HDVIO2.0: Wind and Disturbance Estimation with Hybrid Dynamics VIO

Giovanni Cioffi, Leonard Bauersfeld, Davide Scaramuzza

Abstract-Visual-inertial odometry (VIO) is widely used for state estimation in autonomous micro aerial vehicles using onboard sensors. Current methods improve VIO by incorporating a model of the translational vehicle dynamics, yet their performance degrades when faced with low-accuracy vehicle models or continuous external disturbances, like wind. Additionally, incorporating rotational dynamics in these models is computationally intractable when they are deployed in online applications, e.g., in a closed-loop control system. We present HDVIO2.0, which models full 6-DoF, translational and rotational, vehicle dynamics and tightly incorporates them into a VIO with minimal impact on the runtime. HDVIO2.0 builds upon the previous work, HDVIO, and addresses these challenges through a hybrid dynamics model combining a point-mass vehicle model with a learning-based component, with access to control commands and IMU history, to capture complex aerodynamic effects. The key idea behind modeling the rotational dynamics is to represent them with continuous-time functions. HDVIO2.0 leverages the divergence between the actual motion and the predicted motion from the hybrid dynamics model to estimate external forces as well as the robot state. Our system surpasses the performance of state-of-theart methods in experiments using public and new drone dynamics datasets, as well as real-world flights in winds up to 25 km/h. Unlike existing approaches, we also show that accurate vehicle dynamics predictions are achievable without precise knowledge of the full vehicle state. The code will be released open source upon acceptance.

Index Terms—Visual-Inertial SLAM, Learning Robot Dynamics, Aerial Systems: Perception and Autonomy.

I. INTRODUCTION

V ISUAL-INERTIAL odometry (VIO) is the standard method for state estimation in consumer and inspection drones. To enhance the performance of VIO systems, several recent approaches have proposed tightly integrating drone dynamics into the VIO pipeline [1, 2, 3, 4, 5]. Incorporating system dynamics into the VIO framework provides additional information, enabling the system to distinguish between motion resulting from actuation and motion caused by external perturbations. This integration improves pose estimation accuracy and allows for the estimation of external forces acting on the drone.

While effective in many scenarios, state-of-the-art methods face significant performance degradation in cases of large model mismatches (e.g., high speeds, systematic noise in actuation inputs) or persistent external disturbances like wind.

Fig. 1: We propose HDVIO2.0. HDVIO2.0 estimates the robot's state and external disturbances using visual, inertial, and dynamics measurements. Notably, it models the robot's dynamics by combining a simple physical model with learning-based components.

These issues arise because existing methods rely on simplifying assumptions—such as neglecting aerodynamic drag and assuming zero-mean noise in system dynamics—that fail to hold under such conditions. Directly incorporating highfidelity dynamics models [6, 7] into a VIO pipeline can be counterproductive because these models require the drone state as input (typically velocity and attitude). This situation can create a compounding effect, where errors in the VIO output propagate through the dynamics model, and, in turn, further impact the VIO.

Overcoming these challenges is essential for deploying model-based VIO estimators in applications where aerodynamic effects play a significant role, such as fast flights [8], operations in windy conditions [9], or scenarios with modeling inaccuracies [10]. The state-of-the-art methods VIMO [1] and VID [2] incorporate the translational drone dynamics into an optimization-based VIO framework [11] through a residual term derived from the propagation of a point-mass dynamics model. The residual term is formulated based on the preintegration theory [12], which requires separating the measurements (namely, the control inputs) from the states. While this formulation is straightforward for translational dynamics, extending it to rotational dynamics is not trivial. The simplified dynamics model neglects aerodynamic effects, treating drag as part of the external force estimate. Addi-

The authors are with the Robotics and Perception Group, Department of Informatics, University of Zurich, Switzerland, https://rpg.ifi.uzh.ch.

This work was supported by the European Union's Horizon Europe Research and Innovation Programme under grant agreement No. 101120732 (AUTOASSESS) and the European Research Council (ERC) under grant agreement No. 864042 (AGILEFLIGHT).

tionally, potential systematic offsets in actuation inputs (e.g., miscalibrations such as incorrect rotor lift coefficients) are interpreted as accelerometer biases, introducing errors into the inertial residuals and reducing motion estimation accuracy.

Improving the drone dynamics model within the VIO estimator is key to addressing these limitations.

