Learning on the Fly: Rapid Policy Adaptation
via Differentiable Simulation

Jiahe Pan*, Jiaxu Xing*, Rudolf Reiter, Yifan Zhai, Elie Aljalbout, and Davide Scaramuzza

Abstract—Learning control policies in simulation enables
rapid, safe, and cost-effective development of advanced robotic
capabilities. However, transferring these policies to the real world
remains difficult due to the sim-to-real gap, where unmodeled
dynamics and environmental disturbances can degrade policy
performance. Existing approaches, such as domain randomiza-
tion and Real2Sim2Real pipelines, can improve policy robustness,
but either struggle under out-of-distribution conditions or require
costly offline retraining. In this work, we approach these problems
from a different perspective. Instead of relying on diverse training
conditions before deployment, we focus on rapidly adapting
the learned policy in the real world in an online fashion.
To achieve this, we propose a novel online adaptive learning
framework that unifies residual dynamics learning with real-
time policy adaptation inside a differentiable simulation. Starting
from a simple dynamics model, our framework refines the model
continuously with real-world data to capture unmodeled effects
and disturbances such as payload changes and wind. The refined
dynamics model is embedded in a differentiable simulation frame-
work, enabling gradient backpropagation through the dynamics
and thus rapid, sample-efficient policy updates beyond the reach
of classical RL methods like PPO. All components of our system
are designed for rapid adaptation, enabling the policy to adjust to
unseen disturbances within 5 seconds of training. We validate the
approach on agile quadrotor control under various disturbances
in both simulation and the real world. Our framework reduces
hovering error by up to 81% compared to £;-MPC and 55%
compared to DATT, while also demonstrating robustness in
vision-based control without explicit state estimation.

Index Terms—Machine Learning for Robot Control, Aerial
Systems: Perception and Autonomy, Continual Learning

I. INTRODUCTION

Robot learning through simulation has seen great success
in recent years, thanks to the rapid improvements in computer
hardware and advancements in efficient physics simulation [1].
Simulation provides a fast, safe, and cost-effective way to
collect data and train policies, enabling experiments that
would be impractical or unsafe in the real world. However,
transferring control policies learned purely in simulation to
physical systems is challenging. While a high-fidelity simu-
lation model may be used, the system parameters are often
difficult to precisely identify. In addition, unmodeled effects
such as aerodynamic turbulence, sensor noise, and actuator
delays further complicate the real-world dynamics, thus mak-
ing accurate alignment between simulation and reality difficult

*These authors contributed equally to this work.

The authors are with the Robotics and Perception Group, University of
Zurich Switzerland (http://rpg.ifi.uzh.ch).
Contact: jixing@ifi.uzh.ch

This work was supported by the European Union’s Horizon Europe Re-
search and Innovation Programme under grant agreement No. 101120732
(AUTOASSESS) and the European Research Council (ERC) under grant
agreement No. 864042 (AGILEFLIGHT).

Simulated Environment Real World Deployment

50Hz

Control ;5 I E

External
Disturbance

Analytical (Simplified)

MLP Policy

Learning
via. Diff.

Simulation

Hybrid
Dynamics

Residual (Learned) .
Data Collection

. .. Trajectory Buffer
Supervised Training 4 -

Fig. 1: Overview of the key components in our proposed approach. (right) The
policy is continuously deployed in the real world, and trajectories are collected
into a buffer. (bottom) Residual dynamics are trained using the real-world data
to refine the hybrid simulation dynamics. (left) Based on the latest simulation
dynamics, the policy is rapidly adapted via differentiable simulation.

to achieve. The resulting mismatch, known as the sim-to-real
gap [2], remains a central obstacle to deploying learning-based
controllers in the real world. Bridging this gap is essential to
retain the advantages of simulation while ensuring that policies
perform reliably under the complexity and variability of real-
world conditions.

Domain randomization is a common strategy to address
this issue [3], in which simulation parameters such as dynam-
ics [4], [5], sensor noise [6], [7], and visual appearance [3],
[8] of the environment are varied during training to expose
the policy to a wide range of possible deployment scenar-
ios. By learning in diverse conditions, the agent develops
robust policies that are less likely to overfit to the specific
characteristics of a single environment. However, domain
randomization cannot exhaustively anticipate all possible real-
world conditions. Thus, when the environment shifts beyond
the randomized distribution, policy performance will strongly
degrade to out-of-distribution disturbances [9]. Beyond domain
randomization, Real2Sim2Real methods [5], [6] have shown
strong sim-to-real transfer capabilities through offline refine-
ment of the simulation model using real-world data before
retraining policies for deployment. While such methods are
effective in improving transfer, they require extensive data and
costly retraining. For example, [10] reports 75 minutes of real-
world data collection, which makes them unsuitable for rapid
online adaptation to changing conditions.

In this work, we approach these problems from another
perspective: we propose to rapidly adapt the policy to unknown
external disturbances in the real world, in an online fashion.
The core insight of the proposed framework is to integrate
online residual dynamics learning with rapid policy adapta-

http://rpg.ifi.uzh.ch

tion via differentiable simulation. All system components are
designed to update both the residual dynamics and policy as
quickly as possible, ideally within a few seconds, during run-
time. In this way, the policy becomes adaptive by continuously
“overfitting” rapidly to the current environment scenario, and
paradoxically, more “generalizable” across diverse real-world
conditions.

For our pipeline, we start with a lightweight rigid-body
dynamics model and continuously refine it by learning residual
dynamics from real-world flight data. The residual-augmented
dynamics model is embedded in a differentiable simulation
framework to achieve more accurate and sample-efficient
policy adaptation. Differentiable simulation provides the key
advantage here: by allowing accurate gradients to flow through
the dynamics, it makes real-world policy adaptation more
efficient than classical RL approaches such as PPO [11].

