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Abstract—Autonomous drone racing has risen as a challenging
robotic benchmark for testing the limits of learning, perception,
planning, and control. Expert human pilots are able to fly a
drone through a race track by mapping the real-time feed
from a single onboard camera directly to control commands.
Recent works in autonomous drone racing attempting direct
pixel-to-commands control policies, even without explicit state
estimation, have relied on either intermediate representations
that simplify the observation space or performed extensive
bootstrapping using Imitation Learning (IL). This paper presents
an approach for training quadrotor navigation policies from
scratch — mapping raw onboard camera pixels directly to control
commands, much like a human pilot. While model-free methods
such as PPO are sample-inefficient and struggle in this setting, we
leverage Model-Based Reinforcement Learning (MBRL) to train
visuomotor policies capable of agile flight through a racetrack
using only raw pixel observations. Moreover, because our policies
are trained end-to-end directly from pixels, we no longer require
the perception-aware reward term used in previous methods.
Instead, we show that this behavior naturally emerges, resulting
in policies that guide the camera toward feature-rich areas of
the observation space. Our experiments demonstrate in both
simulation and real-world flight how the proposed approach
can be deployed on agile quadrotors. Our findings emphasize
the benefits of training directly from pixel observations and
demonstrate that MBRL offers a promising path for real-world
robotics research.

I. INTRODUCTION

In recent years, quadrotors have become a central focus
of robotics research, emerging as versatile platforms with
untapped potential across multiple domains, including search
and rescue, inspection, agriculture, cinematography, delivery,
passenger air vehicles, and space exploration [1]. Among
these applications, the field of autonomous drone racing has
attracted particular interest in the research community [2],
showcasing the remarkable progress in agile flight control.
This domain not only benefits from cutting-edge robotics
research [3] but also pushes the limits of what is possible
by challenging these flying machines to outperform the
most skilled human pilots, as shown by recent successes
against the world’s best pilots [4, 5]. The ability to navigate
complex race tracks at high speeds, making split-second
decisions, not only pushes the boundaries of what is possible
in autonomous flight, but also stresses the capabilities of
machine learning, perception algorithms, planning and control
systems, requiring them to perform at peak efficiency under

Fig. 1. Real-world deployment of our DreamerV3 policy in the Figure
8 track. During training, the agent learns a world model from interactions
with the environment. At the same time, the actor-critic policy is trained by
sampling the predictions of the world model, also called imagination. The
onboard images consumed by the network are marked in red.

highly dynamic and demanding conditions.

Traditionally, most autonomous drone racing systems have
relied on explicit state estimation integrating data from inertial
measurement units (IMUs) and other onboard sensors to
maintain stability and optimize performance [6, 7, 8, 9, 4].
However, professional human pilots rely solely on visual
feedback from an onboard camera, showcasing a remarkable
ability to navigate complex environments only from visual
input extracted from an unique onboard camera. Emulating
this human ability to fly based solely on visual information
remains a significant challenge for autonomous systems.

Closing the loop between perception and control – learning
directly from pixels to actions without the need for explicit
state estimation – remains largely unfulfilled. While reinforce-
ment learning (RL) has shown promise in various robotic ap-
plications, applying it to vision-based tasks introduces unique
difficulties, especially in real-time robotic systems such as
drone racing.

One of the most recent works in this domain [10] manages
to train a Proximal Policy Optimization (PPO) [11] policy to
fly a drone through a race track from binary image representa-
tions. In this case, the visual inputs are first preprocessed and
distilled into a simpler intermediate representation in the form



of a binary mask where only the racing gates are visible. This
intermediate representation reduces the overall observation
space complexity and allows the PPO policy to learn the
behavior efficiently. However, this work relies on a simplified
observation space: the raw visual input is preprocessed into a
binary mask highlighting only the gates. This simplification,
while reducing the complexity of the observation space and
facilitating learning, also discards valuable information. For
instance, excluding background information can hinder the
agent’s ability to navigate when no gates are immediately
visible, or to obtain the gravity direction from the horizon
line, for example. In [12] the authors present another recent
work that tackles quadrotor flight from pixel observations.
However, it relies on IL bootstrapped from a pre-trained expert
policy, which had access to the full state and introduces a
strong dependency on privileged information. Despite their
success, one major challenge in robot learning is the need
for large amounts of physical interaction data, which can be
very expensive and challenging to obtain. This challenge is
compounded in vision-based control tasks, where the high
dimensionality of image observations further increases data
requirements. In particular, learning directly from pixels has
a combined effect with the sample inefficiency of model-free
RL methods, which typically demand extensive interactions
with the environment.

