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HDVIO2.0: Wind and Disturbance Estimation with
Hybrid Dynamics VIO
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Abstract—Visual-inertial odometry (VIO) is widely used for
state estimation in autonomous micro aerial vehicles using on-
board sensors. Current methods improve VIO by incorporating
a model of the translational vehicle dynamics, yet their perfor-
mance degrades when faced with low-accuracy vehicle models or
continuous external disturbances, like wind. Additionally, incor-
porating rotational dynamics in these models is computationally
intractable when they are deployed in online applications, e.g.,
in a closed-loop control system. We present HDVIO2.0, which
models full 6-DoF, translational and rotational, vehicle dynamics
and tightly incorporates them into a VIO with minimal impact on
the runtime. HDVIO2.0 builds upon the previous work, HDVIO,
and addresses these challenges through a hybrid dynamics model
combining a point-mass vehicle model with a learning-based
component, with access to control commands and IMU history,
to capture complex aerodynamic effects. The key idea behind
modeling the rotational dynamics is to represent them with
continuous-time functions. HDVIO2.0 leverages the divergence
between the actual motion and the predicted motion from the
hybrid dynamics model to estimate external forces as well as the
robot state. Our system surpasses the performance of state-of-the-
art methods in experiments using public and new drone dynamics
datasets, as well as real-world flights in winds up to 25 km/h.
Unlike existing approaches, we also show that accurate vehicle
dynamics predictions are achievable without precise knowledge
of the full vehicle state. The code will be released open source
upon acceptance.

Index Terms—Visual-Inertial SLAM, Learning Robot Dynam-
ics, Aerial Systems: Perception and Autonomy.

I. INTRODUCTION

V ISUAL-INERTIAL odometry (VIO) is the standard
method for state estimation in consumer and inspection

drones. To enhance the performance of VIO systems, several
recent approaches have proposed tightly integrating drone
dynamics into the VIO pipeline [1, 2, 3, 4, 5]. Incorporating
system dynamics into the VIO framework provides additional
information, enabling the system to distinguish between mo-
tion resulting from actuation and motion caused by external
perturbations. This integration improves pose estimation accu-
racy and allows for the estimation of external forces acting on
the drone.

While effective in many scenarios, state-of-the-art methods
face significant performance degradation in cases of large
model mismatches (e.g., high speeds, systematic noise in
actuation inputs) or persistent external disturbances like wind.
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Fig. 1: We propose HDVIO2.0. HDVIO2.0 estimates the robot’s state and
external disturbances using visual, inertial, and dynamics measurements.
Notably, it models the robot’s dynamics by combining a simple physical model
with learning-based components.

These issues arise because existing methods rely on sim-
plifying assumptions—such as neglecting aerodynamic drag
and assuming zero-mean noise in system dynamics—that fail
to hold under such conditions. Directly incorporating high-
fidelity dynamics models [6, 7] into a VIO pipeline can be
counterproductive because these models require the drone state
as input (typically velocity and attitude). This situation can
create a compounding effect, where errors in the VIO output
propagate through the dynamics model, and, in turn, further
impact the VIO.

Overcoming these challenges is essential for deploying
model-based VIO estimators in applications where aerody-
namic effects play a significant role, such as fast flights [8],
operations in windy conditions [9], or scenarios with modeling
inaccuracies [10]. The state-of-the-art methods VIMO [1]
and VID [2] incorporate the translational drone dynamics
into an optimization-based VIO framework [11] through a
residual term derived from the propagation of a point-mass
dynamics model. The residual term is formulated based on
the preintegration theory [12], which requires separating the
measurements (namely, the control inputs) from the states.
While this formulation is straightforward for translational
dynamics, extending it to rotational dynamics is not trivial.
The simplified dynamics model neglects aerodynamic effects,
treating drag as part of the external force estimate. Addi-
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tionally, potential systematic offsets in actuation inputs (e.g.,
miscalibrations such as incorrect rotor lift coefficients) are
interpreted as accelerometer biases, introducing errors into the
inertial residuals and reducing motion estimation accuracy.

Improving the drone dynamics model within the VIO esti-
mator is key to addressing these limitations.

Contribution

We present HDVIO2.0, the first VIO pipeline incorporat-
ing the 6-DoF drone dynamics using a hybrid model that
combines a physical model with a learning-based component.
Unlike prior methods [6, 7], our learned dynamics model
predicts residual aerodynamic forces without requiring the
drone state (i.e., attitude and velocity) as input. Instead, it
uses a temporal convolutional network (TCN) [13] that takes
control commands and gyroscope measurements as input.
Our hybrid model is integrated into an optimization-based
VIO framework [14, 15], leveraging preintegration theory [12]
to efficiently compute and optimize the dynamics residuals
alongside monocular camera and IMU residuals. HDVIO2.0
extends the previous work, HDVIO [16], by integrating the ro-
tational dynamics in the drone model. We represent the drone’s
angular velocity as a continuous-time function using B-splines,
which effectively capture the drone’s dynamics [17]. The B-
spline is optimized by minimizing the difference between its
first derivative and the angular acceleration derived from the
drone’s rotational model, which combines torque commands
and learned residual torques. Angular velocities sampled from
the B-spline representation of the drone’s rotational dynamics
model are preintegrated into a residual term that can directly
be included in the VIO. HDVIO2.0 employs two TCNs: one
predicts residual thrust using thrust commands and gyroscope
measurements (as in HDVIO), while the other predicts residual
torque based on torque commands and gyroscope measure-
ments—a novel contribution.

We evaluate HDVIO2.0 against the same VIO system with-
out the proposed hybrid dynamics model, and the state-of-the-
art systems, VIMO [1] and VID [2], that tightly integrate the
drone dynamics in VIO. On public datasets, Blackbird [18]
and VID [19], we show that HDVIO2.0 surpasses state-of-
the-art methods. In wind field experiments, we show that HD-
VIO2.0 accurately predicts the wind force again outperforming
the baselines. On the NeuroBEM dataset [6], our learned
dynamics model demonstrates competitive performance with
existing aerodynamics models. Notably, it is the first data-
driven dynamics model to predict forces without requiring
the vehicle state, i.e., linear velocity and attitude, as input.
Additionally, to the best of our knowledge, our learning-
based model is the first data-driven dynamics model that trains
without requiring ground-truth force measurements, relying
solely on position, velocity, and orientation supervision sig-
nals. This eliminates the need for motion-capture systems, as
pose estimates obtained from offline structure from motion-
based systems [20, 17] are sufficiently accurate for training.

By providing accurate state and external force estimates,
we believe that HDVIO2.0 advances the deployment of au-
tonomous drones in safety-critical applications, such as disas-

ter site surveying and air transport, which currently depend on
human pilots.

II. RELATED WORK

The related work on visual-inertial odometry (VIO) with
external force estimation can be categorized into loosely-
coupled and tightly-coupled methods. Loosely-coupled ap-
proaches [21, 22, 23, 24, 25, 26, 27, 28] estimate external
forces independently from motion estimation, while tightly-
coupled methods [1, 2, 4] jointly estimate both the robot’s
motion and external perturbations.