Another key innovation is our alternating optimization
scheme, where policy learning and residual model learning
are interleaved so that each batch of real-world data is used
efficiently for both dynamics refinement and control improve-
ment through simulation using the refined dynamics. All of
these components ensure the simulation is aligned with reality
and enables rapid, efficient policy adaptation to unknown
disturbances, even controlling directly from perceptual input.

We evaluate our proposed framework in both simulation and
real-world experiments, considering a range of environmental
disturbance conditions on an agile quadrotor platform, whose
nonlinear dynamics and sensitivity to aerodynamic effects
make it a challenging benchmark for adaptive control [12]. In
state-based control tasks such as hovering, where the policy
receives as input full quadrotor state information, our method
attains an average error of 0.105m, an 81% reduction over
L1-MPC (0.552m) and 55% over DATT [13] (0.231 m),
while ensuring stable flight under modeling errors and out-
of-distribution disturbances. In visual feature-based control,
our framework achieves similar gains, demonstrating that rapid
adaptation remains effective under partial or noisy observa-
tions - a capability unattainable with classical control methods
in the absence of state estimation.

Contributions: We propose an online policy adaptation
framework that combines residual dynamics learning with
differentiable simulation, enabling real-world policy adaptation
to unknown disturbance within 5 seconds of training. We
propose an alternating optimization scheme that interleaves
dynamics learning and policy learning, ensuring that real-
world samples effectively improve both components. The
framework supports both state-based and visual feature-based
inputs (without explicit state estimation), and we demonstrate
its effectiveness through simulation experiments and real-
world validation, where it outperforms both classical and
learning-based controllers under large unseen disturbances.
Together, our framework shows that policies can learn and
adapt within seconds in the real world, reducing the reliance
on domain randomization, which can fail to capture real-world
complexity and adapt to out-of-distribution scenarios.

st update
I

5.0
T -

Fig. 2: Real-world policy adaptation using our proposed approach for trajec-
tory tracking tasks. The policy rapidly learns within 2 updates (10s of flight)
to compensate for the large sim-to-real gap caused by model mismatch during
pretraining (see Sec. III).

II. RELATED WORKS

A. Aligning Simulation with the Real-World

Closing the sim-to-real gap requires quantifying the mis-
alignment between simulation and real-world dynamics, typi-
cally through system identification or residual dynamics learn-
ing. System identification estimates parameters of an analytical
dynamics model from input-output data [14], but its rep-
resentation capacity is limited to the modeled system [15],
making it less effective for capturing complex dynamics and
disturbances. Residual dynamics learning addresses this by
directly modeling the discrepancy between analytical predic-
tions and real-world measurements. It has been applied to
improve quadrotor odometry and tracking [10], [16], learn
motor delays in quadrupeds [6], and predict residual forces
in soft robots [17].

B. Fast Policy Learning in Simulation

While traditional RL methods suffer from prohibitively
long training times, significant speed-ups can be achieved
using highly optimized physics simulation [18]. However,
these methods are limited by sample inefficiency due to the
high variance in the zeroth-order policy gradient estimates. A
recent alternative paradigm, policy learning via differentiable
simulation, uses smooth, differentiable dynamics and rewards
to enable policy learning via first-order gradients [19], offering
substantial gains in sample efficiency and training time over
RL [20]. It has been applied to direct policy parameterizations,
such as parametric curve frequencies for swimming robots [21]
and sinusoidal policies for robotic cutting [22]. For applica-
tions to neural network policies, however, unstable gradients
often limit applications to short-horizon tasks with simplified
contacts and restricted start-state variation [23], [24]. To ad-
dress this, prior work has explored enhancements such as early-
stopping simulations at contact events, truncated BPTT [25],
and reward augmentation with a learned critic [26], [27].

C. Learning-Based Adaptive Control

Residual dynamics models have been used for online dis-
turbance estimation, via offline-trained networks [28], Gaus-
sian Processes [16], or differentiable simulation—based system
identification [29]. However, these methods mainly augment
optimization-based controllers like MPC, which rely on full
state information, and do not directly extend to vision-based
control. Neural network policies have also been conditioned on
disturbance estimates [4], [13], [30], but since they are trained

Policy Training
every 5 .S'(’('()/I(/.\'

Hybrid Diff. Simulator

,\L‘\'\O“ Simplified e
- Dynamics :
MLP Policy
=7 Residual
% Dynamics

Residual
Learning Forward

Residual

Network
every 3 seconds

MLP Policy
S,

Rollout
Policy

50 Hz
Control

S

Reward Real World

Deployment

& o

External
Disturbance

Collect
Real-world Trajectories
Dataset

Fig. 3: Detailed illustration of the information flow both within and between the three interleaved components of our proposed approach, which run in parallel

across multiple threads in separate ROS nodes.

offline in randomized simulations and remain fixed during
deployment, they struggle with domain shifts and unseen real-
world conditions [13], [31].

III. METHODOLOGY

Our approach consists of two phases: policy pretraining
and online adaptation. During pretraining, we train a base
policy using a simplified, low-fidelity analytical dynamics
model without residual dynamics, which is used as the initial
policy for online adaptation. During online adaptation (see Fig.
3), residual dynamics learning, policy adaptation, and real-
world deployment run in parallel across multiple threads, with
parameters exchanged efficiently between processes via ROS
as serialized byte strings. The residual dynamics network is
continuously updated from a rolling buffer of quadrotor states
and actions, and combined with the analytical model to form
a hybrid dynamics embedded in the differentiable simulation
for policy adaptation. Finally, the deployment loop uses the
latest policy network parameters to continuously output control
commands at 50Hz to the on-board flight controller, and
simultaneously collects flight trajectories.