MBRL presents a promising solution to these challenges
because it is generally more sample efficient than its model-
free counterpart, reducing the need for extensive environment
interaction. MBRL learns the transition dynamics of the sys-
tem, called the world model, and uses it to predict and optimize
future actions. It also generalizes well to different tasks as the
transition model does not vary vastly across different tasks in
the same system description. However, this approach typically
comes at the cost of longer training times, as the system
must simultaneously learn a world model and optimize a
control policy. Additionally, the inherent complexity of model-
based RL architectures, with their multiple interdependent
components, often makes them more difficult to tune and
optimize.

Recent works in MBRL, such as the DreamerV3 archi-
tecture [13], have helped mitigate these issues, offering a
model-based RL approach that is more accessible in terms of
tuning and optimization. Despite its successes in controlled
environments, however, the DreamerV3 framework has so
far seen limited application in real-world robotic systems,
especially when it comes to real-world robotics tasks involving
direct pixel-to-action learning.

This work aims to address these challenges by presenting
an approach for vision-based autonomous quadrotor flight,
utilizing MBRL to directly map pixel observations to control
commands. Using DreamerV3, we train a policy end-to-end
from raw pixel observations to collective thrust and body-rate
commands, mirroring how a human pilot controls a drone. In
contrast to PPO—which, as we show, cannot learn effectively
under these conditions—DreamerV3 rapidly acquires agile
drone racing skills in simulation and in the real-world.

Contributions

This paper introduces the following contributions:

• To the best of our knowledge, this is the first RL approach
that is able to learn to race directly from pixels from
scratch, closing the loop between perception and action.

• We show that our agents exhibit emergent behavior that
naturally guides the drone camera view towards feature
rich areas, such as the next gates, without requiring
handcrafted shaped reward terms to incentivize gate-
viewing as done in previous work.

• We deploy our system in both simulation and real-world,
further validating the applicability of MBRL to real-world
mobile robots.

II. RELATED WORK

A. Reinforcement Learning from Pixels

In recent years, RL algorithms have achieved incredible
feats in simple environments learning directly from pixels,
such as arcade games, used as sample efficient simulators to
benchmark the capabilities of AI agents [14]. This success in
RL has been repeatedly shown in environments in growing
complexity, such as beating human performance in Atari
games [15] or in more complex games such as Go [16].
However, these successes have been primarily in environments
where the action space is discrete, and not in continous
action spaces. This gap is addressed by the DeepMind Control
Suite [17], which presents a diverse set of environments with
different observation spaces and different action modalities —
both continuous and discrete. However, learning directly from
pixels in these scenarios has been shown to be less sample
efficient, yielding suboptimal performance when compared to
state-based learning, even in simulation environments. Recent
efforts have tried to improve this by building on top of
intermediate visual representations [18, 19, 20, 21, 10]. For
example, previous work explored different kinds of state repre-
sentations via various supervised and self-supervised learning
methods, such as auto-encoders [18], future predictions [20],
contrastive unsupervised representations [21] or semantic seg-
mentation [10], with the objective of reducing the performance
difference between state-based and pixel-based RL.

In order to address the challenge of learning complex
behaviors efficiently directly from pixels, some methods have
focused on data augmentation [22, 23]. Policies that map
camera observations directly to commands — also called
sensorimotor or visuomotor policies — are mostly learned
through extensive data simulation, making use of domain ran-
domization techniques or incorporating additional privileged
information such as joint angles [24, 25, 26] For more
complicated tasks, the robotics community has resorted to
the usage of expert demonstrations, marking a shift towards
imitation learning approaches, contrary to the learning from
scratch using RL paradigm. This is showcased by recent
works, most notably [27].