Contribution

We present HDVIO2.0, the first VIO pipeline incorporating the 6-DoF drone dynamics using a hybrid model that combines a physical model with a learning-based component. Unlike prior methods [6, 7], our learned dynamics model predicts residual aerodynamic forces without requiring the drone state (i.e., attitude and velocity) as input. Instead, it uses a temporal convolutional network (TCN) [13] that takes control commands and gyroscope measurements as input. Our hybrid model is integrated into an optimization-based VIO framework [14, 15], leveraging preintegration theory [12] to efficiently compute and optimize the dynamics residuals alongside monocular camera and IMU residuals. HDVIO2.0 extends the previous work, HDVIO [16], by integrating the rotational dynamics in the drone model. We represent the drone's angular velocity as a continuous-time function using B-splines, which effectively capture the drone's dynamics [17]. The Bspline is optimized by minimizing the difference between its first derivative and the angular acceleration derived from the drone's rotational model, which combines torque commands and learned residual torques. Angular velocities sampled from the B-spline representation of the drone's rotational dynamics model are preintegrated into a residual term that can directly be included in the VIO. HDVIO2.0 employs two TCNs: one predicts residual thrust using thrust commands and gyroscope measurements (as in HDVIO), while the other predicts residual torque based on torque commands and gyroscope measurements-a novel contribution.

We evaluate HDVIO2.0 against the same VIO system without the proposed hybrid dynamics model, and the state-of-theart systems, VIMO [1] and VID [2], that tightly integrate the drone dynamics in VIO. On public datasets, Blackbird [18] and VID [19], we show that HDVIO2.0 surpasses state-ofthe-art methods. In wind field experiments, we show that HD-VIO2.0 accurately predicts the wind force again outperforming the baselines. On the NeuroBEM dataset [6], our learned dynamics model demonstrates competitive performance with existing aerodynamics models. Notably, it is the first datadriven dynamics model to predict forces without requiring the vehicle state, i.e., linear velocity and attitude, as input. Additionally, to the best of our knowledge, our learningbased model is the first data-driven dynamics model that trains without requiring ground-truth force measurements, relying solely on position, velocity, and orientation supervision signals. This eliminates the need for motion-capture systems, as pose estimates obtained from offline structure from motionbased systems [20, 17] are sufficiently accurate for training.

By providing accurate state and external force estimates, we believe that HDVIO2.0 advances the deployment of autonomous drones in safety-critical applications, such as disaster site surveying and air transport, which currently depend on human pilots.

II. RELATED WORK

The related work on visual-inertial odometry (VIO) with external force estimation can be categorized into *loosely-coupled* and *tightly-coupled* methods. Loosely-coupled approaches [21, 22, 23, 24, 25, 26, 27, 28] estimate external forces independently from motion estimation, while tightly-coupled methods [1, 2, 4] jointly estimate both the robot's motion and external perturbations.

A. Loosely-Coupled Methods

Early loosely-coupled methods [21, 22, 23] rely on deterministic force and torque observers derived from the robot's dynamics model. These approaches assume access to accurate state estimates from separate estimators. Later, probabilistic methods [24, 25, 26, 27] improved accuracy by incorporating sensor noise. These methods utilize the Extended Kalman Filter (EKF) [25, 27, 29] or the Unscented Kalman Filter (UKF) [24, 26]. For example, the work in [3] uses a quadrotor model to enhance an EKF-based VIO estimator [30] for simultaneous system identification and state estimation. This work highlights that decoupling state estimation from dynamics measurements is optimal in the presence of high noise. In [31], a UKF estimates external disturbances like wind and human interactions using outputs from a neural network that processes airflow sensor data and motion capture measurements.

While effective under high signal-to-noise ratio conditions, loosely-coupled methods neglect the correlation between estimated variables and their noise characteristics, resulting in reduced performance when using noisy sensors.

B. Tightly-Coupled Methods

Tightly-coupled methods address this limitation by jointly estimating robot motion and external perturbations. VIMO [1] integrates robot dynamics into an optimization-based VIO framework [11]. It introduces a residual term representing translational motion constraints derived from robot dynamics, including external forces, using IMU preintegration theory [12]. This method preintegrates high-rate thrust inputs into residuals between consecutive camera frames. External forces are modeled as zero-mean Gaussian variables to account for their unknown dynamics. VIMO is the first work that enables the simultaneous estimation of external forces and robot states. Multiple extensions to VIMO exist. The work in [32] extends VIMO with a disturbance observer for constant force estimation. The disturbance observer allows the system to differentiate between the constant external force and the accelerometer bias. VID-Fusion [2] extends VIMO by modifying the external force model, where the mean of the Gaussian distribution is based on the average difference between accelerometer and thrust measurements within the preintegration window. This model of the external force allows VID-Fusion to estimate constant loads attached to the drone, such as a package to be delivered. We employ this external force model in HDVIO2.0. The VIMO framework is general and can be employed for any type of robot. In fact, extensions of VIMO for legged robots are proposed in [4, 5].

However, as discussed in Sec. I, VIMO and all its extensions struggle with continuous external forces or model mismatches.