A. Differentiable Simulation Model

We model the quadrotor as a discrete-time dynamical system
with continuous state and action spaces X and U, respectively.
The system evolves according to the differentiable hybrid
dynamics model fiypria : X X U +— X which comprises
the analytical and learned residual components, and describes
the system evolution x;+1 = fuybrid (X7, 4;) over time. At time
step ¢, an observation model & : X +— O generates an
observation o, = h(x;) € O from the state x,, and is passed
as input to a deterministic and differentiable policy network
ng : X — U which outputs an action u, = 74(0,), and finally
a deterministic, smooth and differentiable reward function
r: X XU R emits a reward r; = r(x;,u,) based on the
state-action pair. Thus, all components are fully-differentiable
and allows gradient backpropagation through the simulation.

B. Low-Fidelity Quadrotor Dynamics Model

Given the quadrotor state consisting of position p € R3,
rotation matrix R € SO(3), and linear velocity v € R3,
and commands w consisting of the mass-normalized collective
thrust ¢ € R and body rates wemg € R3, the low-fidelity,
analytical quadrotor dynamics f; is defined as

d| P v
@ =— |vec(R)| = |vec(R[wemd]x) | = falz,), (D
dt v Rc+g

where [-]x denotes the skew-symmetric matrix operator and
vec(+) indicates vectorization of a matrix, ¢ = [0, 0, c]7 is the
collective thrust vector, and g is the gravity vector.

C. Policy Optimization Using Analytical Gradients

The policy learning objective is to maximize the cumula-
tive task reward R(¢) over an N-step rollout of the policy
parameterized by ¢ via

N-1 N-1
maxR(g) = > rCuu) =) rx m(h(x). @)
t=0 t=0

By leveraging the differentiable dynamics and reward struc-
ture, we can obtain first-order analytical policy gradients of
the objective (2) via Back-Propagation Through Time (BPTT)
(see [32] for a full derivation). The gradient and the update
rule of the policy parameters ¢ are given by

N-1 1t t
~ 1 or, de ox; Ory Ouy
V¢R(¢) = N ;(Z ax, g(dx]—l)aﬁﬁ + ou; [)(p)’ 3

izl
bis1 = ¢k +aV R (),

where d‘iﬁ 1 is the derivative matrix of the system dy-
namics fiybria, and « is the learning rate. We build upon
an existing open-source differentiable simulator for quadro-
tors [20] written entirely in JAX to leverage both its automatic-

differentiation framework for computing the analytical policy

gradients and GPU-accelerated computing for efficient parallel
simulation.

D. Residual Dynamics Learning

Given the concatenated input vector [z7,u’] € R of
quadrotor state 7 = [p",vec(R)T,v"] € R and action
u' =[c,w]] € R*, an MLP network f;cs parameterized by 0
is trained to predict the residual acceleration a., € R3, defined
as the difference between the ground-truth acceleration agy €
R3 measured on the real system and the theoretical acceleration
a € R3 from the analytical dynamics f,(,u) in (1). The
residual acceleration training targets are computed as Gres =
ag — @. Given a batch of |B| samples {[zT,u"]’, al.}ies,
we train the model by min{imizipg the loss functipn Lres
via ming Lres = ming ks 217 [laly, - fres([27,uT]5:0)]1% +
BYL [IW!2, where W! is the weight matrix of the [-th
network layer, and S controls the regularization strength.
The loss comprises a standard MSE term and a spectral
norm regularization term, where the latter has been shown to
improve generalization beyond the training distribution [33] by
regulating the network’s Lipschitz constant [28]. We minimize
the loss using the Adam optimizer [34].

E. Design Choices for Maximum Runtime Efficiency

During forward simulation, we use a hybrid dynamics model
JShybria obtained by additively combining the analytical f,
and learned residual f,s dynamics models. Here, we use a
simple, low-fidelity analytical dynamics model (see Sec. I1I-B)
which models the quadrotor as a point-mass. The resulting
acceleration given a state and action input pair is computed
as Gnybrid = @ + Qres, Where ey is the network prediction.
The quadrotor states are simulated at 50 Hz via Runge-Kutta
4 time-integration of the dynamics using @nyprig. While the
hybrid dynamics model fiypria composed of differentiable
analytical and learned components remains overall fully differ-
entiable, we only perform gradient backpropagation through
the analytical dynamics model and not the frozen network
to obtain the policy gradients. This was inspired by prior
work in policy learning using differentiable simulation for
both quadruped [11] and quadrotor [20] control, which showed
that combining accurate forward dynamics simulation with the
backpropagation of a surrogate gradient based on a simplified
dynamics model achieves faster runtime without impacting the
resulting policy performance. We analyze and justify the above
design choices through simulated experiments, and present and
discuss the results in Sec. IV-C.

F. Full vs. Low-Rank Policy Adaptation

We compare two existing methods of adapting a pretrained
policy: full vs. low-rank adaptation (LoRA) [35]. Full adap-
tation involves updating all parameters of the policy network,
similar to [36], whereas LoRA freezes all pretrained param-
eters and instead adapts an additive low-rank network mod-
ule [37] which forms a lower-dimensional trainable parameter
space. The latter has been shown to achieve more memory
and parameter-efficient policy adaptation using RL for task-
transfer [35] and multi-agent [38] learning. Therefore, as an

—0.5

Xm] Tis

(a) Circle

(b) Figure-8

Fig. 4: The Circle and Figure-8 reference trajectories, with periods of 3's and
5 s respectively. Both lie in the horizontal xy-plane 1 m above the ground, and
start at the point (0,0, 1) m.

exploratory comparison, we seek to understand whether LoRA
can also be combined with sample-efficient policy learning
using differentiable simulation to effectively adapt a pretrained
policy to unknown environmental disturbances.