B. Vision-based flight

In the last decade, a plethora of works that aim to fly a drone
from images to high level setpoints has emerged [7, 28, 29, 30,
31]. These approaches are not using reinforcement learning,
and try to tackle the navigation task in the more general
sense, therefore far from agile flight. In [32] the authors
map features and IMU to control commands to fly aggressive
maneuvers, learning via imitation learning. In the realm of
state-based policy learning, using RL for the low-level control
of quadrotors has been demonstrated to perform better than
classical methods [33, 34]. Particularly, in state-based drone
racing, RL algorithms have been able to demonstrate agile
flight [35, 36], surpassing even state-of-the-art optimal control
methods [5]. The adaptability and versatility of RL methods
has been showing more and more success in vision-based flight
in several recent works. One of the earliest uses of RL for
vision-based quadrotor navigation is [37], where a CAD model
of the environment was used to train an RL policy that would
output discrete velocity commands (’forward’, ’right’, ’left’).
This was enabled thanks to the onboard stabilizing controller
and explicit state estimation through a VIO pipeline.

More recently and for the first time, a quadrotor that com-
bines VIO with an RL controller has been able to win a fair
drone race against the top human world champions [4]. Even
though this represents a landmark achievement for robotics,
the drone is still a custom built research drone [38], which runs
a state-estimation pipeline on board. On top of this, the policies
needed to be fine-tuned by using real-world data captured with
a motion-capture system. Therefore, the observation modality
is still not the same that the humans have, which is exclusively
a single monocular feed from the onboard camera of the
platform. In a more recent work [10], the authors were able
for the first time to achieve agile flight without explicit state
estimation. The authors convert the pixel image into a black
and white image that contains only the gates, and from this
intermediate representation they train a model-free RL policy
from scratch. Even though in that case they were able to fly
through the gates, they still were not able to train directly
from the camera feed, and the policy is not aware of any of
the texture or background information.

In this work, we aim to overcome this limitation by using
model-based RL (DreamerV3 [13]) to train a policy that
can map directly RGB pixels to control commands, just like
humans do.

C. Model-based Reinforcement Learning for Real-World
Robots

As mentioned above, there are many approaches that have
attempted to train policies using pixels as observations, relying
in simplifying assumptions. However, the landscape of model-
based RL (MBRL) methods applied to real-world robotics
remains relatively limited, and existing research primarily
focuses on simulation environments. Within the context of
real-world robotic applications, prior MBRL work often relies
on state estimations rather than raw pixel observations. Specif-
ically, there are some works tackling the problem of flying a

quadcopter using model-based RL, for high-level control [39]
or low-level controller learning [34]. However, these works
have been using state estimation as observations, and not
directly pixels as observations.

When speaking about works that use MBRL from pixels
and that deploy in real-world robots, the number of works
is even lower. One of the early works in this direction is
[40], where a learned world model of the dynamics is built
from pixels, and is then used by an MPC planner to get
the optimal policy, which outputs torque commands for a
real-world manipulator. Another interesting work that applies
DreamerV3 to a real-world robotic system is [41], where the
table top labyrinth game is solved in the real world by using
top-view fixed camera in conjunction with the measurement
of the table angle. However, this work does not belong to the
mobile robotics category. One of the most salient works that
applies DreamerV3 [13] to real-world robotics is [42], where
different policies are trained from images, depth and state, for
different tasks. These include pick-and-place manipulation uti-
lizing a fusion of RGB images, depth data, and proprioceptive
sensing, as well as quadruped locomotion trained solely on
proprioceptive sensor data. Notably, the only instance of direct
learning from pixels to commands involves a 2D navigation
task with a Sphero robot, a relatively simple scenario in terms
of dynamics and environmental complexity.

III. METHODOLOGY

A. Problem Statement

Our objective is to navigate a quadrotor through a series
of gates in minimum time while avoiding collisions with the
environment and the gates. Formally, we seek a policy π(x)
that maps raw visual observations x directly to control com-
mands a, minimizing the time required to complete the course.
We address this challenge using reinforcement learning (RL),
framing the problem within the Markov Decision Process
(MDP) framework.