C. Drone Dynamics Modeling

Accurate drone dynamics modeling is critical for HD-VIO2.0. Prior methods assume access to the vehicle state, which is unsuitable for VIO pipelines as it introduces a compounding effect that propagates errors in the dynamics model to the VIO and vice-versa. For completeness, a brief review of quadrotor modeling literature is presented. Basic models treat quadrotors as rigid bodies with linear mass and inertia dynamics, exerting force in the body-z direction while neglecting or simplifying (assuming it linear) aerodynamic drag [33, 34, 35, 36]. First-principles can be used to refine these basic models resulting in blade-element momentum (BEM) theory [6, 37, 38, 39]. Pure data-driven models [7] have gained traction due to the complexity of quadrotor aerodynamics and have shown superior performance compared to first-principles-based methods. The state-of-the-art model, NeuroBEM [6], combines a physical model with learningbased component, outperforming previous methods. This hybrid modeling approach inspired our use of a learned component in HDVIO2.0 to enhance drone dynamics modeling.

III. METHODOLOGY

This section outlines our visual-inertial-hybrid drone dynamics odometry algorithm. We begin by defining the notation used throughout the paper and describing the drone dynamics. While our derivation focuses on a quadrotor platform, the proposed approach is adaptable to other robotic systems. Next, we formulate the estimation problem. Following, we provide a concise derivation of the dynamics residual term, which is based on the preintegration theory [12]. Finally, we introduce our learning-based module of drone dynamics.

A. Notation

In this paper, scalars are represented using non-bold notation [s, S], vectors are denoted in lowercase bold v, and matrices are expressed in uppercase bold M. World \mathcal{W} , Body \mathcal{B} , IMU \mathcal{I} , and camera \mathcal{C} frames are defined with an orthonormal basis, such as $\{x^{\mathcal{W}}, y^{\mathcal{W}}, z^{\mathcal{W}}\}$. The \mathcal{B} frame is positioned at the quadrotor's center of mass, and for simplicity, the IMU frame \mathcal{I} is assumed to coincide with \mathcal{B} . The notation $(\cdot)^{\mathcal{W}}$ is used to indicate quantities expressed in the world frame, and similar notation is applied to other reference frames. At time t_k , the position, orientation, and linear velocity of \mathcal{B} relative to \mathcal{W} are denoted as $p_{\mathcal{B}_k}^{\mathcal{W}} \in \mathbb{R}^3$, $R_{\mathcal{B}_k}^{\mathcal{W}} \in \mathbb{R}^{3 \times 3}$ (a member of the rotation group SO(3)), and $v_{\mathcal{B}_k}^{\mathcal{W}} \in \mathbb{R}^3$, respectively. The quadrotor body rate is denoted by $\omega^{\mathcal{B}_k}$. The unit quaternion representation of $R_{\mathcal{B}_k}^{\mathcal{W}}$ is given as $q_{\mathcal{B}_k}^{\mathcal{W}}$. The cross product of two vectors is denoted by x. The quaternion product is denoted by \otimes . The gravity vector in the world frame is denoted by $g^{\mathcal{W}}$. The quadrotor mass and inertial matrix are denoted by \boldsymbol{m} and \boldsymbol{J} , respectively. The accelerometer model is: $\hat{\boldsymbol{a}}^{\mathcal{B}_k} = \boldsymbol{a}^{\mathcal{B}_k} + \boldsymbol{b}_{a_k} + \boldsymbol{n}_a$, where the noise is modeled as additive Gaussian noise $\boldsymbol{n}_a \sim \mathcal{N}(0, \boldsymbol{\sigma}_a^2)$ and the bias as a random walk $\dot{\boldsymbol{b}}_{a_k} = \boldsymbol{n}_{b_a}$, with $\boldsymbol{n}_{b_a} \sim \mathcal{N}(0, \boldsymbol{\sigma}_{b_a}^2)$. The gyroscope model is: $\hat{\boldsymbol{\omega}}^{\mathcal{B}_k} = \boldsymbol{\omega}^{\mathcal{B}_k} + \boldsymbol{b}_{\omega_k} + \boldsymbol{n}_{\omega}$, where the noise is modeled as additive Gaussian noise $\boldsymbol{n}_{\omega} \sim \mathcal{N}(0, \boldsymbol{\sigma}_{\omega}^2)$ and the bias as a random walk $\dot{\boldsymbol{b}}_{\omega_k} = \boldsymbol{n}_{b_\omega}$, with $\boldsymbol{n}_{b_\omega} \sim \mathcal{N}(0, \boldsymbol{\sigma}_{\omega}^2)$. We indicated noisy measurements using the symbol $\hat{\cdot}$.