A. Loosely-Coupled Methods

Early loosely-coupled methods [21, 22, 23] rely on deter-
ministic force and torque observers derived from the robot’s
dynamics model. These approaches assume access to accurate
state estimates from separate estimators. Later, probabilistic
methods [24, 25, 26, 27] improved accuracy by incorporating
sensor noise. These methods utilize the Extended Kalman
Filter (EKF) [25, 27, 29] or the Unscented Kalman Filter
(UKF) [24, 26]. For example, the work in [3] uses a quadrotor
model to enhance an EKF-based VIO estimator [30] for simul-
taneous system identification and state estimation. This work
highlights that decoupling state estimation from dynamics
measurements is optimal in the presence of high noise. In [31],
a UKF estimates external disturbances like wind and human
interactions using outputs from a neural network that processes
airflow sensor data and motion capture measurements.

While effective under high signal-to-noise ratio conditions,
loosely-coupled methods neglect the correlation between es-
timated variables and their noise characteristics, resulting in
reduced performance when using noisy sensors.

B. Tightly-Coupled Methods

Tightly-coupled methods address this limitation by jointly
estimating robot motion and external perturbations. VIMO [1]
integrates robot dynamics into an optimization-based VIO
framework [11]. It introduces a residual term representing
translational motion constraints derived from robot dynam-
ics, including external forces, using IMU preintegration the-
ory [12]. This method preintegrates high-rate thrust inputs
into residuals between consecutive camera frames. External
forces are modeled as zero-mean Gaussian variables to account
for their unknown dynamics. VIMO is the first work that
enables the simultaneous estimation of external forces and
robot states. Multiple extensions to VIMO exist. The work
in [32] extends VIMO with a disturbance observer for con-
stant force estimation. The disturbance observer allows the
system to differentiate between the constant external force
and the accelerometer bias. VID-Fusion [2] extends VIMO
by modifying the external force model, where the mean of
the Gaussian distribution is based on the average difference
between accelerometer and thrust measurements within the
preintegration window. This model of the external force allows
VID-Fusion to estimate constant loads attached to the drone,
such as a package to be delivered. We employ this external
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force model in HDVIO2.0. The VIMO framework is general
and can be employed for any type of robot. In fact, extensions
of VIMO for legged robots are proposed in [4, 5].

However, as discussed in Sec. I, VIMO and all its extensions
struggle with continuous external forces or model mismatches.

C. Drone Dynamics Modeling

Accurate drone dynamics modeling is critical for HD-
VIO2.0. Prior methods assume access to the vehicle state,
which is unsuitable for VIO pipelines as it introduces a
compounding effect that propagates errors in the dynamics
model to the VIO and vice-versa. For completeness, a brief
review of quadrotor modeling literature is presented. Basic
models treat quadrotors as rigid bodies with linear mass and
inertia dynamics, exerting force in the body-z direction while
neglecting or simplifying (assuming it linear) aerodynamic
drag [33, 34, 35, 36]. First-principles can be used to refine
these basic models resulting in blade-element momentum
(BEM) theory [6, 37, 38, 39]. Pure data-driven models [7]
have gained traction due to the complexity of quadrotor
aerodynamics and have shown superior performance compared
to first-principles-based methods. The state-of-the-art model,
NeuroBEM [6], combines a physical model with learning-
based component, outperforming previous methods. This hy-
brid modeling approach inspired our use of a learned compo-
nent in HDVIO2.0 to enhance drone dynamics modeling.

III. METHODOLOGY

This section outlines our visual-inertial-hybrid drone dy-
namics odometry algorithm. We begin by defining the notation
used throughout the paper and describing the drone dynamics.
While our derivation focuses on a quadrotor platform, the
proposed approach is adaptable to other robotic systems. Next,
we formulate the estimation problem. Following, we provide
a concise derivation of the dynamics residual term, which is
based on the preintegration theory [12]. Finally, we introduce
our learning-based module of drone dynamics.

A. Notation

In this paper, scalars are represented using non-bold no-
tation [s, S], vectors are denoted in lowercase bold v, and
matrices are expressed in uppercase bold M . World W ,
Body B, IMU I, and camera C frames are defined with an
orthonormal basis, such as {xW ,yW , zW}. The B frame is
positioned at the quadrotor’s center of mass, and for simplicity,
the IMU frame I is assumed to coincide with B. The notation
(·)W is used to indicate quantities expressed in the world
frame, and similar notation is applied to other reference
frames. At time tk, the position, orientation, and linear velocity
of B relative to W are denoted as pW

Bk
∈ R3, RW

Bk
∈ R3×3

(a member of the rotation group SO(3)), and vW
Bk

∈ R3,
respectively. The quadrotor body rate is denoted by ωBk . The
unit quaternion representation of RW

Bk
is given as qW

Bk
. The

cross product of two vectors is denoted by ×. The quaternion
product is denoted by ⊗. The gravity vector in the world frame
is denoted by gW . The quadrotor mass and inertial matrix are

denoted by m and J , respectively. The accelerometer model
is: âBk = aBk + bak

+ na, where the noise is modeled
as additive Gaussian noise na ∼ N (0,σ2

a) and the bias as
a random walk ḃak

= nba , with nba ∼ N (0,σ2
ba
). The

gyroscope model is: ω̂Bk = ωBk +bωk
+nω , where the noise

is modeled as additive Gaussian noise nω ∼ N (0,σ2
ω) and the

bias as a random walk ḃωk
= nbω , with nbω ∼ N (0,σ2

bω
).

We indicated noisy measurements using the symbol ·̂.

B. Quadrotor Dynamics

The quadrotor is modeled as a point mass. The dynamics
governing the position, velocity and orientation of the quadro-
tor platform are described by the following equations:

ṗW
Bk

= vW
Bk

v̇W
Bk

= RW
Bk

(fB
tk

+ fB
resk

+ fB
ek
) + gW

q̇W
Bk

=
1

2
qW
Bk

⊗ [0,ωBk ]⊤

ω̇Bk = J−1(τB
k + τB

resk
− ωBk × JωBk), (1)

where fB
tk

= [0, 0, Tk]
⊤ represents the mass-normalized col-

lective thrust, fB
ek

denotes the external force acting on the
quadrotor, and τB

k is the torque produced by the propellers.
For conciseness, we will refer to the collective thrust as
simply thrust hereafter, dropping the term mass-normalized. To
account for aerodynamic effects and unknown systematic noise
in the inputs, residual terms fB

resk
and τB

resk
are introduced.

The external force is modeled as a random variable following
a Gaussian distribution obtained by computing the difference
between acceleration and thrust measurements as proposed
in [2]. Modeling the external force in this manner enables
the estimator to differentiate between the slowly varying
accelerometer bias and external forces, which may arise from
incidental disturbances or constant loads, such as an external
mass attached to the drone.

The dynamics motion constraints, c.f. Section III-D, are
derived using the preintegration theory [12]. The preintegration
theory requires separating the residual terms that depend on
the optimization variables from those that depend on the
measurements. The rotational dynamics of the quadrotor are
not considered in HDVIO, VIMO, and VID as the torque
inputs cannot be decoupled from their dependence on the
robot’s orientation. Instead, these works obtain the evolution
of the orientation of the quadrotor from the gyroscope model.
As a result, they introduce inconsistency in the estimation
process due to the repeated use of gyroscope measurements.
Furthermore, their dynamics residuals constrain only the linear
dynamics (position and linear velocity) of the quadrotor, while
leaving the orientation unconstrained.

