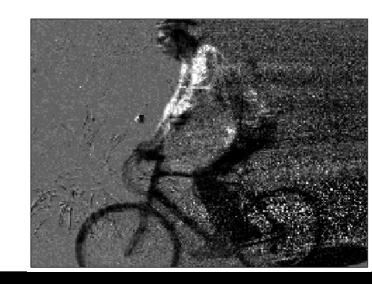
Image reconstruction from integration

Direct integration

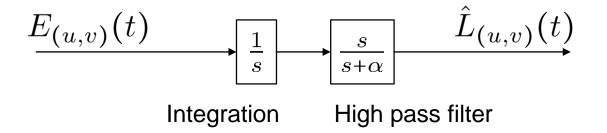
$$\hat{L}(t;u,v) = \sum_{\{k \mid t_k \le t\}} E_k(u,v) = \int_{-\infty}^t E(\tau,u,v) d\tau$$

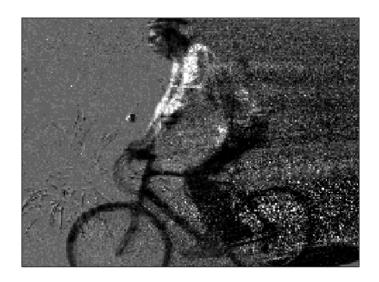
$$\frac{E_{(u,v)}(t)}{\frac{1}{s}} \qquad \frac{\hat{L}_{(u,v)}(t)}{\text{of direct integration}} \qquad \text{Transfer function interpretation}$$

High levels of noise in the event stream stay in the image stream and make direct integration impractical.



High pass the state estimate filter

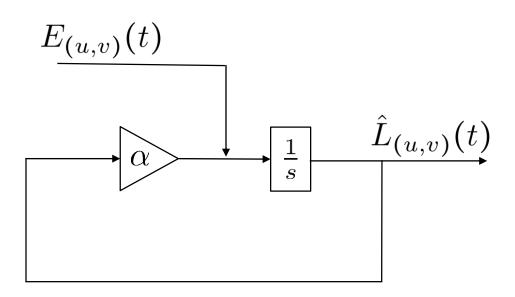




Integration without high pass

Integration with high pass

High-pass filter realisation



Transfer function realisation

$$\hat{L}_{(u,v)}(s) = \frac{s}{s+\alpha} \frac{1}{s} E_{(u,v)}(s)$$

ODE system realisation

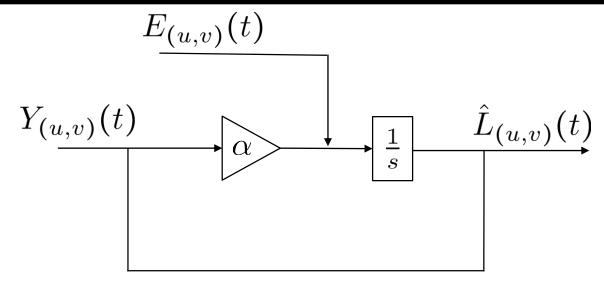
$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{L}_{(u,v)}(t) = -\alpha\hat{L}_{(u,v)}(t) + E_{(u,v)}(t)$$

Image state:

 $\hat{L}_{(u,v)}(t)$ is the internal state of the filter.

Complementary filter

If an estimate $Y_k(u,v)$ of the conventional image is available



Transfer function realisation

$$\hat{L}_{(u,v)}(s) = \frac{s}{s+\alpha} \frac{1}{s} E_{(u,v)}(s) + \frac{\alpha}{s+\alpha} Y_{(u,v)}(s) \qquad \int_{-\infty}^{t_k} E(\tau, u, v) d\tau \approx L(t_k, u, v)$$

If

$$\int_{-\infty}^{t_k} E(\tau, u, v) d\tau \approx L(t_k, u, v)$$
$$\approx Y_k(u, v)$$

ODE system realisation

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{L}_{(u,v)}(t) = -\alpha(\hat{L}_{(u,v)}(t) - Y_{(u,v)}(t)) + E_{(u,v)}(t)$$

$$\hat{L}(s, u, v) \approx \left(\frac{s}{s + \alpha} + \frac{\alpha}{s + \alpha}\right) L(t, u, v)$$

$$\approx L(t, u, v)$$

Asynchronous implementation

Ordinary differential equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{L}_{(u,v)}(t) = -\alpha(\hat{L}_{(u,v)}(t) - Y_{(u,v)}(t)) + E_{(u,v)}(t)$$

Solve on the time period $t \in (t_k, t_{k+1})$ for $\hat{L}_{(u,v)}(t_k)$ known. For $Y_{(u,v)}(t)$ constant (zero-order-hold) and $E_{(u,v)}(t) \equiv 0$ then