IV. EXPERIMENTS
A. Experimental Setup

1) Task and Reward Definitions: We evaluate our approach
on stabilizing hover and trajectory tracking tasks for the
quadrotor platform. For stabilizing hover, the policy is required
to regulate the quadrotor state towards a goal position pges and
maintain it at all times, which is non-trivial given the quadro-
tor’s non-linear and unstable dynamics. We evaluate both a
state-based control policy which at each time step receives
the observation o = [p, R,v]", and an end-to-end visual
feature-based policy which only receives the projected pixel
coordinates of seven 3D keypoints from the past five time steps
and the last three actions. For real-world experiments, the 3D
keypoints are simulated in a hardware-in-the-loop style using
quadrotor state estimates from a motion-capture system. Our
training setup closely follows the open-source environment
setup in [20]. Trajectory tracking instead requires following a
reference trajectory defined as a time-parameterized sequence
of quadrotor states, which is generated to be smooth up to
the acceleration level. We use two such trajectories, Circle
and Figure-8, for this task in a state-based training setting
(see Fig.4). For both tasks, the reward at each time step ¢ is
defined as a sum of position, velocity, and actuation reward
terms r, = r1>° + 7Y+ 73 For stabilizing hover, the individual
reward terms are given by 17 = —1.0- Ly (5 (p; —Pdes)), 1} =
—0.1-Ly(v,;) —0.1- Ly(w), and r2** = —0.5 - Ly (u; — Unover),
where Ly is the Huber loss, and upgwer = [9.81,0,0,0]7
is the mass-normalized action required to counteract gravity.
For trajectory tracking, the individual reward terms are given
by 7* = -1.0 - Lu(p, — "), /! = 1.0 - Ly(v, — v™),
andr?®® = —0.1 - Ly(u; — Wnover), Where pgef and U§°f are
respectively the corresponding position and velocity of the
reference trajectory at time 7.

2) Pretraining Phase: We parameterize the policy as an
MLP with two 512-dim hidden layers. For both state-based
hovering and trajectory tracking, we train the base policy
from random initialization for 300 epochs across 100 parallel
environments. Each epoch lasts 3 seconds or 150 simulation
steps. For visual feature-based hovering, we use the initial-
ization approach from [20] to first train a neural network
on a state-representation learning task and use the learned

TABLE I: Average steady-state error (in m) from the hovering target across 8
rollouts. The errors of the two best-performing methods for each disturbance
condition are highlighted in green and orange.

Method No Dist. Small Dist. Large Dist.
Base DiffSim 0.128 + 0.004 0.328 + 0.001 1.228 + 0.073
L{-MPC 0.091 + 0.052 0.134 +£ 0.073 0.552 + 0.130
DATT (PPO) 0.013 + 0.004 0.009 + 0.005 0.231 + 0.004
Ours 0.015 + 0.001 0.008 + 0.002 0.105 + 0.007
Ours (LoRA) 0.023 + 0.002 0.015 + 0.004 0.125 + 0.002

parameters to partially initialize the policy network. This has
been shown to improve convergence and sample efficiency in
policy learning [39]. We refer the reader to [20] for details on
this initialization method. We then train the partially initialized
policy for 500 epochs across 300 parallel environments.

3) Online Adaptation Phase: The quadrotor states and
actions are continuously recorded into a rolling history buffer
at 50 Hz and are used to train the residual dynamics network.
For stabilizing hover and trajectory tracking, we use history
buffer sizes of 100 and 250, equivalent to 2 and 5 seconds
of past quadrotor states and actions, respectively. For residual
dynamics learning, we continuously refine an ensemble of 3
networks, each with two 128-dim hidden layers and initialized
using different random seeds, and use the empirical mean
prediction from all models as the final predicted residual
acceleration for a given input. Empirically, we found this
to effectively reduce the prediction variance arising from
epistemic uncertainty due to the limited samples in the data
buffer. We run residual dynamics learning every 3 seconds
and train the ensemble networks in parallel for 100 iterations.
Policy adaptation is run every 5 seconds, and we train the
state-based policy with 10 parallel simulated environments for
30 epochs and the vision-based policy with 30 environments
for 50 epochs. These values were empirically found to provide
a good balance between training time and policy performance.

4) Baselines Methods: We compare against a state-of-the-
art learning-based adaptive control method, Deep Adaptive
Tracking Control (DATT) [13], which uses the popular model-
free RL algorithm PPO with domain randomization and online
L adaptive control-based disturbance estimation. For quadro-
tor control, this method has been shown to outperform Rapid
Motor Adaptation (RMA) [4], which is a similar approach but
instead uses a learned encoder for disturbance estimation. We
used the open-source implementation of [13] and the exact
same training procedure and hyperparameters to train both
state-based hovering and trajectory tracking policies using PPO
for 20 million simulation steps. Using their original domain
randomization method, we simulated 3-dimensional acceler-
ation disturbances as random walks within the bounds +/-
[1,1,1] m/s?. We also compare against an adaptive Nonlinear
MPC controller (£;-MPC) as implemented in [13], which uses
a Model Predictive Path Integral (MPPI) formulation and the
same £ adaptive control-based disturbance estimation as in
DATT. Additionally, we include our pretrained base policy
(Base DiffSim) for each task without further online adaptation
for comparison.

B. Experimental Results

For evaluation, we used a realistic quadrotor simulator [12]
equipped with the BEM model for aerodynamic effects and

TABLE II: Average tracking errors (in m) for two different trajectories (Circle
and Figure-8). The errors of the two best-performing methods for each
disturbance condition are highlighted in green and orange.

Method

Base DiffSim
L1-MPC
DATT (PPO)
Ours
Ours (LoRA)

Base DiffSim
L{-MPC
DATT (PPO)
Ours
Ours (LoRA)

No Dist.

0.365 + 0.124
0.113 + 0.027
0.058 + 0.016
0.167 + 0.048
0.129 + 0.051

0.313 + 0.087
0.109 + 0.063
0.078 + 0.037
0.068 + 0.040
0.069 + 0.047

Small Dist.

0.571 + 0.091
0.096 + 0.063
0.040 + 0.024
0.135 + 0.101
0.159 + 0.043

0.492 + 0.155
0.121 + 0.025
0.082 + 0.046
0.045 + 0.03
0.059 + 0.043

Trajectory Large Dist.