In this work, we address these limitations by representing
the rotational dynamics of the quadrotor using a continuous-
time formulation. Specifically, we employ B-splines as the
continuous-time function. The study in [17] demonstrated that
B-splines are well-suited for representing quadrotor dynamics.
Furthermore, the derivatives of B-splines can be computed
efficiently [40], facilitating the use of gradient descent-based
optimization methods to optimize the placement of the control
points.
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1) Continuous-time Representation of Rotational Dynam-
ics: We represent the quadrotor body rates ω using a B-spline.
Specifically, we adopt a uniform time representation of the
B-spline [40], which allows using a matrix form formulation
for sampling. The B-spline order is denoted by N. Sampling
a point from the B-spline depends only on a local segment
defined by N control points. The control points are placed at
the time ti = t0+ i ·∆t, i ∈ [0, k[, where t0 is the time of the
first control point, i is the index of the control point, and ∆t is
the constant time spacing between consecutive control points.
For a given time t, the uniform time representation is defined
as u(t) = s(t) − i, where s(t) = t−t0

∆t represents the index
of the B-spline segment between control points i and i + 1.
The control point i is the leftmost control point affecting the
sampling at the time t. The quadrotor body rate at the uniform
time u is expressed as: ω(u) = [ωi, · · · ,ωi+N−1]M

Nu. The
matrix MN is the blending matrix, which is constant and
precomputed offline once the B-spline order N is known. The
vector u contains the base coefficients, where the j-th entry
u(j) is equal to uj . The time derivative are computed as:
ωd(u) = [ωi, · · · ,ωi+N−1]a

dMNu, where ad = 1
∆td

and d
is the derivative order. Specifically, we sample the quadrotor
angular accelerations with d = 1. We optimize the B-spline
control points to fit the quadrotor rotational dynamics model,
c.f. Eq 1, using the measurement model:

τBk + τBresk = J ω̇B(u(k)) + ωB(u(k))× JωB(u(k)). (2)

2) Implementation Details: We use a B-spline of order 5
and ∆t = 0.01 [s]. The length of the B-spline is set to 0.1
[s], resulting in a B-spline represented by 10 control points.
New control points are initialized by interpolating gyroscope
measurements at the desired time. Control points that fall
outside the desired time window are simply discarded. Torque
measurements and torque residuals are sampled at a rate of
200 [Hz] and used to derive the residual terms for optimizing
the B-spline, based on the measurement model presented in
Eq. 2. These residual terms are optimized using a custom
Levenberg-Marquardt algorithm [41] specifically designed for
this project to meet the computational requirements of running
this optimization within our system on resource-constrained
platforms. The programming effort to achieve the integration
of the proposed continuous-time-based quadrotor dynamics in
a VIO system is a key contribution of our work. We will
release the code as open-source upon acceptance.

C. Estimation Problem Formulation

We implement our hybrid drone dynamics in a sliding-
window optimization-based VIO system. An overview of the
proposed optimization-based VIO with hybrid drone dynam-
ics, using a factor graph representation, is shown in Fig. 2.
The sliding window contains the most recent L keyframes
and K drone states. We set L=10 and K=5. The optimiza-
tion variables are defined as: X = {L,XL,XB}, where L
consists of the position of the 3D landmarks visible in the
sliding window, XL represents the poses of the keyframes:
XL = [ζ1, · · · , ζl], l ∈ [1, L], and XB the poses of the
drone: XB = [x1, · · · ,xk], k ∈ [1,K]. The pose of the lth
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Fig. 2: Factor graph representation of HDVIO2.0 with visual, inertial, and
6-DoF hybrid dynamics factors.

keyframe is ζl = [pW
Bl
,qW

Bl
], and the state of the kth drone

is xk = [pW
Bk

, qW
Bk

,vW
Bk

, bak
, bgk ,f

B
ek
]. The visual-inertial-

dynamics estimation problem is formulated as a joint nonlinear
optimization that solves for the maximum a posteriori estimate
of X . The cost function to minimize is:

LHDV IO2.0 =

L+K−1∑
h=0

∑
j∈Jh

∥∥ej,hv

∥∥2
W j,h

v
+

K−1∑
k=0

∥∥eki ∥∥2W k
i

+

K−1∑
k=0

∥∥ekd∥∥2W k
d

+ ∥em∥2 . (3)

The cost function in Eq. 3 consists of the visual residuals
ev , inertial residuals ei, dynamics residuals ed, and marginal-
ization residuals em. All residuals are weighted according to
their measurement noise. The visual residuals are defined as
ej,hv = zj,h−h(lWj ), representing the re-projection error of the
landmark lWj ∈ Jh, where Jh is the set of all the landmarks
visible from the frame h. The function h(·) denotes the camera
projection model, and zj,h represents the corresponding 2D
image measurement. For further details, we refer the reader
to [15]. The inertial residuals ei are computed using the
IMU preintegration algorithm described in [12]. The dynam-
ics residuals are detailed in Sec. III-D. The error term em
represents prior information obtained from marginalization.
The marginalization factor encodes information about quan-
tities that fall outside the current sliding window. We follow
the marginalization strategy proposed in [15]. This approach
distinguishes between variables to marginalize (included in
the derivation of the marginalization residual) and variables
to drop. Variables to drop are those that are not connected to
keyframes, such as 3D points visible only from frames outside
the sliding window that are not selected as keyframes. Drop-
ping these variables, rather than marginalizing them, preserves
the sparsity of the Jacobian in Eq. 3. Our implementation of
the sliding-window optimization is based on [15]. We integrate
this VIO backend with the visual frontend introduced in [14].
The code for this VIO pipeline is publicly available as open-
source1. We incorporate the proposed 6-DoF hybrid-dynamics
model, the previous 3-DoF hybrid-dynamics model [16], as
well as the baselines VIMO [1] and VID [2] into this VIO
system.

1https://github.com/uzh-rpg/rpg svo pro open

https://github.com/uzh-rpg/rpg_svo_pro_open
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D. Dynamics Residuals

We define the collective thrust measurement model as:
f̂B
k = fB

tk
+fB

resk
+nft . In addition to the residual force fB

resk ,
we also consider a zero-mean gaussian noise nft ∼ N (0,σ2

ft
)

to account for uncertainty in the force direction. The torque
measurement model is: τ̂B

k = τB
k + τB

resk
. The torque mea-

surement τ̂B
k is used to optimize the B-spline representing

the quadrotor body rates as described in Sec. III-B1. The
body rate measurement model is: ω̂B

k = ωB
k + nω , where ωB

k

is sampled from the B-spline and nω is a noise value that
accounts for uncertainty in the B-spline fitting process. Given
two consecutive states at times tk and tk+1, the dynamics
motion constraint is:

ekd =


αBk

Bk+1
− α̂Bk

Bk+1

βBk

Bk+1
− β̂Bk

Bk+1

γBk

Bk+1
− γ̂Bk

Bk+1

fB
ek+1

− f̂B
ek+1

 ,W k
d =

[
PW k

d 0
0 FW k

d

]
. (4)