B. MDP formulation

The Markov Decision Process (MDP) formalism provides a
structured approach for modeling decision-making problems.
An MDP is defined by the tuple (X ,A, P,R, γ), where X
is the set of possible states, A is the set of possible actions,
P (xk+1|xk, ak) is the state transition probability, R(xk, ak)
is the reward function, and γ ∈ [0, 1) is the discount factor. In
our vision-based drone racing task, the state xk is represented
by the raw image captured by the onboard camera at time step
k. The action ak consists of the collective thrust and body rates
applied to the quadrotor. The reward function is designed to
incentivize fast and collision-free navigation through the gates
(detailed in Section III-D) The objective in an MDP is to find
an optimal policy π∗

θ : X → A that maximizes the expected
cumulative discounted reward by optimizing the parameters θ
of a neural network,

π∗
θ = argmax

π
E

[ ∞∑
k=0

γkrk

]
.



Fig. 2. The process begins with data collection in the simulation environment using the current policy, storing experiences in a replay buffer. This buffer is
used to train the world model components: the encoder, decoder, RSSM, dynamics model, reward model, and continue predictor (Section III-E). Subsequently,
an actor-critic policy is trained within the learned world model to maximize expected (imagined) returns. This updated policy is then used to collect new data,
restarting the loop.

This optimization considers both immediate and future re-
wards, with future rewards discounted by γ.

C. Observation and Action Spaces

The RL framework learns a visuomotor, end-to-end policy
that directly maps raw RGB images as observations to control
inputs. These images provide a rich and high-dimensional rep-
resentation of the environment, enabling the agent to infer its
state and surroundings without relying on explicitly estimated
states.

1) Observation Space: The observation space consists of
RGB images captured at each time step, denoted as xk ∈
RH×W×3, where H and W represent the image height and
width, respectively, and 3 corresponds to the RGB color
channels. These images are normalized to the range [0, 1]
by dividing pixel values by 255. Unlike approaches that
rely on explicit state estimation (e.g., position, velocity, or
attitude), this image-based approach directly leverages rich
visual information to guide the policy.

2) Action Space: At each time step k, the policy out-
puts a four-dimensional action vector ak = [c, ωx, ωy, ωz],
where c represents the mass-normalized collective thrust, and
ωx, ωy, ωz are the body rate setpoints in the drone’s body
frame. These actions are expressed in the Collective Thrust
and Body Rates (CTBR) format, a control interface commonly
used by professional drone pilots [4, 43]. This format directly
commands the low-level actuation of the drone, bypassing the
need for intermediate, high-level abstractions such as position
or velocity commands. To ensure bounded and physically
realizable control actions, the action space is constrained to
A = [−1, 1]4, which are then mapped to the actual collective
thrust and body rates limits. This constraint is enforced by
applying a hyperbolic tangent (tanh) activation function to the
output of the actor policy network.

D. Reward Function

The racing track is defined as a sequence of linearly
connected waypoints placed at the center of the gates. The
reward function is designed to incentivize progress along this
track while penalizing undesirable behaviors. The reward at
time step k, r(k), is defined as

rk =


rcollision, if collision;
rpassed, if gate passed;
b1(∥gk − pk−1∥ − ∥gk − pk∥)

− b2∥ωk∥, otherwise,

(1)

where gk is the center of the target gate, pk and pk−1 are
the drone’s positions at the current and previous time steps,
respectively, and ωk is the body rate vector. The primary
component of the reward, b1(∥gk − pk−1∥ − ∥gk − pk∥), is
called the progress term, as it encourages the drone to move
closer to the target gate. The term b2∥ωk∥ penalizes excessive
body rates. We use the coefficients b1 = 1.0, b2 = 0.01. This
formulation directly rewards progress toward the gate center.
Importantly, deviations from the exact path defined by the
waypoints are not penalized, allowing the agent to discover
potentially more efficient trajectories.

In addition to the continuous reward component, discrete
rewards are provided for specific events. A large negative
reward rcollision = −4.0 is given upon collision with the
environment or a gate, terminating the episode. A positive
reward rpassed = +10.0 is awarded when the drone success-
fully passes through a gate, triggering the transition to the next
target gate.