B. Quadrotor Dynamics

The quadrotor is modeled as a point mass. The dynamics governing the position, velocity and orientation of the quadrotor platform are described by the following equations:

$$\begin{split} \dot{\boldsymbol{p}}_{\mathcal{B}_{k}}^{\mathcal{W}} &= \boldsymbol{v}_{\mathcal{B}_{k}}^{\mathcal{W}} \\ \dot{\boldsymbol{v}}_{\mathcal{B}_{k}}^{\mathcal{W}} &= \boldsymbol{R}_{\mathcal{B}_{k}}^{\mathcal{W}}(\boldsymbol{f}_{t_{k}}^{\mathcal{B}} + \boldsymbol{f}_{res_{k}}^{\mathcal{B}} + \boldsymbol{f}_{e_{k}}^{\mathcal{B}}) + \boldsymbol{g}^{\mathcal{W}} \\ \dot{\boldsymbol{q}}_{\mathcal{B}_{k}}^{\mathcal{W}} &= \frac{1}{2} \boldsymbol{q}_{\mathcal{B}_{k}}^{\mathcal{W}} \otimes [0, \boldsymbol{\omega}^{\mathcal{B}_{k}}]^{\top} \\ \dot{\boldsymbol{\omega}}^{\mathcal{B}_{k}} &= \boldsymbol{J}^{-1} (\boldsymbol{\tau}_{k}^{\mathcal{B}} + \boldsymbol{\tau}_{res_{k}}^{\mathcal{B}} - \boldsymbol{\omega}^{\mathcal{B}_{k}} \times \boldsymbol{J} \boldsymbol{\omega}^{\mathcal{B}_{k}}), \end{split}$$
(1)

where $f_{t_k}^{\mathcal{B}} = [0, 0, T_k]^{\top}$ represents the mass-normalized collective thrust, $f_{e_k}^{\mathcal{B}}$ denotes the external force acting on the quadrotor, and $\tau_k^{\mathcal{B}}$ is the torque produced by the propellers. For conciseness, we will refer to the collective thrust as simply thrust hereafter, dropping the term mass-normalized. To account for aerodynamic effects and unknown systematic noise in the inputs, residual terms $f_{res_k}^{\mathcal{B}}$ and $\tau_{res_k}^{\mathcal{B}}$ are introduced. The external force is modeled as a random variable following a Gaussian distribution obtained by computing the difference between acceleration and thrust measurements as proposed in [2]. Modeling the external force in this manner enables the estimator to differentiate between the slowly varying accelerometer bias and external forces, which may arise from incidental disturbances or constant loads, such as an external mass attached to the drone.

The dynamics motion constraints, c.f. Section III-D, are derived using the preintegration theory [12]. The preintegration theory requires separating the residual terms that depend on the optimization variables from those that depend on the measurements. The rotational dynamics of the quadrotor are not considered in HDVIO, VIMO, and VID as the torque inputs cannot be decoupled from their dependence on the robot's orientation. Instead, these works obtain the evolution of the orientation of the quadrotor from the gyroscope model. As a result, they introduce inconsistency in the estimation process due to the repeated use of gyroscope measurements. Furthermore, their dynamics residuals constrain only the linear dynamics (position and linear velocity) of the quadrotor, while leaving the orientation unconstrained.

In this work, we address these limitations by representing the rotational dynamics of the quadrotor using a continuoustime formulation. Specifically, we employ B-splines as the continuous-time function. The study in [17] demonstrated that B-splines are well-suited for representing quadrotor dynamics. Furthermore, the derivatives of B-splines can be computed efficiently [40], facilitating the use of gradient descent-based optimization methods to optimize the placement of the control points.

1) Continuous-time Representation of Rotational Dynam*ics:* We represent the quadrotor body rates ω using a B-spline. Specifically, we adopt a uniform time representation of the B-spline [40], which allows using a matrix form formulation for sampling. The B-spline order is denoted by N. Sampling a point from the B-spline depends only on a local segment defined by N control points. The control points are placed at the time $t_i = t_0 + i \cdot \Delta t$, $i \in [0, k]$, where t_0 is the time of the first control point, i is the index of the control point, and Δt is the constant time spacing between consecutive control points. For a given time t, the uniform time representation is defined as u(t) = s(t) - i, where $s(t) = \frac{t - t_0}{\Delta t}$ represents the index of the B-spline segment between control points i and i + 1. The control point *i* is the leftmost control point affecting the sampling at the time t. The quadrotor body rate at the uniform time u is expressed as: $\boldsymbol{\omega}(u) = [\boldsymbol{\omega}_i, \cdots, \boldsymbol{\omega}_{i+N-1}] \boldsymbol{M}^N \boldsymbol{u}$. The matrix $M^{\hat{N}}$ is the blending matrix, which is constant and precomputed offline once the B-spline order N is known. The vector u contains the base coefficients, where the *j*-th entry u(j) is equal to u^{j} . The time derivative are computed as: $\boldsymbol{\omega}^{d}(u) = [\boldsymbol{\omega}_{i}, \cdots, \boldsymbol{\omega}_{i+N-1}] a^{d} \boldsymbol{M}^{N} \boldsymbol{u}$, where $a^{d} = \frac{1}{\Delta t^{d}}$ and dis the derivative order. Specifically, we sample the quadrotor angular accelerations with d = 1. We optimize the B-spline control points to fit the quadrotor rotational dynamics model, c.f. Eq 1, using the measurement model:

$$\tau_k^{\mathcal{B}} + \tau_{res_k}^{\mathcal{B}} = \boldsymbol{J} \dot{\omega}^{\mathcal{B}}(\boldsymbol{u}(k)) + \omega^{\mathcal{B}}(\boldsymbol{u}(k)) \times \boldsymbol{J} \omega^{\mathcal{B}}(\boldsymbol{u}(k)).$$
(2)

2) Implementation Details: We use a B-spline of order 5 and $\Delta t = 0.01$ [s]. The length of the B-spline is set to 0.1 [s], resulting in a B-spline represented by 10 control points. New control points are initialized by interpolating gyroscope measurements at the desired time. Control points that fall outside the desired time window are simply discarded. Torque measurements and torque residuals are sampled at a rate of 200 [Hz] and used to derive the residual terms for optimizing the B-spline, based on the measurement model presented in Eq. 2. These residual terms are optimized using a custom Levenberg-Marquardt algorithm [41] specifically designed for this project to meet the computational requirements of running this optimization within our system on resource-constrained platforms. The programming effort to achieve the integration of the proposed continuous-time-based quadrotor dynamics in a VIO system is a key contribution of our work. We will release the code as open-source upon acceptance.

C. Estimation Problem Formulation

We implement our hybrid drone dynamics in a slidingwindow optimization-based VIO system. An overview of the proposed optimization-based VIO with hybrid drone dynamics, using a factor graph representation, is shown in Fig. 2. The sliding window contains the most recent L keyframes and K drone states. We set L=10 and K=5. The optimization variables are defined as: $\mathcal{X} = \{\mathcal{L}, \mathcal{X}_{\mathcal{L}}, \mathcal{X}_{\mathcal{B}}\}$, where \mathcal{L} consists of the position of the 3D landmarks visible in the sliding window, $\mathcal{X}_{\mathcal{L}}$ represents the poses of the keyframes: $\mathcal{X}_{\mathcal{L}} = [\zeta_1, \cdots, \zeta_l], l \in [1, L]$, and $\mathcal{X}_{\mathcal{B}}$ the poses of the drone: $\mathcal{X}_{\mathcal{B}} = [\mathbf{x}_1, \cdots, \mathbf{x}_k], k \in [1, K]$. The pose of the l^{th}

Fig. 2: Factor graph representation of HDVIO2.0 with visual, inertial, and 6-DoF hybrid dynamics factors.

keyframe is $\zeta_l = [\mathbf{p}_{\mathcal{B}_l}^{\mathcal{W}}, \mathbf{q}_{\mathcal{B}_l}^{\mathcal{W}}]$, and the state of the k^{th} drone is $\boldsymbol{x}_k = [\boldsymbol{p}_{\mathcal{B}_k}^{\mathcal{W}}, \boldsymbol{q}_{\mathcal{B}_k}^{\mathcal{W}}, \boldsymbol{b}_{a_k}, \boldsymbol{b}_{g_k}, \boldsymbol{f}_{e_k}^{\mathcal{B}}]$. The visual-inertialdynamics estimation problem is formulated as a joint nonlinear optimization that solves for the maximum a posteriori estimate of \mathcal{X} . The cost function to minimize is:

$$\mathcal{L}^{HDVIO2.0} = \sum_{h=0}^{L+K-1} \sum_{j \in \mathcal{J}_h} \left\| \boldsymbol{e}_{\boldsymbol{v}}^{j,h} \right\|_{\boldsymbol{W}_{\boldsymbol{v}}^{j,h}}^2 + \sum_{k=0}^{K-1} \left\| \boldsymbol{e}_i^k \right\|_{\boldsymbol{W}_i^k}^2 + \sum_{k=0}^{K-1} \left\| \boldsymbol{e}_d^k \right\|_{\boldsymbol{W}_d^k}^2 + \left\| \boldsymbol{e}_m \right\|^2.$$
(3)