The quantities αBk

Bk+1
, βBk

Bk+1
, and γBk

Bk+1
are the position,

velocity, and orientation change in the time interval [tk, tk+1]:

αBk

Bk+1
= RBk

W (pW
Bk+1

− pW
Bk

− vW
Bk

∆tk − 1

2
gW∆t2k)

− 1

2
fB
ek
∆t2k

βBk

Bk+1
= RBk

W (vW
Bk+1

− vW
Bk

− gW∆tk)− fB
ek
∆tk

γBk

Bk+1
= qBk

W ⊗ qW
Bk+1

. (5)

The quantities α̂Bk

Bk+1
, β̂Bk

Bk+1
, γ̂Bk

Bk+1
are the preintegrated

position, velocity, and orientation. We calculate them in
the discrete time using Euler numerical integration over the
timestep δt:

α̂Bk
i+1 = α̂Bk

i + β̂Bk
i δt+

1

2
R(γ̂Bk

i )f̂B
i δt

2

β̂Bk
i+1 = β̂Bk

i +R(γ̂Bk
i )f̂B

i δt

γ̂Bk
i+1 = γ̂Bk

i ⊗
[

1
1
2 ω̂

B
i δt

]
, (6)

where the initial conditions are: α̂Bk

Bk
= β̂Bk

Bk
equal to 0

and γ̂Bk

Bk
equal to the identity quaternion, with R(γ̂Bk

i ) the
rotation matrix representation of γ̂Bk

i . We run the propagation
algorithm at 100 [Hz], which is the sampling frequency
of the dynamics measurements. The weight assigned to the
residual, PW k

d is the inverse of the covariance matrix derived
by linearizing the error δz = [δα, δβ, δθ]⊤, and noise,
n = [nft ,nω]

⊤ in δt. The quantity f̂B
ek+1

is the external
force preintegrated term. Following the derivation proposed
in [2], we compute this term as the mean difference between
the acceleration measurements and the thrust measurements in
the time window [tk, tk+1]: f̂B

ei+1
= f̂B

ei+R(γBk
i )(âBi−bak

−
f̂B
i ), with f̂B

ei = 0. The weight FW k
d is obtained using the

same covariance propagation schema as described above with
noise n = [na−nft ,nba

]⊤. This preintegrated term depends
on the accelerometer bias. To avoid repropagating this term
each time the accelerometer bias estimate changes, we adopt
the strategy proposed in [12]. Specifically, the preintegration

term is corrected by its first-order approximation with respect
to the change in the accelerometer bias.

E. Learning Residual Dynamics

The dynamics residual term described above relies on
accurately estimating the forces acting on the vehicle. In
previous works, modeling aerodynamic effects—such as drag
forces—requires knowledge of the vehicle’s linear velocity,
which is not directly measured but instead forms part of the
state to be estimated. As a result, simply employing a state-
of-the-art quadcopter dynamics model is not feasible.

In our approach, we have access to rotor speeds and IMU
measurements, as these quantities are directly measured. Our
goal is to estimate residual forces fB

res and torques τB
res,

which account for aerodynamic effects and model mismatches,
including systematic noise, between the commanded or mea-
sured thrust and torque and the actual force acting on the
robot in the absence of external disturbances. To estimate
the residual forces, we propose two temporal convolutional
networks (TCN). TCNs have been shown to be as effective
as recurrent networks in modeling temporal sequences [42],
while requiring less computation. The first TCN is used to
predict the residual thrust, the second TCN is used to predict
the residual torque. We found empirically that using two TCNs
produces more accurate predictions than using a single TCN to
predict both the residual thrust and torque. A TCN architecture
consists of four temporal convolutional layers with 64 filters
each, followed by three temporal convolutional layers with
128 filters each. A final linear layer maps the output to a
3-dimensional vector representing the learned residual thrust
or torque. The network predicting the residual thrust takes
a buffer of collective thrust and gyroscope measurements as
input. The network predicting the residual torque takes a
buffer of torques and gyroscope measurements as input. In
both cases, the gyroscope measurements are bias-corrected.
The inputs are sampled at 100 Hz and fed into the TCNs
as input buffers of 100 ms length, resulting in 10 thrust or
torque and 10 gyroscope measurements per buffer. We use
the Gaussian Error Linear Unit (GELU) activation function.
During training, we model the bias as a random Gaussian
variable with zero mean and a standard deviation of 1e-3. At
deployment, the current bias estimate is used instead. Given a
buffer of measurements over the time interval ∆ti,j = tj − ti,
the TCNs output the residual thrust fB

resi and torque τB
resi . The

residual thrust is added to the thrust inputs fB
tk

with k ∈ [ti, tj ]

to compute the forces f̂B
k , which account for aerodynamics

and robot miscalibration into account. Similarly, the residual
torque is added to the torque inputs τB

k to compute the toques
τ̂B
k . The corrected torques are used as measurements in the

optimization of the B-spline representing the quadrotor body
rates, see Sec. III-B1. The quadrotor body rates are sampled
from the B-spline. These body rates, as well as the corrected
thrusts, are used inside the preintegration framework, see
Sec. III-D, to derive relative velocity, position, and orientation
measurements. We train the neural network that predicts the
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residual thrust to minimize the MSE loss:

LHD
f (∆α,∆α̂,∆β,∆β̂) =

1

M

M∑
m=1

(
∥∥∥αBj

Bi
− α̂

Bj

Bi

∥∥∥2 + ∥∥∥βBj

Bi
− β̂

Bj

Bi

∥∥∥2). (7)

We train the neural network that predicts the residual torque
to minimize the MSE loss:

LHD
τ (∆γ,∆γ̂) =

1

M

M∑
m=1

∥∥∥γBj

Bi
− γ̂

Bj

Bi

∥∥∥2 . (8)

where α
Bj

Bi
, β

Bj

Bi
, and γ

Bj

Bi
are the ground-truth velocity,

position, and orientation changes, and M is the batch size. To
learn the aerodynamic effects and systematic noise in the input
measurements, the training data is collected under conditions
where no external forces act on the drone. Furthermore, our
training approach does not require ground-truth force data. The
training data can be generated using a Structure-from-Motion
pipeline [20, 17] if a motion-capture system is not available.
The neural networks are trained on a laptop running Ubuntu
20.04 with an Intel Core i9 2.3 GHz CPU and an Nvidia RTX
4000 GPU. Training is performed using the Adam optimizer
with an initial learning rate of 1e-4. The inference runs either
on the laptop or on an NVIDIA Jetson TX2, which is the
computing platform onboard the quadrotor. The TCN inference
runs at ≈180 Hz on an NVIDIA Jetson TX2 which exceeds
the required 100 Hz state-update rate of our controllers for
agile flight.

IV. EXPERIMENTS ON BENCHMARK DATASETS

In our experiments, we compare our method against HDVIO
VIMO, VID, and the same VIO system without the proposed
hybrid-dynamics model (hereafter referred to as VIO). Fol-
lowing best practices for evaluating VIO algorithms [43], we
use the following metrics: translation absolute trajectory error
(ATET [m]), rotation absolute trajectory error (ATER [deg]),
and relative translation and rotation errors. These error metrics
are computed after aligning the estimated trajectory using the
pose-yaw method [43]. For a detailed description of these
metrics, we refer the reader to [43]. In addition to trajectory
evaluation, we evaluate the accuracy of force estimation by
computing the root mean squared error (RMSE) between the
ground-truth and predicted forces.