E. Model-based Reinforcement Learning: DreamerV3

In this section, we briefly describe the key aspects of
the DreamerV3 algorithm. For more details, we refer the
reader to the original paper [13]. DreamerV3 is an off-policy,



model-based reinforcement learning algorithm. The algorithm
is structured in two main blocks: the world model, and
the actor-critic policy. These two blocks are trained in an
alternating fashion using an experience replay buffer while the
agent interacts with the environment. A high level depiction
of the training process is described in Fig. 2.

1) World Model training: Our approach employs a world
model that captures the state transition dynamics in a com-
pact latent space. Specifically, we consider a latent state
sk = (hk, zk) and model the state transition probability
P (sk+1 | sk,ak). By encoding high-dimensional sensory
inputs into low-dimensional representations, the world model
enables predicting future latent states and rewards based on
the agent’s actions. The world model is implemented as a
Recurrent State Space Model (RSSM) [44], and consists of
the following components:

• Encoder: An encoder network maps raw observations xk

into a stochastic latent representation zk. This provides
a compressed representation of the sensory observations.

zk ∼ qϕ(zk | hk,xk). (2)

• Recurrent Sequence Model: A recurrent sequence
model, parameterized by the recurrent state hk, predicts
the evolution of the latent representation. Given the
previous latent state [hk−1, zk−1] and the action ak−1,
it predicts the current recurrent state hk.

hk = fϕ(hk−1, zk−1,ak−1). (3)

• Dynamics, Reward and Continue Prediction: The dy-
namics predictor predicts the stochastic state ẑk given the
recurrent state hk. The reward and continue predictors are
conditioned on the latent state sk = (hk, zk), and predict
the immediate reward rk and the episode continuation flag
ck ∈ {0, 1}, indicating whether the episode terminates or
continues.

Dynamics predictor: ẑk ∼ pϕ(ẑk | hk) (4)
Reward predictor: r̂k ∼ pϕ(r̂k | hk, zk) (5)
Continue predictor: ĉk ∼ pϕ(ĉk | hk, zk). (6)

• Decoder: A decoder reconstructs the original observa-
tions from the latent representations. This reconstruction
loss ensures that the latent variables zk retain essential
information from the environment.

x̂k ∼ pϕ(x̂k | hk, zk). (7)

The encoder and decoder use convolutional neural networks
(CNNs) for image inputs and multi-layer perceptrons (MLPs)
for vector inputs. These models are trained by minimizing
different losses: the prediction loss Lpred(ϕ), which trains
the decoder, the reward and the continue flags; the dynamics
loss Ldyn(ϕ), which trains the sequence model; and the
representation loss Lrep(ϕ), aims to make the representations
more predictable. For more details about these losses, we refer
the reader to [13].

The overall world model objective is a linear combination
of the above defined losses:

L(ϕ) = Eqϕ

[
T∑

k=1

βpredLpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ)

]
,

where βpred = 1, βdyn = 1, βrep = 0.1 and T is the batch
sequence length. The world model is trained by randomly
sampling T -length snippets of inputs x1:T , actions a1:T ,
rewards r1:T and continuation flags c1:T from episodes in the
replay buffer.

By jointly training these components, the RSSM-based
world model learns a compact, predictive representation of the
environment, and a latent dynamics model, supporting more
efficient decision-making and planning in latent space.

2) Actor-Critic Training: Our approach employs an actor-
critic architecture trained using imagined trajectories generated
by a learned world model (see Fig. 2). This allows the agent
to learn complex behaviors without requiring extensive real-
world interactions. Given a starting state representation, the
actor generates an imagined trajectory consisting of model
states (h1:T , z1:T ), actions a1:T , rewards r1:T , and continu-
ation flags c1:T . The critic then learns to evaluate the quality
of these imagined trajectories by predicting the distribution of
bootstrapped λ-returns. This bootstrapping allows the critic to
estimate long-term returns even within the limited prediction
horizon of the world model.

The actor learns to maximize these λ-returns while explor-
ing through an entropy regularizer. To ensure robust explo-
ration across diverse reward scales and frequencies, the returns
are normalized to approximately lie in [0, 1]. To optimize the
policy, DreamerV3 uses the REINFORCE estimator combin-
ing unbiased but high-variance policy gradients with a stop-
gradient operation on the value targets.