1.479 = 0.213
0.410 = 0.155
crash
0.349 + 0.175
0.326 + 0.061

1.363 + 0.382
0.281 + 0.097
crash
0.137 + 0.098
0.110 + 0.037

Circle

Figure-8

high-frequency simulations of the controller dynamics. We
simulated three levels of constant, uniform acceleration dis-
turbances: [0,0,0] m/s? (none), [0.5,0.5,0.5] m/s?> (small),
and [2,2,2] m/s? (large). The first two conditions are within
the domain randomization range used for DATT training,
whereas the third condition was deliberately chosen to be out-
of-distribution to evaluate its generalization capabilities. All
experiments (both simulated and real-world) were run using
an Nvidia RTX 4090 GPU with an Intel 14900KF CPU.

1) Performance Comparison to Baseline Approaches: For
the state-based stabilizing hover task, we ran each method
under all disturbance conditions from a set of 8 different
starting positions around the hovering target, and used the
final steady-state error as the performance metric. To ensure
a fair comparison, we continued running each method until
no further accuracy improvements were observed. This was
found to be approximately 10 seconds for all baseline methods
as they do not require any policy adaptation, and around 30
seconds for our approach (both state and vision-based) for a
few learning steps to take place. As summarized in Tab.I,
results show that our method consistently exhibits superior
or comparable performance to the baselines. Fig. 5a illustrates
that our method rapidly adapts the policy to compensate for the
large disturbances within 2-3 adaptation steps. DATT performs
well under both the none and small disturbance scenarios
which are within its training distribution, but struggles to adapt
to the larger, out-of-distribution disturbance.

For visual feature-based hovering, the baseline methods
would require an additional state estimation module, which
limits the ability to clearly benchmark their performance
without confounding errors from the state estimator, and are
thus excluded from the comparison. As shown in Tab.III,
our visual feature-based approach resulted in larger errors
than our state-based approach. We empirically observed that
adaptation of the visual feature-based policy is less stable
than the state-based counterpart and may require more policy
learning epochs or update steps, most likely due to partial state
observability and sample inefficiency in learning vision-based
control. More detailed experiments and performance results
are provided in the supplementary material.

For trajectory tracking, we recorded 60-second rollouts and
computed the average tracking error (m) within the last 10-
second window as the performance metric. As shown in
Tab. II, our approach achieves comparable performance to the
baselines for both Circle and Figure-8 across all disturbance

1.75 t 1 1
1 1 1
1.50 F=————- FE— EE— L -
125 l l l ¢
~ 0.25 t 1 1
£ i i i
0.00 F-——-—- R — P — -
: ' ' i
E-025 l l ! £
4 1 1 1
g o1e : i i
_______ T i b | I ———r= Z ===
1 1 T I
1.4 i 1 | --RefZ
1 1
0 2 4 6 8 10 12 14

(a) State-based hovering adaptation to constant large disturbance.

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1.5 bt VA AN H H yAR HN—- H H
. 1 1 1 N 1 1 1 1 _—X
— | — o I RefX
1.0 1 1 1 1 1 1 1 1 1
—~ 0.5
g i i i i i i i I
~ 0.0 k-t H H H H i) S 1
) . 1 1 1 M 1 1 —Y
& i — o ey
.'l: _0.5 1 1 1 1 1 1 1 1 1
7]
o 20
s T I T I
R i I —— o SUi E oyt
i i i i i i i === RefZ
10 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60
Time (s)

(b) Continuous state-based hovering adaptation to varying disturbances.

Fig. 5: Online adaptation of a state-based hovering policy to constant (a) and time-varying (b) disturbances. Vertical dashed lines indicate policy update steps
which occur every 5s. Shaded regions represent the error from the hovering target. In (b), each pair of solid vertical line and arrow indicates a direction

reversal of the disturbance and the new direction.

conditions. We observed that our method is able to rapidly
adapt and achieve much improved tracking accuracy after only
3-4 policy update steps. For DATT, consistent with findings
from state-based hovering, it fails to generalize to the out-
of-distribution disturbances and results in crashes for both
reference trajectories.

Finally, we observe that using low-rank policy adaptation
with our approach achieved comparable performances to using
full adaptation across all tasks and disturbance conditions. This
demonstrates that LoRA can indeed be effectively combined
with the differentiable simulation framework to achieve both
sample- and parameter-efficient policy adaptation, where the
latter may be particularly advantageous for fine-tuning pre-
trained policy networks that are significantly larger than the
MLP used in our experiments.

2) Computational and Sample Efficiency Analysis: We an-
alyze and compare the sample and computational efficiency
of our approach against DATT for state-based tasks. For
our approach, policy pretraining uses 300 epochs across 100
environments, which is equivalent to 4.5 million simulation
steps in total, and takes approximately /5 seconds. Empirically,
we observed that good-performing initial policies can in fact
be obtained using fewer epochs and environments, thanks to
the low-variance first-order policy gradients from differentiable
simulation. For online adaptation, each residual dynamics
learning step (100 iterations) takes approximately 2 seconds,
and each policy adaptation step runs for 30 epochs across
10 environments (or 45k simulation steps) and takes about
1.5 seconds. Here, with only 3 adaptation steps, which is
equivalent to 4.5 seconds of policy training in wall time,
we already observe significant performance improvements for
both hovering and tracking. In comparison, DATT trains the
policy for 20 million simulation steps, which takes around

TABLE III: Average steady-state error (in m) from the hovering target across
8 rollouts. The errors of the two best-performing methods for each disturbance
condition are highlighted in green and orange.

Method No Dist.

Base DiftSim (Vision) 0.133 = 0.009
Ours (State) 0.015 + 0.001
Ours (Vision) 0.082 + 0.009
Ours (Vision, LoRA) 0.084 + 0.014

Small Dist.