A. NeuroBEM Dataset

Experimental Setup: In this set of experiments, we evaluate
the hybrid dynamics model independently of the full VIO
pipeline. Specifically, we evaluate the accuracy of the pre-
dicted external force, fB, acting on the quadcopter. For this
evaluation, we utilize the challenging NeuroBEM dataset [6],
which features data from indoor drone flights at speeds of up to
65 km/h. The dataset includes rotor speeds (from which thrust
and torque measurements are derived), IMU measurements,
and ground-truth force data. We compare the force estimation
accuracy of our learned dynamics model to several state-of-
the-art baselines:

TABLE I: Comparison in terms of RMSE of the force, F , and torque, M ,
estimates on the test set of the NeurBEM dataset. Polyfit, NeuroBEM, and
HDVIO2.0 are data-driven methods. Quadratic fit and BEM are first-principles
methods. Our method performs remarkably well given it has no information
about the velocity or orientation of the vehicle and only falls short of the
NeuroBEM method which has access to the full vehicle state. The values
for baseline methods are taken from [6]. In bold are the best values, and in
underlined are the second-best values.

Model Inputs Fxy
[N]

Fz
[N]

Mxy
[Nm]

Mz
[Nm]

F
[N]

M
[Nn]

Quadratic Fit thrust 1.536 1.381 0.104 0.033 1.486 0.087
BEM [6] full state 0.803 1.265 0.090 0.017 0.982 0.074
PolyFit [7] full state 0.453 0.832 0.027 0.008 0.606 0.022
NeuroBEM [6] full state 0.204 0.504 0.014 0.004 0.335 0.012

HDVIO2.0 (Ours) dynamics+gyro 0.402 0.672 0.014 0.006 0.491 0.012
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Fig. 3: This figure illustrates the results shown in Tab. I by exemplarily
showing the force estimates on a very fast trajectory from the NeuroBEM
dataset. Our HDVIO2.0 clearly outperforms the state-of-the-art first-principle
model BEM and is able to model aerodynamic effects accurately on short
timescales.

• Quadratic Fit: The model used in VIMO and VID.
• BEM: A first-principles model that computes forces and

torques acting on a propeller by integrating over infinites-
imal area elements of the propeller [37, 6].

• PolyFit: A data-driven model that relies on polynomial
basis functions to capture drone dynamics [7].

• NeuroBEM: A hybrid model that augments the BEM
model with a learning-based component [6].

Notably, all baselines, except for the Quadratic Fit model,
require the full vehicle state as input, including linear and
angular velocities.

Evaluation: The results are summarized in Tab. I. The
NeuroBEM method, which has access to the full robot state,
achieves the best performance. However, our HDVIO2.0 out-
performs the BEM model in terms of residual thrust estimates
by a factor of three and the PolyFit model by a factor of two.
This is further illustrated in Fig. 3, which shows the ground-
truth forces alongside the forces estimated by BEM and our
HDVIO2.0 during the first five seconds of a high-speed flight.
In this flight, the quadrotor accelerates to 15 m/s while fol-
lowing a lemniscate track. The performance of our HDVIO2.0
is remarkable as it achieves this performance without access
to ground-truth state information, such as the vehicle’s linear
or angular velocity, which the baselines require. Moreover,
our HDVIO2.0 achieves very similar accuracy as NeuroBEM
in estimating torques. From this experiment, we conclude
that our learning-based component effectively captures the
aerodynamic forces acting on the quadrotor, demonstrating its
suitability for integration into a VIO pipeline. Additionally,
the ability to estimate aerodynamic forces with such precision
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Fig. 4: The performance of VIO, HDVIO and HDVIO2.0 is compared on the
Egg 8 m/s trajectory. The ground truth is depicted in black in the Top-Down
view (right plot). Our new proposed method outperforms HDVIO and the
VIO.

using only a history of thrust, torque and gyroscope measure-
ments is an interesting and significant finding in itself.

B. Blackbird Dataset

Experimental Setup: In this set of experiments, we eval-
uate our system and the baseline methods on the Blackbird
dataset [18]. The dataset provides rotor speed measurements
recorded onboard a quadrotor flying within a motion-capture
system, which we use to compute mass-normalized collective
thrust measurements. Additionally, the dataset includes IMU
measurements and, in some sequences, photorealistic images
of synthetic scenes. The Blackbird dataset comprises 18 di-
verse trajectories with speeds ranging from 0.5 m/s to 9.0 m/s.
Since the dataset does not feature external disturbances, we
focus on evaluating the accuracy of pose estimates. Among
the trajectories with available camera images, we select six
representative sequences for evaluation: Bent Dice, Clover,
Egg, Mouse, Star, and Winter. The remaining 80 % of the
trajectories, corresponding to approximately 2 hrs of flight
data, are used for training, and 20 % are reserved for validation
of our neural networks. To assess the generalization capability
of our system, we also train our network on a reduced training
dataset containing only trajectories with speeds up to 2 m/s.
This allows us to evaluate the performance of our method on
higher-speed trajectories beyond those seen during training.

Evaluation: We present the ATET and ATER results for the
evaluation sequences in Table II. Our approach consistently
outperforms VIO baseline, VIMO, VID, and HDVIO demon-
strating the effectiveness of our 6-DoF hybrid drone model.
The performance improvement becomes more pronounced at
higher speeds, achieving an improvement of the ATET of
57 % and 27 % compared to VIO and HDVIO respectively,
at the maximum velocity of 8 m/s. This result is explained by
the fact that our method includes the learned drag forces as
measurements in the dynamics motion constraint. In Fig. 4,
we provide the relative translation error alongside a top-
down view of the trajectories estimated by HDVIO2.0 and the
ground truth. Notably, our system continues to outperform the
baselines across almost all sequences, even when the networks
are trained on the reduced dataset (containing trajectories
with speeds up to 2 m/s), as shown in the last column of
Table II. This result highlights that HDVIO2.0 is capable of
generalizing to velocities up to 4x higher than those present in

the training data. The fact that the accuracy of HDVIO2.0 and
HDVIO2.0∗ is higher than HDVIO in most of the sequences
highlights the benefit of incorporating the rotational dynamics
in the dynamics residuals. In Table III, we show an ablation
study to evaluate the effect of learning residual thrusts and
torques. The results on the faster sequences of the Blackbird
dataset show that including learned residuals in the drone
dynamics improve the trajectory estimates.