For further details on the actor-critic training and loss func-
tions, we refer the reader to [13]. In our case, the prediction
horizon for the imagined trajectories is set to T = 16. This
horizon balances computational cost and the ability to capture
longer-term dependencies.

F. Quadrotor Dynamics

In this section, we describe the nominal dynamics f⃗(s⃗, u⃗),
where s⃗ ∈ R10 is the state of the quadrotor and u⃗ ∈ R4

is the input to the system. The state of the quadrotor is
given by s⃗ = [p⃗I , q⃗IB , v⃗I ]

T , where p⃗I ∈ R3 is the position,
q⃗IB ∈ SO(3) is the unit quaternion that describes the rotation
from the body to the inertial frame, and v⃗I ∈ R3 is the linear
velocity vector. ω⃗B ∈ R3 are the bodyrates in the body frame
B. For ease of readability, we drop the frame indices, as they
remain consistent throughout the description. The nominal
dynamic equations are given by:

˙⃗p = v⃗ ˙⃗v = g⃗ +
R(q⃗)f⃗T

m

˙⃗q =
q⃗

2
⊙ [0 ω⃗]T ,

(8)

where ⊙ represents the Hamilton quaternion multiplication,
R(q⃗) the quaternion rotation, m the quadrotor’s mass, J the
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Fig. 3. Reward evolution by number of steps for three different tracks: Circle track, Kidney Track and Figure 8 track. The training performance of DreamerV3
is shown in blue, and for PPO in orange. In the zoomed, lower figure, we show that PPO is not able to achieve any considerable training in 10 million
environment interactions, while DreamerV3 is able to train to convergence for the three tracks.

quadrotor’s inertia, andf⃗T the collective thrust. The input space
is given in the collective thrust and body rates modality, hence
u⃗ = [f⃗T , ω⃗].

1M 
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0.4M 
Steps

10M 
Steps

Real observation 
Imagined observation

t = t t = t1 2

Fig. 4. Comparison of real observations and imagined observations for the
Figure 8 track. Imagined observations are observations that are reconstructed
by the world model. The figure shows the reconstructed observations after
0.4M steps (early stage training), 1M timesteps (mid stage training), and after
10M steps (training convergence). One can observe how the reconstruction
gets better and better as the training evolves.

IV. SIMULATION EXPERIMENTS

We implemented DreamerV3 in PyTorch, leveraging the
dreamerv3-torch open-source implementation and building on

top of the stable-baselines3 library [45]. Our experiments
were conducted within a high-fidelity simulation environment
combining Flightmare [46] and Agilicious [38] for realistic
quadrotor dynamics and track generation. To enable fast, real-
time rendering and direct access to the image feed during
training, we integrated the Habitat simulator [47, 48], enabling
training with the renderer in the loop at several thousand
frames per second. This same training environment has been
successfully employed in prior research [12].

Our method’s performance is benchmarked against a model-
free Proximal Policy Optimization (PPO) baseline [49, 5,
4, 10]. The PPO baseline used a CNN followed by four-
layer Multi-Layer Perceptrons (MLPs) with 768 neurons per
layer for both the actor and critic networks. The simu-
lated quadrotor dynamics are described in Section III-F, and
its physical parameters were consistent across all experi-
ments: mass m = 0.6 kg, diagonal inertia matrix J =
diag([0.002410, 0.001800, 0.003759]) kg m2, rotor torque con-
stant κ = 0.022, and arm length 0.14 m. The maximum rotor
thrust was limited to 4.0 N, resulting in a thrust-to-weight ratio
of 2.7. The dynamics, platform and parameters are the same
one as in [10].

For DreamerV3, we adopted the hyperparameters detailed in
[13] and used the Large (L) network configuration described
in Appendix B of [50]. This configuration consists of four-
layer MLPs with 768 units for the decoder, predictors, actor,
and critic networks, and 2048 recurrent units for the world
model’s recurrent component.

All experiments were performed on a single Quadro RTX
8000. Input images from the simulated camera were resized
to 64× 64 RGB pixels before being fed into the DreamerV3
agent. These input images are visualized in Figure 4.