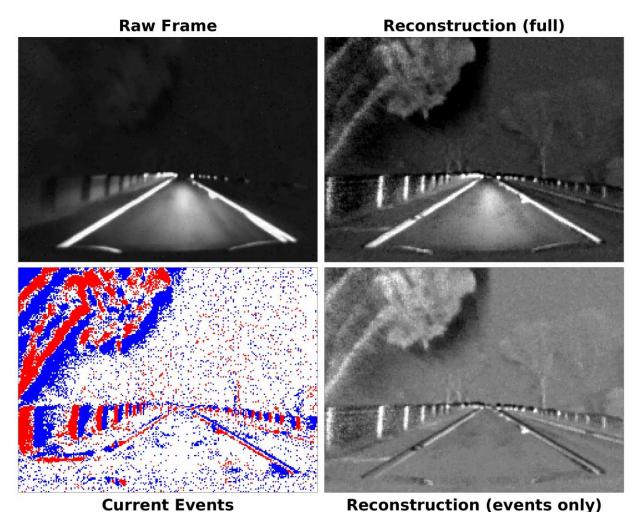
$$\hat{L}_{(u,v)}(t_{k+1}) = e^{-\alpha(t_{k+1}-t_k)} \hat{L}_{(u,v)}(t_k) + (1-e^{-\alpha(t_{k+1}-t_k)}) (\hat{L}_{(u,v)}(t_k) - Y_{(u,v)}(t_k))$$

Solve on the time period $t \in [t_{k+1}, t_{k+1}]$ for $\hat{L}_{(u,v)}(t_{k+1}^-)$ known. Integrate through the Dirac delta function

$$\hat{L}_{(u,v)}(t_{k+1}^+) = \hat{L}_{(u,v)}(t_{k+1}^-) + \sigma_k \delta_{(u_k,v_k)}(u,v)$$

- Asynchronous: Only compute when an event arrives.
- Computationally efficient: One scalar exponential.
- Image state: Estimate $\hat{L}(t, u, v)$ is stored in memory and can be accessed whenever required.

Image reconstruction

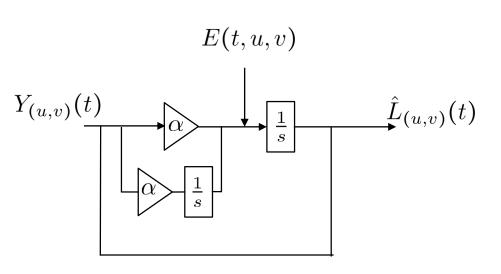


Using the DAVIS 240C raw images as $Y_{(u,v)}(t)$ ground truth.

Using events only. Setting $Y_{(u,v)}(t) = 0$.

https://github.com/cedric-scheerlinck/dvs_image_reconstruction

Bias and hot pixels



Hot pixels, that tend to fire all the time, or bias that causes a pixel to fire more in one direction than another.

Add an integrator in the "controller' gain block to make the system type I.

No bias correction

With bias correction

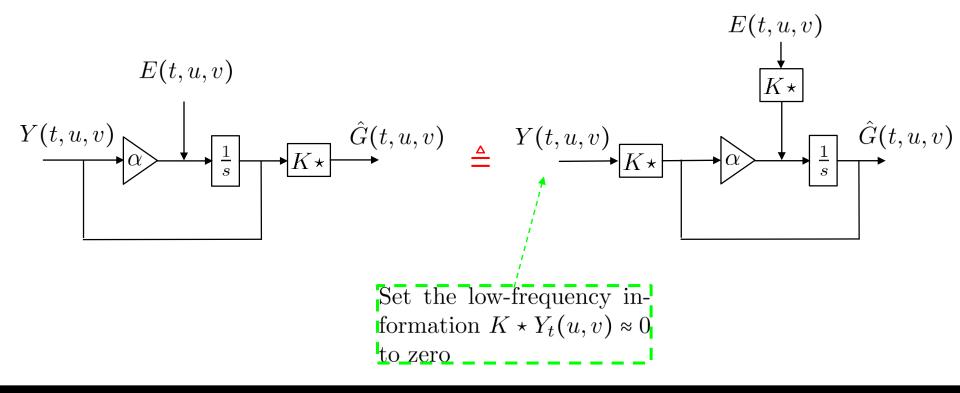
Bias image state

Image gradients

Image gradients computed from a spatial filter applied to image

$$\hat{G}_t(u,v) = K \star \hat{L}_t(u,v)$$

Spatial convolution is linear and factors through the linear filter blocks



Convolving the event stream

$\lceil -1 \rceil$	0	1	
-2	0	2	*
-1	0	1	

Gradient kernel

0	0	0	0	0	0
0	0	0	0	0	0
0	0	-1	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Event occurs at a location (u_k,v_k)

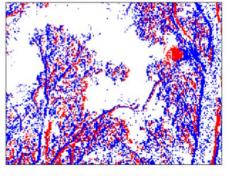
0	0	0	0	0	0
0	1	0	-1	0	0
0	2	0	-2	0	0
0	1	0	-1	0	0
0	0	0	0	0	0
0	0	0	0	0	0