C. VID Dataset

Experimental Setup: In this set of experiments, we evaluate
the ability of our system to estimate external forces acting
on the quadrotor and test the performance of our learned
component in scenarios where ground-truth data from a motion
capture system is unavailable. For this purpose, we use the
VID dataset [2], which includes visual, inertial, and actuation
inputs, as well as ground-truth force measurements. The
dataset contains data recorded onboard a quadrotor flying
both indoors, in an office room equipped with a motion-
capture system, and outdoors, in a parking area. We use the
provided rotor speed measurements to compute the thrust and
torque values. The indoor sequences, which include portions
with ground-truth force data, are used to evaluate our system
capability to estimate external forces. The outdoor sequences
are used to validate our learned module when ground-truth
training data for position, velocity, and orientation is obtained
from an offline visual-inertial SLAM system [17] rather than
a motion-capture system. Since the outdoor sequences do
not include ground-truth force measurements, we focus on
the estimation of the drone poses. Since the quadrotor mass
differs between the indoor and outdoor sequences, we train
different neural networks for the indoor drone configuration
and the outdoor configuration. For the indoor configuration,
we train our neural networks using sequences without external
perturbations. These sequences consist of hover, circle, and
figure 8 trajectories, amounting to only 6 min of flight data. Of
this data, 80% is used for training and 20% for validation. For
the outdoor configuration, the sequences include circle, figure
8, and rectangle trajectories. We use one figure 8 and one
rectangle trajectory for testing. The remaining data, totaling
11 min of flight time, is split into 80% for training and 20%
for validation.

Evaluation: We compare the external force estimates of
VIMO, VID, HDVIO, and HDVIO2.0 in an indoor sequence
where the drone is attached to an elastic rope, with the
other end connected to a force sensor, and in a sequence
where an unknown external load is attached to the drone,
as summarized in Table IV. The force estimates are aligned
with the motion-capture reference frame using the posyaw
alignment method [43]. HDVIO2.0 significantly outperforms
the baselines, VIO and VID, while the performance increase
compared to HDVIO is smaller. As shown in Fig. 5, our
method significantly improves force estimation along the z-
axis. This improvement is attributed to our neural network.
We believe that the proposed network has learned to com-
pensate for a systematic residual error in the thrust inputs,
likely caused by inaccuracies in the thrust coefficients used
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TABLE II: Evaluation of the trajectory estimates in the Blackbird dataset. HDVIO2.0∗ (ours) is trained on a reduced training set, with speeds up to 2 m/s
to evaluate generalization performance. In bold are the best values, and in underlined are the second-best values. Our method, either using the full training
dataset or the reduced one, outperforms the baselines in all the sequences.

Trajectory
Name

vmax

[m/s]

Evaluation Metric: ATET [m] / ATER [deg]

VIO VIMO VID HDVIO HDVIO2.0
(Ours)

HDVIO2.0∗
(Ours)

Bent Dice 3 0.20 / 1.78 0.31 / 1.53 0.25 / 1.18 0.21 / 1.53 0.18 / 0.84 0.16 / 0.90
Clover 5 0.90 / 3.52 0.88 / 3.66 0.83 / 2.48 0.60 / 2.08 0.49 / 1.99 0.48 / 1.93

Egg 5 1.07 / 1.54 0.75 / 1.34 0.81 / 1.61 0.59 / 1.21 0.56 / 1.07 0.56 / 1.20
Egg 6 1.40 / 2.35 0.98 / 4.89 1.10 / 2.42 0.83 / 1.62 0.69 / 1.60 0.58 / 1.86
Egg 8 1.79 / 4.55 1.57 / 3.69 1.47 / 4.84 1.06 / 2.89 0.77 / 2.61 1.44 / 2.51

Mouse 5 1.10 / 4.54 0.76 / 2.14 0.54 / 2.10 0.36 / 1.40 0.22 / 0.99 0.34 / 1.01
Star 1 0.17 / 0.78 0.18 / 1.05 0.18 / 0.54 0.16 / 0.58 0.09 / 0.74 0.10 / 0.49
Star 3 0.62 / 3.50 0.43 / 1.38 0.50 / 2.93 0.38 / 1.40 0.19 / 0.93 0.27 / 0.96

Winter 4 0.97 / 2.92 0.69 / 2.46 0.66 / 2.05 0.57 / 1.54 0.12 / 0.78 0.51 / 2.02

TABLE III: Ablation study of the effect of learning residuals (LR) on the
trajectory estimates for the Blackbird dataset. In bold are the best values.

Traj. vmax [m/s] ATET [m] ATER [deg]
w/ LR w/o LR w/ LR w/o LR

Clover 5 0.49 0.71 1.99 2.24
Egg 6 0.69 0.92 1.60 1.84
Mouse 5 0.22 0.43 0.99 1.86

TABLE IV: Comparison of the external force estimate due to a pulling elastic
rope (sequence 17 of the VID dataset) or an external load (sequence 16 of
the VID dataset). HDVIO2.0 drastically improves the force estimation along
the z axes. In bold are the best values.

Method Pulling rope External Load
Fz [N] F [N] Fz [N]

VIMO 1.73 1.08 0.81
VID 1.96 1.12 0.45
HDVIO 0.55 0.65 0.34
HDVIO2.0 (Ours) 0.39 0.59 0.34

to compute the collective thrust from rotor speed measure-
ments. In these sequences, the slow vehicle motion and the
textured environment simplify the pose estimation problem.
Consequently, VIO, VIMO, VID, HDVIO and our method
achieve similar pose estimation performance, with a ATET of
0.02 m and of 0.10 m, respectively.

The Table . V presents the evaluation of pose estimates
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Fig. 5: Comparison of the external force estimate in the sequence 17 of the
VID dataset. In this sequence, the drone is attached to an elastic rope. The
other end of the rope is attached to a force sensor. HDVIO2.0 drastically
improves the force estimation along the z axes.

TABLE V: We demonstrate the performance of HDVIO2.0 in a setting where
the training data for the learning-based component is obtained from a vision-
based SLAM system in the outdoor sequences of the VID dataset. The flown
trajectories are at low speeds, below 3 m/s, allowing all the methods to perform
well, with HDVIO2.0 showing the highest accuracy. In bold are the best
values.

Method Figure 8 Rectangle
ATET [m] ATER [deg] ATET [m] ATER [deg]

VIO 1.89 4.02 2.09 2.01
VIMO 1.67 3.70 1.89 1.92
VID 1.84 3.50 1.99 2.49
HDVIO 1.48 3.70 1.72 1.68
HDVIO2.0 (Ours) 1.41 0.71 1.69 1.61

in the outdoor sequences. Since the trajectories are flown
at low speeds below 3 m/s, all three methods demonstrate
good performance, with HDVIO2.0 achieving the highest
accuracy. Remarkably, including the rotational dynamics in
the estimation process improves the rotation error of 80%
compared to the previous system HDVIO in the sequence
Figure 8. This experiment highlights that our learning-based
dynamics model can be effectively trained without relying on
an external motion-capture system.