A. Results

We conducted training experiments on our agent using
two distinct reinforcement learning algorithms: DreamerV3
and PPO. These experiments were carried out across three
challenging drone racing tracks: Circle, Kidney, and Figure 8.
The results of these experiments are visualized in Figure 3. The
top row of the figure presents the overall reward evolution for
each track, comparing the performance of both DreamerV3
and PPO. The bottom row provides a zoomed-in view of
the PPO reward curves, for a more detailed examination of
their evolution. Each run was conducted with 5 different
random seeds. The resulting plots depict the average reward
across these 5 runs, represented by a solid center line, and
the shaded area surrounding the line indicates the standard
deviation. Our findings indicate that DreamerV3, by leveraging
a learned world model, effectively learns directly from pixel
observations. This enables the agent to acquire policies that
are capable of racing through each track. In contrast, PPO,
which relies solely on direct interaction with the environment,
struggles to converge to high-reward solutions. Its policies
often lead to policies that fail to execute any meaningful
flight maneuvers, resulting in consistently low reward values.
An important observation is that our system is trained using
curriculum learning, where the parameter b2 in Eq. (1) is
initially set to 0.0 and gradually increases once the total reward
surpasses 50.0. This explains the oscillatory reward values
observed in Fig. 3, as the system adjusts to the changing
rewards.

This aligns with the findings presented in [12], where the
authors encountered similar challenges in training end-to-end
PPO policies directly from pixel observations. To overcome
these difficulties, they adopted a hybrid approach, combining
imitation learning with subsequent reinforcement learning
fine-tuning.

As illustrated in Figure 2, the DreamerV3 architecture incor-
porates an observation reconstruction module. This component
ensures that the latent state captures sufficient information
to accurately represent the observed sensory input. Figure 4
presents a comparative analysis of real observations and their
corresponding reconstructions for the Figure 8 track at two
distinct time steps, t1 and t2. The reconstructions are sampled
at three different training stages: early training (0.4 million
steps), mid-training (1 million steps), and late-stage training
(10 million steps). A visual inspection of the figure reveals a
progressive improvement in reconstruction quality as training
progresses. Notably, the fine details of the environment, such
as the yellow floor lines at time step t1, become identifiable
only in the late-stage reconstructions. Similarly, the shape of
the gate at time step t2 is accurately reconstructed by the
model only at late-stage training.

B. Perception-aware emergent behaviour

An additional interesting observation is that after training,
the agent exhibits a consistent tendency to orient the camera
towards the gates, a behavior that naturally emerged during
training rather than being explicitly incentivized by the reward

0

0

-2

-2

-4

-4

2

2

4

4

0 2 4 6 8-2-4

2 4 6 8
Speed (m/s) 

Fig. 5. Ablation study on the perception aware behaviour of our policies.
Top: DreamerV3 policy trained on pixel observations in an environment where
the only rendered gates are the actual gates. As indicated by the black arrows
(representing camera direction), the platform predominantly focuses on the
next gate. Bottom: We introduce two additional gates to the rendering engine
(marked in red color). These gates are not required to be traversed but serve
as a valuable source of information for platform localization. Consequently,
the policy’s behavior shifts, and the platform now distributes its camera view
more evenly across both the actual and the extra gates.

function, as it is generally done in previous works [10, 12].
This emergent behavior can be attributed to the fact that we
are optimizing end-to-end from pixels to commands, therefore
allowing for closing the action-perception loop. As depicted
in Figure 4, the gates remain visually clear throughout the
entire track, while the background details become increasingly
blurred due to the downsampling of the input image to 64×64
pixels. This suggests that the policy strategically prioritizes
focusing on the information-rich gates, which are essential for
successful navigation. To reinforce this hypothesis, we have
conducted an additional ablation experiment where we place
two additional gates in the periphery of the Figure 8 track.
These gates are there only in the rendering, but do not need to
be passed through. Fig. 5 shows the same policy trained with
and without these additional gates. In the top part of Fig. 5, we
show the policy trained without the extra gates. As indicated
by the black arrows (representing camera view direction), the
platform predominantly focuses on the following gates. In the



bottom part of the figure, we show the policy trained with the
two additional gates to the rendering engine (marked in red
color). As it can be seen, the policy’s behavior changes, and the
platform now distributes its camera view more evenly across
both the actual and the extra gates. In the supplementary video
we show the first person view of the two policies depicted in
Fig. 5 deployed in a simulated environment.