0.404 + 0.039
0.008 + 0.002
0.099 + 0.021
0.111 + 0.024

Large Dist.

1.383 + 0.176
0.105 + 0.007
0.207 + 0.041
0.205 + 0.048

2 hours, and requires no further training at runtime. For
DATT, we also observed slower convergence to lower rewards
when training with larger domain randomization, which is
likely a result of the performance-generalization trade-off [40],
possibly exacerbating the high variance in the policy gradient
estimates. In summary, our approach enables more efficient
compute usage by simplifying initial policy training without
domain randomization or curricula, and by supporting sample-
and compute-efficient online adaptation to out-of-distribution
scenarios where domain randomization fails to generalize.

3) Continuous Adaptation to Time-Varying Disturbances:
We demonstrate the ability of our method to continuously
adapt policies to unknown time-varying disturbances, using
the realistic quadrotor simulator [12]. Here, we show an ex-
ample of continuously adapting a state-based hovering policy
under uniform, time-varying acceleration disturbance given by
+[0.5,0.5,0.5] m/sz, which reverses its direction every 15s.
As shown in Fig. 5b, our approach rapidly adapts the state-
based policy within 2 adaptation steps to adjust for each
disturbance change, with the policy behavior remaining stable
throughout the entire process. We observed the continuous
adaptation of a visual feature-based hovering policy to be
less stable than its state-based counterpart, consistent with
our previous findings. For continuous trajectory tracking adap-
tation experiments, we provide detailed visualizations in the
supplementary material.

@ 12 0.7,

g 10| _ 0.6 =

= 8 =05

E S04

e 4 ©0.3

g m 0.2 =

oo I o i T
high-fid, high-fid, low-fid, low-fid,) base high-fid, high-fid, low-fid, low-fid,

res-fwd res-fwd, res-fwd res-fwd,
res-back res-back

policy res-fwd res-fwd, res-fwd res-fwd,
(no adapt) res-back res-back
(a) Training time (b) Final steady-state error

Fig. 6: (left) Policy training times using four different simulation configura-
tions. (right) Resulting policy performances compared against the base policy
performance. Error bars show +3 standard deviations of the error distribution
across 8 rollouts for each configuration.

C. Optimizing Runtime Efficiency and Performance

We conducted an analysis using the state-based stabiliz-
ing hover task to justify two key design choices in the

2.0
1 1 1
1 1 1
e b S e
1 1 1 == RefX
1.0 1 1 1
~ 05 : : ;
£ | | :
o 00p==mmmmmmmmmm oo —~ o~ VT = Y]
Q 1 t 1 == Ref Y
=-05 - - -
& 20
A i i i
15 prmmmmmmmmm e bomooomomeeooe boommcooooooe- boooooooo o
T 1 1 -= RefZ
1.0 1 1 1
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (s)

(a) State-based hovering with added mass and wind.

= < 7 - oy Ny 7
\ A : i’ \ : / \‘\ : ¥ \ : AN : i \ : / \\\ :
1 1
21\ AV D AN AN N VA AR R AR S/ \ S Y AR |
[AN Y AR Y S AR A R S P U R A W
\ 1 1 \] \ ! \ J I A]
\ \ (U v \V / \ AL X
. (¥ 1/ v/ 'Y (¥ /=" RefX
0 N ~ ! N [~ - I
_ P ! - P
= 0.5 FANAY ,’{\ ,"\ n :"‘ HEAY "Jl n ,)I‘ O A {. I"\ N
= 00 IRy ,||‘,\/|\/\ i ,\\,I‘l,"‘,lll o II\‘,“"I“
. N Y A W 1 O L O L S A AV A VA AN WA L N A S
= [y S O A S AN WA VI e Y
T TN (Y I AN] 1\ (y 1y AN 1A
\ 1 \ 1 \ v 1 -
R AU VA VA RV A U Y e U R R e L ¢
=" 1 1 1 1 1 1 1
%)
o 1.25 1 1 1 1 1 1 1
fant 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1.00 f —=====---- P e e T S hee=cc +--
1 1 1 1 i 1 zZ
1] } I 1 | T==RefZ
0.75 1 1 1 1 L L L
0 5 10 15 20 25 30 35
Time (s)

(b) Figure-8 tracking on the large quadrotor.

Fig. 7: Rapid policy adaptation using our proposed approach in the real world. Vertical dashed lines indicate policy update steps which occur every 5s. Shaded

regions represent the error from the reference.

differentiable simulation pipeline: 1) low-fidelity analytical
dynamics model for simulation, and 2) gradient backprop-
agation only through the analytical dynamics model. Given
that a key objective is to minimize runtime while main-
taining policy performance, we compared the training time
and policy performance for each design choice. We used the
same realistic quadrotor simulator [12] and added a constant
uniform acceleration disturbance of 2m/s? in the positive x-
axis direction. We first collected 50 rollout trajectories (3
seconds each) of the base hovering policy from 50 random
starting configurations around the hovering target, and then
used the generated residual samples to train a single residual
dynamics network for 200 epochs. Finally, we adapted the
base policy by running 100 epochs of policy training across
100 parallel environments, and evaluated the final steady-state
errors from the hovering target across 8 rollout trajectories. We
first compared using the low-fidelity (low-fid) dynamics model
(1) against using a high-fidelity model (high-fid) which sim-
ulates body and rotor drag effects, the rotor thrust maps, and
the low-level controller dynamics, as the analytical dynamics
model together with the residual dynamics network for forward
simulation (res-fwd). We found that using the low-fidelity
model achieves approximately 2-times faster training (see
Fig. 6a) than using the high-fidelity model, while the achieved
policy performances by both methods were very comparable
(see Fig.6b). For gradient backpropagation, we found that in
addition to backpropagating through the analytical dynamics
model, also performing backpropagation through the learned
residual dynamics network (res-back) increases training time
by approximately 30% without providing clear benefits to the
policy performance. This is consistent with previous find-
ings [11], [20] that combining accurate forward simulation
with a surrogate gradient which points in approximately the
same direction as the true gradient vector accelerates policy
training without impacting the resulting policy performance.