V. FLIGHTS IN CONTINUOUS WIND

In these experiments, we demonstrate that HDVIO2.0 can
estimate continuous external disturbances, such as continu-
ous wind, outperforming all the state-of-the-art methods. To
this end, we fly a quadrotor in a controlled wind field, as
illustrated in Fig.6. Details about the quadrotor platform can
be found in[44]. The platform is equipped with an onboard
Intel RealSense T2652 camera, which provides camera and
IMU measurements. While the camera includes stereo fisheye
sensors, we only use images from the left camera. Rotor speed
measurements are not available on this quadrotor platform.
Instead, we use the collective thrust commands output by the
MPC controller [44] to control the vehicle. The quadrotor is
flown in a motion-capture system that provides pose data at
an update rate of 200 Hz. We conduct experiments using two
quadrotor configurations: one with the vehicle in its nominal
state and another with a 22 cm×16 cm dragboard attached.
The dragboard is mounted such that its normal aligns with

2https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel
RealSense Tracking Camera Datasheet Rev004 release.pdf

https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf
https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel_RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf
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Fig. 6: A quadrotor with a dragboard attached is flown on a circular trajectory
through a wind field generated with three industrial fans. Our HDVIO2.0 is
used to estimate the position of the drone (shown in red) and the external
disturbance force (black arrows) acting on the vehicle. The ground-truth
position of the vehicle is shown in blue.

the drone’s body y-axis. This attachment increases drag in the
y-direction by more than a factor of two, making the vehicle
significantly more sensitive to crosswinds.

1) Wind Generation: To generate a wind field, we placed
three axial fans (Ekström 12 inch, as shown in Fig. 6) in an
office-like room measuring 8x10 m. The fans were positioned
at a height of 1.6 m above the ground and angled slightly
inwards to ensure high wind speeds across a virtual tube in
front of them. Each fan has an advertised air circulation rate of
1.3m3/s and produces a measured wind speed of up to 8 m/s
at its front grill. To quantitatively evaluate the performance
of our method, we require ground-truth data for the external
wind forces. In the following, we describe the procedure used
to obtain this ground-truth data.

2) Wind Speed Map: In the first step, we measured the wind
produced by our experimental setup. Local wind speeds were
recorded at 50 points within the wind cone in front of the fans,
with a higher sampling density in regions where wind speed
changes more rapidly. Measurements were taken using a hand-
held anemometer (Basetech BS-10AN), and the position of the
anemometer was tracked using the motion-capture system. To
generate the ground-truth wind speed map shown in Fig. 6, a
smoothing spline was fitted to the recorded data.

3) Lift and Drag Coefficients: We compute the wind force
based on the wind speed map. The aerodynamic forces acting
on a quadrotor are primarily determined by three components:
the body/fuselage drag f fus

d , the induced drag from the pro-
pellers f ind

d , and the lift and drag incurred by the flat-plate
drag board attached to the top of the quadrotor, f brd

l and f brd
d .

The magnitudes of these forces can be approximated using

TABLE VI: Trajectories estimates in drone flights in a wind field with wind
gusts up to 25 km/h. We use (d) to indicate that a drag board was attached to
the drone. In bold are the best values.

ATET [m] / ATER [deg]
Method Circle (d) Circle Lemniscate

(d)
Lemniscate

VIO 0.07 / 2.02 0.06 / 1.21 0.38 / 2.39 0.27 / 2.44
VIMO 0.10 / 1.80 0.08 / 1.19 0.34 / 2.93 0.32 / 1.93
VID 0.10 / 2.31 0.06 / 1.37 0.53 / 2.39 0.28 / 2.05
HDVIO 0.07 / 2.06 0.06 / 1.17 0.30 / 2.81 0.20 / 1.84
HDVIO2.0 (Ours) 0.05 / 1.02 0.04 / 1.02 0.21 / 2.34 0.14 / 1.53

TABLE VII: Comparison of the external force estimate due to continuous
wind with gusts up to 25 km/h. We use (d) to indicate that a drag board was
attached to the drone. In bold are the best values.

F [N]
Method Circle (d) Circle Lemniscate

(d)
Lemniscate

VIMO 0.62 0.26 0.52 0.44
VID 0.56 0.33 0.73 0.51
HDVIO 0.54 0.23 0.44 0.33
HDVIO2.0 (Ours) 0.51 0.23 0.39 0.31

established aerodynamic models [6, 8, 45]:

f fus
d = 0.5 ρAfus cfus

d v2rel

f ind
d = k vrel

f brd
l|d = 0.5 ρAbrd cbrd

l|d(α) v
2
rel ,

(9)

where ρ is the air density, A is a surface area, vrel the relative
air speed, α is the angle of attack of the dragboard, k is
the propeller drag coefficient, and cl|d are the lift and drag
coefficients of the fuselage and dragboard. The relative air
speed is calculated as the norm of the relative velocity, which
is the sum of the vehicle’s ego motion and the wind velocity.

In this model, the fuselage is approximated as a square
prism with an angle-of-attack-independent drag coefficient
of cfus

d = 2.0 [46]. For the flat-plate wing, we employ a
simplified high-angle-of-attack model widely used in propeller
modeling [37, 45], which also aligns well with experimental
data for flat-plate wings [47]:

cbrd
l (α) = sin (2α) , cbrd

d (α) = 2 sin2(α).

To validate the predicted forces for the fuselage and drag board
described in Eq. (9), the quadrotor was mounted on a load
cell3. At a wind speed of 7 m/s, the measured lift and drag
forces were within 10 % of the calculated values. Additionally,
the linear propeller drag coefficient was determined to be k =
0.145Ns/m.

4) Wind Forces: Our method distinguishes between aero-
dynamic effects (such as body drag and induced drag) and
external forces. To obtain the ground truth for the disturbance
caused by the wind, we calculate the forces acting on the
quadrotor with the fans turned on and subtract the forces
calculated when the fans are turned off.

A. Dataset Collection

The training data consists of approximately 10 min of
random trajectories flown without wind. We use 80% of

3https://www.ati-ia.com/products/ft/ft models.aspx?id=Mini40

https://www.ati-ia.com/products/ft/ft_models.aspx?id=Mini40
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Fig. 7: Wind disturbance estimates. The magnitude and the y-axis component of the wind force estimated by HDVIO2.0 and VIMO. Left: drone equipped
with a dragboard. Right: standard drone configuration. In all the plots, it is visible that HDVIO2.0 achieves more accurate force estimates than VIMO.

0 20 40
−0.4

−0.2

0

0.2

Time [s]

B
ia

s
[m

/
s2

]

IMU Bias X

0 20 40

Time [s]

IMU Bias Y

GT VIMO VID HDVIO2.0 (Ours)

0 20 40

Time [s]

IMU Bias Z

Fig. 8: Accelerometer bias estimates. The ground-truth (GT) bias is obtained
from the VIO system. The estimates of our HDVIO2.0 match the ground-
truth values, while, VIMO and VID estimates diverge along the x-axis and
the y-axis.

this data for training the neural network and the remaining
20% for validation. We exclusively use random trajectories,
generated by sampling position data with a Gaussian Process.
This method ensures diverse training data and helps prevent
overfitting to specific trajectories. The test data is collected
with the quadrotor flying in a wind field with gusts reaching
up to 25 km/h. The test trajectories include a circle and a
lemniscate, both with a maximum speed of 2 m/s. Additionally,
we recorded a second dataset that features the same train-
ing, validation, and test trajectories, but with the quadrotor
equipped with a drag board. In this setup, the drag and the
external force due to wind gusts are increased, emphasizing
the advantage of HDVIO2.0 over the baselines.