The cost function in Eq. 3 consists of the visual residuals e_v , inertial residuals e_i , dynamics residuals e_d , and marginalization residuals e_m . All residuals are weighted according to their measurement noise. The visual residuals are defined as $e_{v}^{j,h} = \mathbf{z}^{j,h} - h(\mathbf{l}_{i}^{\mathcal{W}})$, representing the re-projection error of the landmark $\mathbf{l}_{i}^{\mathcal{W}} \in \mathcal{J}_{h}$, where \mathcal{J}_{h} is the set of all the landmarks visible from the frame h. The function $h(\cdot)$ denotes the camera projection model, and $\mathbf{z}^{j,h}$ represents the corresponding 2D image measurement. For further details, we refer the reader to [15]. The inertial residuals e_i are computed using the IMU preintegration algorithm described in [12]. The dynamics residuals are detailed in Sec. III-D. The error term e_m represents prior information obtained from marginalization. The marginalization factor encodes information about guantities that fall outside the current sliding window. We follow the marginalization strategy proposed in [15]. This approach distinguishes between variables to marginalize (included in the derivation of the marginalization residual) and variables to drop. Variables to drop are those that are not connected to keyframes, such as 3D points visible only from frames outside the sliding window that are not selected as keyframes. Dropping these variables, rather than marginalizing them, preserves the sparsity of the Jacobian in Eq. 3. Our implementation of the sliding-window optimization is based on [15]. We integrate this VIO backend with the visual frontend introduced in [14]. The code for this VIO pipeline is publicly available as opensource¹. We incorporate the proposed 6-DoF hybrid-dynamics model, the previous 3-DoF hybrid-dynamics model [16], as well as the baselines VIMO [1] and VID [2] into this VIO system.

¹https://github.com/uzh-rpg/rpg_svo_pro_open

D. Dynamics Residuals

We define the collective thrust measurement model as: $\hat{f}_k^{\mathcal{B}} = f_{t_k}^{\mathcal{B}} + f_{res_k}^{\mathcal{B}} + n_{f_t}$. In addition to the residual force $f_{res_k}^{\mathcal{B}}$, we also consider a zero-mean gaussian noise $n_{f_t} \sim \mathcal{N}(0, \sigma_{f_t}^2)$ to account for uncertainty in the force direction. The torque measurement model is: $\hat{\tau}_k^{\mathcal{B}} = \tau_k^{\mathcal{B}} + \tau_{res_k}^{\mathcal{B}}$. The torque measurement $\hat{\tau}_k^{\mathcal{B}}$ is used to optimize the B-spline representing the quadrotor body rates as described in Sec. III-B1. The body rate measurement model is: $\hat{\omega}_k^{\mathcal{B}} = \omega_k^{\mathcal{B}} + n_{\omega}$, where $\omega_k^{\mathcal{B}}$ is sampled from the B-spline and n_{ω} is a noise value that accounts for uncertainty in the B-spline fitting process. Given two consecutive states at times t_k and t_{k+1} , the dynamics motion constraint is:

$$\boldsymbol{e}_{d}^{k} = \begin{bmatrix} \boldsymbol{\alpha}_{\mathcal{B}_{k+1}}^{\mathcal{B}_{k}} - \hat{\boldsymbol{\alpha}}_{\mathcal{B}_{k+1}}^{\mathcal{B}_{k}} \\ \boldsymbol{\beta}_{\mathcal{B}_{k+1}}^{\mathcal{B}_{k}} - \hat{\boldsymbol{\beta}}_{\mathcal{B}_{k+1}}^{\mathcal{B}_{k}} \\ \boldsymbol{\gamma}_{\mathcal{B}_{k+1}}^{\mathcal{B}_{k}} - \hat{\boldsymbol{\gamma}}_{\mathcal{B}_{k+1}}^{\mathcal{B}_{k}} \end{bmatrix}, \boldsymbol{W}_{d}^{k} = \begin{bmatrix} \boldsymbol{P}\boldsymbol{W}_{d}^{k} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{F}\boldsymbol{W}_{d}^{k} \end{bmatrix}. \quad (4)$$

The quantities $\alpha_{\mathcal{B}_{k+1}}^{\mathcal{B}_k}$, $\beta_{\mathcal{B}_{k+1}}^{\mathcal{B}_k}$, and $\gamma_{\mathcal{B}_{k+1}}^{\mathcal{B}_k}$ are the position, velocity, and orientation change in the time interval $[t_k, t_{k+1}]$:

$$\boldsymbol{\alpha}_{\mathcal{B}_{k+1}}^{\mathcal{B}_{k}} = \boldsymbol{R}_{\mathcal{W}}^{\mathcal{B}_{k}}(\boldsymbol{p}_{\mathcal{B}_{k+1}}^{\mathcal{W}} - \boldsymbol{p}_{\mathcal{B}_{k}}^{\mathcal{W}} - \boldsymbol{v}_{\mathcal{B}_{k}}^{\mathcal{W}} \Delta t_{k} - \frac{1}{2}\boldsymbol{g}^{\mathcal{W}} \Delta t_{k}^{2}) - \frac{1}{2}\boldsymbol{f}_{e_{k}}^{\mathcal{B}} \Delta t_{k}^{2} \boldsymbol{\beta}_{\mathcal{B}_{k+1}}^{\mathcal{B}_{k}} = \boldsymbol{R}_{\mathcal{W}}^{\mathcal{B}_{k}}(\boldsymbol{v}_{\mathcal{B}_{k+1}}^{\mathcal{W}} - \boldsymbol{v}_{\mathcal{B}_{k}}^{\mathcal{W}} - \boldsymbol{g}^{\mathcal{W}} \Delta t_{k}) - \boldsymbol{f}_{e_{k}}^{\mathcal{B}} \Delta t_{k} \boldsymbol{\gamma}_{\mathcal{B}_{k+1}}^{\mathcal{B}_{k}} = \boldsymbol{q}_{\boldsymbol{W}}^{\mathcal{B}_{k}} \otimes \boldsymbol{q}_{\mathcal{B}_{k+1}}^{\boldsymbol{W}}.$$
(5)

The quantities $\hat{\alpha}_{\mathcal{B}_{k+1}}^{\mathcal{B}_k}$, $\hat{\beta}_{\mathcal{B}_{k+1}}^{\mathcal{B}_k}$, $\hat{\gamma}_{\mathcal{B}_{k+1}}^{\mathcal{B}_k}$ are the preintegrated position, velocity, and orientation. We calculate them in the discrete time using Euler numerical integration over the timestep δt :

$$\hat{\boldsymbol{\alpha}}_{i+1}^{\mathcal{B}_{k}} = \hat{\boldsymbol{\alpha}}_{i}^{\mathcal{B}_{k}} + \hat{\boldsymbol{\beta}}_{i}^{\mathcal{B}_{k}} \delta t + \frac{1}{2} \boldsymbol{R}(\hat{\boldsymbol{\gamma}}_{i}^{\mathcal{B}_{k}}) \hat{\boldsymbol{f}}_{i}^{\mathcal{B}} \delta t^{2}$$
$$\hat{\boldsymbol{\beta}}_{i+1}^{\mathcal{B}_{k}} = \hat{\boldsymbol{\beta}}_{i}^{\mathcal{B}_{k}} + \boldsymbol{R}(\hat{\boldsymbol{\gamma}}_{i}^{\mathcal{B}_{k}}) \hat{\boldsymbol{f}}_{i}^{\mathcal{B}} \delta t$$
$$\hat{\boldsymbol{\gamma}}_{i+1}^{\mathcal{B}_{k}} = \hat{\boldsymbol{\gamma}}_{i}^{\mathcal{B}_{k}} \otimes \begin{bmatrix} 1\\ \frac{1}{2} \hat{\boldsymbol{\omega}}_{i}^{\mathcal{B}} \delta t \end{bmatrix}, \qquad (6)$$

where the initial conditions are: $\hat{\alpha}_{\mathcal{B}_{k}}^{\mathcal{B}_{k}} = \hat{\beta}_{\mathcal{B}_{k}}^{\mathcal{B}_{k}}$ equal to 0 and $\hat{\gamma}_{\mathcal{B}_{k}}^{\mathcal{B}_{k}}$ equal to the identity quaternion, with $R(\hat{\gamma}_{i}^{\mathcal{B}_{k}})$ the rotation matrix representation of $\hat{\gamma}_{i}^{\mathcal{B}_{k}}$. We run the propagation algorithm at 100 [Hz], which is the sampling frequency of the dynamics measurements. The weight assigned to the residual, ${}^{P}W_{d}^{k}$ is the inverse of the covariance matrix derived by linearizing the error $\delta z = [\delta \alpha, \delta \beta, \delta \theta]^{\top}$, and noise, $n = [n_{f_{t}}, n_{\omega}]^{\top}$ in δt . The quantity $\hat{f}_{e_{k+1}}^{\mathcal{B}}$ is the external force preintegrated term. Following the derivation proposed in [2], we compute this term as the mean difference between the acceleration measurements and the thrust measurements in the time window $[t_{k}, t_{k+1}]$: $\hat{f}_{e_{i+1}}^{\mathcal{B}} = \hat{f}_{e_{i}}^{\mathcal{B}} + R(\gamma_{i}^{\mathcal{B}_{k}})(\hat{a}^{\mathcal{B}_{i}} - b_{a_{k}} - \hat{f}_{i}^{\mathcal{B}})$, with $\hat{f}_{e_{i}}^{\mathcal{B}} = 0$. The weight ${}^{F}W_{d}^{k}$ is obtained using the same covariance propagation schema as described above with noise $n = [n_{a} - n_{f_{t}}, n_{b_{a}}]^{\top}$. This preintegrated term depends on the accelerometer bias. To avoid repropagating this term each time the accelerometer bias estimate changes, we adopt the strategy proposed in [12]. Specifically, the preintegration term is corrected by its first-order approximation with respect to the change in the accelerometer bias.