V. REAL-WORLD EXPERIMENTS

Fig. 6. Real-world experimental setup. Our drone is equipped with a RF
receiver similar to that used by professional human pilots. The observations
are onboard RGB images, similar to those seen by a human pilot.

A. Setup

The software setup is identical to the one used in the
simulation experiments, explained in Section IV. Regarding
the hardware, we use a modification of the Agilicious platform
[38] for the real-world deployment. We have replaced the
onboard computer with an RF receiver, which is connected
directly to the flight controller1 and takes care of parsing the
collective thrust and bodyrate commands from the offboard
computer. Our hardware setup is the same setup as in [10].
This configuration is similar to the one used by professional
drone racing pilots. This quadrotor and racing setup is shown
in Fig. 6. For the deployment in the real world, we use
a hardware-in-the-loop (HIL) setup, where the images are
obtained from the habitat simulator and fed into the network,
and the commands produced are sent directly to the real drone
platform. This way, we have the real world dynamics in the
loop, which allows us to asses the sim-to-real gap and our
policy performance when tested in the real system.

B. Results

We demonstrate the efficacy of our policies by deploying
them in the real world on the Figure 8 track. Figure 7
presents a comparative analysis of the simulated and real-
world trajectories and speed profiles for this track. A strong
similarity is observed between the two, indicating a minimal

1https://www.betaflight.com
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Fig. 7. Real-world deployment of the trained policy for the Figure 8 track.
We show the deployment in simulation (top) and in the real-world (bottom).
By looking at the 3D trajectories and the speed profile, we note that our
policies transfer and result in a small sim-to-real gap.

sim-to-real gap in our dynamic model. Moreover, the camera
axis, visualized by black arrows in Figure 7, aligns closely
between the simulated and real-world scenarios. As already
mentioned in Section IV-B, both the simulated and deployed
policies show the same perception-aware behavior: they keep
the camera view aligned with the next gate, even if there are
no reward terms guiding or incentivizing it. To the best of
our knowledge, our real-world demonstration marks the first
RL approach to learn drone racing directly from pixel inputs
to control commands, effectively closing the loop between
perception and action. The supplementary video shows the
deployment of our system in the real world.

VI. LIMITATIONS

The proposed model-based RL approach has shown great
success at learning complex behaviours from pixels to com-
mands at agile flight, also demonstrating successful real-world
deployment. However, there are some limitations, mainly
related to the fact that our approach needs a large amount
of computation for both training and deployment. To be able
to train a policy that performs to convergence (for 20 million
steps, as shown in Fig. 3, our architecture takes an average
time of 240 hours. This time comes primarily from the forward

https://www.betaflight.com


and backward propagation through the RSSM world model,
and not from the rendering. This means that more efficient
implementations of DreamerV3 hold the potential to reduce
the training times. For example, using the open source JAX
implementation [13] instead of the PyTorch one can potentially
reduce the training times by a factor of 3-4 times.

VII. CONCLUSION

This paper introduces a novel application of MBRL using
the DreamerV3 architecture to address the challenge of vision-
based agile quadrotor flight. Our approach eliminates the need
for intermediate representations, explicit state estimation, or
extensive bootstrapping and is able of mapping raw RGB pixel
inputs directly to control commands.

Our results demonstrate the efficacy of DreamerV3 by
executing a drone racing task, both in simulation and the
real world. Compared to model-free RL methods (in particular
PPO), our approach achieves significantly higher sample effi-
ciency and produces policies capable of navigating challenging
race tracks at high speeds with policies trained from scratch
and completely end-to-end, from camera feed to control com-
mands. Moreover, the emergent perception-aware behaviors
that arise in trained policies illustrate how end-to-end learning
can leverage perceptual information to optimize actions and
simultaneously use those very actions to refine perception. In
general, our work provides a step forward applying pixel-to-
command model-based RL to real-world mobile robotics.
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