D. Real World Validation

We validated our approach in real-world experiments for
both stabilizing hover and trajectory tracking tasks using the
exact same procedures as the simulated experiments for both
pretraining and online adaptation. Detailed visualizations and
experiments are provided in the supplementary material. A

motion-capture system provides state estimation of the quadro-
tor at 100 Hz to the off-board workstation, which computes and
send commands to the on-board flight controller at 50 Hz. To
create some variation in the real-world dynamics, we used two
quadrotors adapted from the Agilicious platform [12]: a small
lightweight quadrotor and a larger, heavier one with different
dynamical properties (see Tab.IV). Moreover, we modified
the small quadrotor by rigidly attaching to it a quadrotor
stand from below, increasing its mass from 190 g to 260 g by
approximately 37% while simultaneously altering its inertial
properties. Finally, we used a fan to create wind disturbances,
resulting in complex, state-dependent forces on the modified
quadrotor due to its highly imbalanced and non-uniform drag
profile. Therefore, both the existing sim-to-real gap and the
extra disturbances contribute to significant out-of-distribution
dynamics that were unseen during policy pretraining.

Fig. 7a shows the recorded trajectory of adaptation of the
state-based hovering policy on the modified small quadrotor
under a diagonal wind disturbance. Despite the more complex
and unstable real-world disturbance forces compared to the
constant uniform disturbance in simulation, our method still
enables the policy to rapidly adapt with 2-3 policy update
steps to compensate for disturbances. Similar results were ob-
served for visual feature-based hovering, where the adaptation
process appeared less stable than state-based hovering, which
is consistent with our findings from the simulated experi-
ments. Real-world experiments also show that our approach
achieves accurate trajectory tracking under significant model
mismatches. Here, we present one particular experiment where
a base Figure-8-tracking policy was deployed on the large
quadrotor. As shown in Fig. 7b, despite the poor initial tracking
and state-space exploration caused by the large sim-to-real gap,
the policy quickly adapts and achieves much improved tracking
within just a few policy update steps.

TABLE IV: Quadrotor parameters for simulation and real-world experiments.

Param. Small Quadrotor Large Quadrotor
Mass [kg] 0.19 0.60
Maximum Thrust [N] 14.00 34.00
Arm Length [m] 0.06 0.13
Inertia [gm?] [0.14, 0.17, 0.21] [2.41, 1.80, 3.76]
Motor Time Constant [s] 0.025 0.033

V. CONCLUSION

We propose a novel rapid policy adaptation framework
combining online residual dynamics learning from real-world
flight data and sample-efficient policy learning via differen-
tiable simulation. With all system components designed for
rapid adaptation, we demonstrate the possibility to adapt both
state and visual feature-based policies to unknown disturbances
within several seconds. One limitation of our framework lies
in the tightly-coupled dependencies between data collection
via policy rollout and policy learning using learned residual
dynamics from the collected data. The quality and rate of
convergence may be affected by biases or noise in the learned
residual dynamics. The dependency is closely related to the
concept of performative prediction in related machine learning
fields. Thus, future work will explore uncertainty-driven data
collection where the policy is augmented by active exploration
to simultaneously improve task performance and reduce uncer-
tainty in the real-world dynamics.

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

REFERENCES

J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A review of physics
simulators for robotic aapplications,” IEEE Access, 2021.

A. Waheed, M. Areti, L. Gallantree, and Z. Hasnain, “Quantifying the
sim2real gap: Model-based verification and validation in autonomous
ground systems,” IEEE Robotics and Automation Letters, 2025.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from sim-
ulation to the real world,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 1EEE, 2017, pp. 23-30.

A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor adaptation
for legged robots,” in Robotics: Science and Systems, 2021.

E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Miiller, V. Koltun, and
D. Scaramuzza, “Champion-level drone racing using deep reinforcement
learning,” Nature, vol. 620, no. 7976, pp. 982-987, Aug 2023.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

OpenAl, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas,
J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang, “Solving rubik’s cube with a robot hand,”
2019. [Online]. Available: https://arxiv.org/abs/1910.07113

J. Xing, L. Bauersfeld, Y. Song, C. Xing, and D. Scaramuzza, “Con-
trastive learning for enhancing robust scene transfer in vision-based
agile flight,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2024.

H. Wang, J. Xing, N. Messikommer, and D. Scaramuzza, “Environment
as policy: Learning to race in unseen tracks,” 2025 IEEE International
Conference on Robotics and Automation (ICRA), 2025.

L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza,
“Neurobem: Hybrid aerodynamic quadrotor model,” in Robotics: Science
and Systems, 2024.

Y. Song, S. bae Kim, and D. Scaramuzza, “Learning quadruped loco-
motion using differentiable simulation,” in 8th Annual Conference on
Robot Learning, 2024.

P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld,
T. Laengle, G. Cioffi, Y. Song, A. Loquercio, et al., “Agilicious:
Open-source and open-hardware agile quadrotor for vision-based flight,”
Science Robotics, vol. 7, no. 67, p. eabl6259, 2022.

K. Huang, R. Rana, A. Spitzer, G. Shi, and B. Boots, “Datt: Deep
adaptive trajectory tracking for quadrotor control,” in Conference on
Robot Learning. PMLR, 2023, pp. 326-340.

L. Ljung, System Identification (2nd ed.): Theory for the User.
Prentice Hall PTR, 1999.

E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme,
“Neuralsim: Augmenting differentiable simulators with neural net-
works,” in 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA). 1EEE, 2021, pp. 9474-9481.