1) Evaluation: We present the estimation of the external
force due to wind gusts in Fig. 7 and Table VII. Since the wind
gusts impact the quadrotor along the y-axis of the world refer-
ence frame, we display both the y-component of the estimated
force and the force norm. The external forces are estimated in
the quadrotor’s body frame, then aligned to the world frame
(which corresponds to the motion-capture reference frame)
using the ground-truth orientations. This alignment allows for
a direct comparison between the estimates of our method
and those from the baselines. Notably, HDVIO2.0 is able to

acccurately predict the wind gusts when the quadrotor enters
the wind field. This is evident in Fig. 7 from the fact that our
method accurately captures the peaks of the wind force.

As noted by the authors [1], the measurement model in
VIMO, when dealing with continuous external disturbances,
introduces an inconsistency in the estimation of the accelerom-
eter bias, leading to decreased motion estimate accuracy. We
show in Fig. 8 the accelerometer bias estimated by the VIO
algorithm, VIMO, VID, and our method for a sequence in
which the quadrotor, equipped with the drag board, flies a
circle trajectory. Although we do not have access to the
ground-truth accelerometer bias, we consider the one estimated
by the VIO algorithm to be a good approximation of the true
value, given that VIO achieves very high performance in this
sequence (see Table VI) due to the high number of visual
features being tracked. The bias estimate of HDVIO2.0 closely
tracks the VIO estimate, while VIMO and VID estimate
diverges along the x-axis and y-axis to an incorrect value. We
include the position and orientation absolute trajectory errors
in Table VI. In all four sequences, the rich texture environment
simplifies the pose estimation problem, resulting in accurate
poses estimates for all the algorithms. However, improvements
in the rotation estimates, driven by the inclusion of rotational
dynamics in the estimation process, are evident.

VI. DISCUSSION

The proposed hybrid dynamics model, which integrates
a point-mass quadrotor model with a learning-based resid-
ual force and torque terms, addresses the limitations of the
state-of-the-art visual-inertial-model-based odometry systems,
VIMO and VID, under conditions of significant model mis-
match (e.g., high speeds, systematic noise) and continuous
external disturbances, such as persistent wind. Moreover, the
inclusion of rotational dynamics in VIO estimation process
provides additional information into the robot’s behavior,
resulting in improved performance compared to the previous
method, HDVIO, particularly in terms of pose estimation
accuracy.
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Our learning-based module outperforms the state-of-the-art
first-principle quadrotor models, which have access to the
full quadrotor state, in predicting aerodynamic drag forces.
Notably, unlike these methods, our HDVIO2.0 relies only
on thrust, torque and gyroscope measurements, which are
commonly available on most commercial drone platforms.

Another advantage of our approach is that our network does
not require ground-truth thrust forces for supervised training.
Instead, our training strategy minimizes the difference between
the relative position, velocity and orientation changes predicted
by propagating our hybrid drone dynamics and the supervision
quantities. The supervision signal can be obtained from SLAM
solutions [17, 20], which rely solely on camera and IMU
data, eliminating the need for costly motion-capture systems
and simplifying the data collection process. In Table V, we
present an experiment where the learning-based component
was trained exclusively using position, velocity and orientation
signals obtained via SLAM. Furthermore, data collection is
simplified to the extent that even a human pilot can control
the drone, as expert pilots typically issue collective thrust
commands alongside desired body rates [48]. This simple
training data collection mitigates a limitation of our hybrid
drone model: while a single dynamics model is tailored to
a specific drone, recording new data to train a model for a
different drone is straightforward.

Our hybrid drone model demonstrates strong generaliza-
tion capabilities to velocities and trajectories that were not
included in the training data. To show generalization to
unseen velocities, we train HDVIO2.0∗ on the dataset in-
troduced in Sec. IV-B, which contains speeds only up to
2 m/s, compared to HDVIO2.0 which is trained on speeds
up to 9 m/s. When tested on the full range of speeds (up to
8 m/s), HDVIO2.0∗ achieves comparable results to HDVIO2.0
and still outperforms the baselines (see Table II). We further
evaluate generalization across different trajectory types in
various scenarios. For example, in the NeuroBEM dataset (see
Table I), 30% of the test trajectories were entirely unseen
during training, while the remaining 70% differ in speed and
size. In this setup, our method surpasses BEM and PolyFit
by 50% and 20% in terms of force estimates, respectively,
and performs comparably to NeuroBEM, which has access
to the full vehicle state. Moreover, our system estimates the
external force acting on a drone following an unseen random
trajectory in Fig. 5). Finally, in Sec. V-A, we exclusively train
our network on random trajectories and observe improved
wind force estimates (see Fig. 7 and Table VII) and consistent
accelerometer bias predictions (see Fig. 8). This highlights our
model’s robustness and versatility in real-world applications.

Furthermore, HDVIO2.0 demonstrates high robustness
to VIO failures and continuous external disturbances. In
Sec. IV-B, HDVIO2.0 achieves the largest improvements, with
reductions of 57% and 43% in translation and rotation error
compared to the VIO on the fastest trajectory, Egg 8 m/s (see
Table II and Fig 4). In this scenario, motion blur and fast
yaw changes make feature tracking difficult, causing the VIO
system to accumulate significant drift. Additionally, neglecting
drag effects in the drone model, as done in VIMO and VID,
is not a valid assumption at such high speeds, and including

measurements on the drone’s rotational dynamics increases the
information used to solve the state estimation problem (see
Eq. 3).

We also evaluate the ability of HDVIO2.0 to estimate ex-
ternal forces in the presence of continuous perturbations, such
as a pulling rope (Sec.IV-C) and wind (Sec.V). In all these
challenging scenarios, HDVIO2.0 outperforms the baselines.

In this work, as in the baselines, the model is assumed
to remain fixed during a flight. Changes in actuation inputs
(e.g., hardware degradation) are treated as external forces. A
promising direction for future work would be to train the
neural network to estimate these model changes as residual
forces overcoming the challenge of generating suitable training
data.

In HDVIO2.0, as well as in all the baselines, we opted
to use the visual frontend proposed in [14]. This decision
is motivated by the high robustness demonstrated by [14],
attributed to its semi-direct approach to visual feature tracking
and its low computational requirements. These features make
it particularly well-suited for VIO applications onboard flying
vehicles.

VII. CONCLUSION

In this work, we introduces a novel method for modeling 6-
DoF quadrotor dynamics in visual-inertial odometry systems.
Our dynamics model integrates a first-principles quadrotor
model with a learning-based component that captures un-
modeled effects, such as aerodynamic drag. The proposed
method addresses the limitations of the state-of-the-art sys-
tems, VIMO, VID, and HDVIO, improving the accuracy of
motion estimation and external force estimation.

Our learning-based component demonstrates strong gener-
alization capabilities to trajectories and speeds beyond those
present in the training dataset. Furthermore, an evaluation of
residual force estimation accuracy reveals that our learning-
based approach outperforms first-principles models, even those
with access to the full state of the quadrotor. Controlled
experiments in windy conditions further validate our hybrid
dynamics model’s ability to accurately predict forces acting
on the quadrotor due to continuous wind.

The HDVIO2.0 approach enhances the safety of au-
tonomous drone operations in challenging scenarios, such as
high-speed flights and operations in windy environments. With
the growing integration of drones into everyday applications,
these improvements are relevant.
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