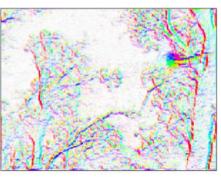
A new set of events, all with timestamps t_k, occurring at locations given by K convolved with the Kroneker delta

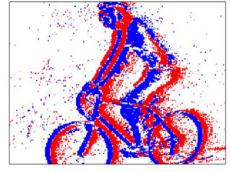
$$E_k \qquad \qquad K \star E_k = \{K_{ij}\sigma_k\delta_{(u_k-i,v_k-j)}(u,v)\delta(t-t_k)\}$$
 Each event
$$\qquad \qquad \#(\mathsf{K}) \text{ events}$$

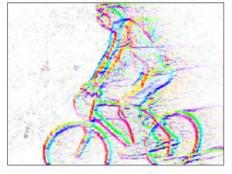
Image Gradient results

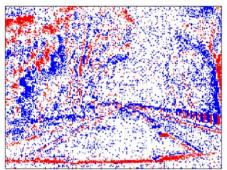
Current events Gradient estimate

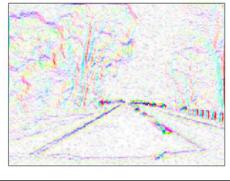












Sobel
$$\begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Optical flow

Optical flow $\Phi(t, u, v) = (\Phi_x(t, u, v), \Phi_y(t, u, v))$ can be thought of as an image state.

The constant brightness assumption yields

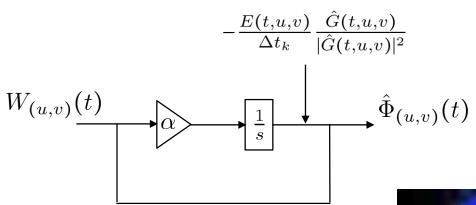
$$\frac{\partial}{\partial t}\hat{L}(t, u, v) = -\nabla \hat{L}(t, u, v)^{\mathsf{T}} \Phi(t, u, v)$$

Approximating $\frac{\partial}{\partial t}\hat{L}(t,u,v) \approx E(t,u,v)/\Delta t_k$ and using $\hat{G}(t,u,v) \approx \nabla \hat{L}(t,u,v)$

A high frequency, temporally sparse, measurement of the normal component Φ_n of Φ is

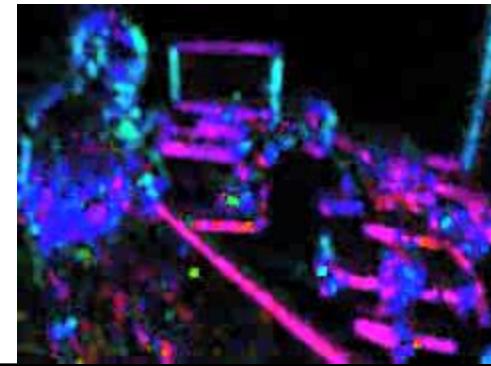
$$\Phi_n(t, u, v) = -\frac{E(t, u, v)}{\Delta t_k} \frac{\hat{G}(t, u, v)}{|\hat{G}(t, u, v)|^2}$$

Complementary filter for Optic Flow



By moving the high-frequency input in front of the integerator then it high-pass filtered $\frac{s}{s+\alpha}$ without being integrated.

If a low-frequency estimate of flow (CNN) is available $W_{(u,v)}(t)$ this can be fused.



Harris Corner tracking

Let $\hat{G}(t, u, v)$ denote the gradient image state.

A modified Harris matrix is given by

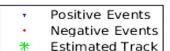
$$M(t,u,v) \coloneqq (K * \hat{G}(t,u,v))(K * \hat{G}(t,u,v))^{\mathsf{T}}.$$

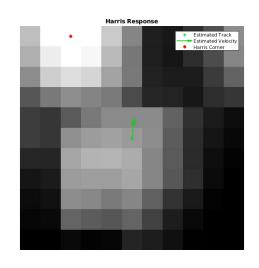
where K is a smoothing kernel

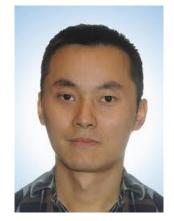
The Harris corner-response is

$$H(t, u, v) := \det(M(t, u, v)) / \operatorname{tr}(M(t, u, v)),$$

The smoothed gradient $(K \star \hat{G}(t, u, v))$ is linear. The Harris matrix M(t, u, v) and the Harris response H(t, u, v) are both nonlinear and must be computed from filtered variables as required.





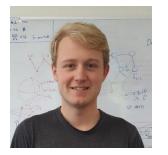


Yonhon Ng

THANKS

Cedric Scheerlinck

Anton Gvozdev



Pieter van Goor

Nick Barnes

Ziwei Wang