USA:

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

G. Torrente, E. Kaufmann, P. Fohn, and D. Scaramuzza, ‘“Data-driven
mpc for quadrotors,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3769-3776, 2021.

J. Gao, M. Y. Michelis, A. Spielberg, and R. K. Katzschmann, “Sim-
to-real of soft robots with learned residual physics,” IEEE Robotics and
Automation Letters, 2024.

J. Eschmann, D. Albani, and G. Loianno, “Learning to fly in seconds,”
IEEE Robotics and Automation Letters, 2024.

R. Newbury, J. Collins, K. He, J. Pan, I. Posner, D. Howard, and
A. Cosgun, “A review of differentiable simulators,” IEEE Access, 2024.
J. Heeg, Y. Song, and D. Scaramuzza, “Learning quadrotor control from
visual features using differentiable simulation,” in 2025 International
Conference on Robotics and Automation (ICRA). 1EEE, 2025.

E. Nava, J. Z. Zhang, M. Y. Michelis, T. Du, P. Ma, B. F. Grewe, W. Ma-
tusik, and R. K. Katzschmann, “Fast aquatic swimmer optimization with
differentiable projective dynamics and neural network hydrodynamic
models,” in International Conference on Machine Learning, 2022.

E. Heiden, M. Macklin, Y. Narang, D. Fox, A. Garg, and F. Ramos,
“Disect: A differentiable simulation engine for autonomous robotic
cutting,” in Robotics: Science and Systems, 2021.

M. Geilinger, D. Hahn, J. Zehnder, M. Bécher, B. Thomaszewski, and
S. Coros, “Add: Analytically differentiable dynamics for multi-body
systems with frictional contact,” ACM Transactions on Graphics (TOG),
vol. 39, no. 6, pp. 1-15, 2020.

J. Xu, S. Kim, T. Chen, A. R. Garcia, P. Agrawal, W. Matusik, and
S. Sueda, “Efficient tactile simulation with differentiability for robotic
manipulation,” in Conference on Robot Learning, 2023.

J. Xu, V. Makoviychuk, Y. Narang, F. Ramos, W. Matusik, A. Garg,
and M. Macklin, “Accelerated policy learning with parallel differentiable
simulation,” in ICLR, 2022.

I. Georgiev, K. Srinivasan, J. Xu, E. Heiden, and A. Garg, “Adaptive
horizon actor-critic for policy learning in contact-rich differentiable
simulation,” in Proceedings of the 41st International Conference on
Machine Learning, 2024, pp. 15418-15437.

J. Y. Luo, Y. Song, V. Klemm, F. Shi, D. Scaramuzza, and M. Hutter,
“Residual policy learning for perceptive quadruped control using differ-
entiable simulation,” in 2025 International Conference on Robotics and
Automation (ICRA). 1EEE, 2025.

G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anand-
kumar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing
control using learned dynamics,” in 2019 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2019, pp. 9784-9790.

S. Chen, K. Werling, A. Wu, and C. K. Liu, “Real-time model predictive
control and system identification using differentiable simulation,” IEEE
Robotics and Automation Letters, vol. 8, no. 1, pp. 312-319, 2022.

M. O’Connell, G. Shi, X. Shi, K. Azizzadenesheli, A. Anandkumar,
Y. Yue, and S.-J. Chung, “Neural-fly enables rapid learning for agile
flight in strong winds,” Science Robotics, vol. 7, no. 66, 2022.

J. Xing, 1. Geles, Y. Song, E. Aljalbout, and D. Scaramuzza, “Multi-
task reinforcement learning for quadrotors,” in IEEE Robotics and
Automation Letters (RA-L). 1EEE, 2024.

L. Metz, C. D. Freeman, S. S. Schoenholz, and T. Kachman, “Gradients
are not all you need,” arXiv preprint arXiv:2111.05803, 2021.

P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized
margin bounds for neural networks,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

L. Bo, T. Zhang, H. Zhang, J. Hong, M. Liu, C. Zhang, and B. Liu, “3d
uav path planning in unknown environment: A transfer reinforcement
learning method based on low-rank adaption,” Advanced Engineering
Informatics, vol. 62, p. 102920, 2024.

J. Xing, A. Romero, L. Bauersfeld, and D. Scaramuzza, “Bootstrapping
reinforcement learning with imitation for vision-based agile flight,” in
8th Annual Conference on Robot Learning, 2024.

Z. Han, C. Gao, J. Liu, J. Zhang, and S. Q. Zhang, “Parameter-efficient
fine-tuning for large models: A comprehensive survey,” Transactions on
Machine Learning Research, 2024.

B. Zhang, A. Kapoor, and M. Sun, “Low-rank agent-specific
adaptation (lorasa) for multi-agent policy learning,” arXiv preprint
arXiv:2502.05573, 2025.

T. De Bruin, J. Kober, K. Tuyls, and R. Babuska, “Integrating state
representation learning into deep reinforcement learning,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1394-1401, 2018.

K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain general-
ization: A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 45, no. 4, pp. 43964415, 2022.

https://arxiv.org/abs/1910.07113

	Introduction
	Related Works
	Aligning Simulation with the Real-World
	Fast Policy Learning in Simulation
	Learning-Based Adaptive Control

	Methodology
	Differentiable Simulation Model
	Low-Fidelity Quadrotor Dynamics Model
	Policy Optimization Using Analytical Gradients
	Residual Dynamics Learning
	Design Choices for Maximum Runtime Efficiency
	Full vs. Low-Rank Policy Adaptation

	Experiments
	Experimental Setup
	Task and Reward Definitions
	Pretraining Phase
	Online Adaptation Phase
	Baselines Methods

	Experimental Results
	Performance Comparison to Baseline Approaches
	Computational and Sample Efficiency Analysis
	Continuous Adaptation to Time-Varying Disturbances

	Optimizing Runtime Efficiency and Performance
	Real World Validation

	Conclusion
	References