E. Learning Residual Dynamics

The dynamics residual term described above relies on accurately estimating the forces acting on the vehicle. In previous works, modeling aerodynamic effects—such as drag forces—requires knowledge of the vehicle's linear velocity, which is not directly measured but instead forms part of the state to be estimated. As a result, simply employing a stateof-the-art quadcopter dynamics model is not feasible.

In our approach, we have access to rotor speeds and IMU measurements, as these quantities are directly measured. Our goal is to estimate residual forces $f_{res}^{\mathcal{B}}$ and torques $\tau_{res}^{\mathcal{B}}$, which account for aerodynamic effects and model mismatches, including systematic noise, between the commanded or measured thrust and torque and the actual force acting on the robot in the absence of external disturbances. To estimate the residual forces, we propose two temporal convolutional networks (TCN). TCNs have been shown to be as effective as recurrent networks in modeling temporal sequences [42], while requiring less computation. The first TCN is used to predict the residual thrust, the second TCN is used to predict the residual torque. We found empirically that using two TCNs produces more accurate predictions than using a single TCN to predict both the residual thrust and torque. A TCN architecture consists of four temporal convolutional layers with 64 filters each, followed by three temporal convolutional layers with 128 filters each. A final linear layer maps the output to a 3-dimensional vector representing the learned residual thrust or torque. The network predicting the residual thrust takes a buffer of collective thrust and gyroscope measurements as input. The network predicting the residual torque takes a buffer of torques and gyroscope measurements as input. In both cases, the gyroscope measurements are bias-corrected. The inputs are sampled at 100 Hz and fed into the TCNs as input buffers of 100 ms length, resulting in 10 thrust or torque and 10 gyroscope measurements per buffer. We use the Gaussian Error Linear Unit (GELU) activation function. During training, we model the bias as a random Gaussian variable with zero mean and a standard deviation of 1e-3. At deployment, the current bias estimate is used instead. Given a buffer of measurements over the time interval $\Delta t_{i,j} = t_j - t_i$, the TCNs output the residual thrust $f_{res_i}^{\mathcal{B}}$ and torque $\tau_{res_i}^{\mathcal{B}}$. The residual thrust is added to the thrust inputs $f_{t_k}^{\mathcal{B}}$ with $k \in [t_i, t_j]$ to compute the forces $\hat{f}_k^{\mathcal{B}}$, which account for aerodynamics and robot miscalibration into account. Similarly, the residual torque is added to the torque inputs $au_k^{\mathcal{B}}$ to compute the toques $\hat{\tau}_k^{\mathcal{B}}$. The corrected torques are used as measurements in the optimization of the B-spline representing the quadrotor body rates, see Sec. III-B1. The quadrotor body rates are sampled from the B-spline. These body rates, as well as the corrected thrusts, are used inside the preintegration framework, see Sec. III-D, to derive relative velocity, position, and orientation measurements. We train the neural network that predicts the

residual thrust to minimize the MSE loss:

$$\mathcal{L}_{\boldsymbol{f}}^{HD}(\Delta\boldsymbol{\alpha},\Delta\hat{\boldsymbol{\alpha}},\Delta\boldsymbol{\beta},\Delta\boldsymbol{\beta}) = \frac{1}{M} \sum_{m=1}^{M} (\left\|\boldsymbol{\alpha}_{\mathcal{B}_{i}}^{\mathcal{B}_{j}} - \hat{\boldsymbol{\alpha}}_{\mathcal{B}_{i}}^{\mathcal{B}_{j}}\right\|^{2} + \left\|\boldsymbol{\beta}_{\mathcal{B}_{i}}^{\mathcal{B}_{j}} - \hat{\boldsymbol{\beta}}_{\mathcal{B}_{i}}^{\mathcal{B}_{j}}\right\|^{2}).$$
(7)

We train the neural network that predicts the residual torque to minimize the MSE loss:

$$\mathcal{L}_{\tau}^{HD}(\Delta \boldsymbol{\gamma}, \Delta \hat{\boldsymbol{\gamma}}) = \frac{1}{M} \sum_{m=1}^{M} \left\| \boldsymbol{\gamma}_{\mathcal{B}_{i}}^{\mathcal{B}_{j}} - \hat{\boldsymbol{\gamma}}_{\mathcal{B}_{i}}^{\mathcal{B}_{j}} \right\|^{2}.$$
 (8)

where $\alpha_{\mathcal{B}_i}^{\mathcal{B}_j}$, $\beta_{\mathcal{B}_i}^{\mathcal{B}_j}$, and $\gamma_{\mathcal{B}_i}^{\mathcal{B}_j}$ are the ground-truth velocity, position, and orientation changes, and M is the batch size. To learn the aerodynamic effects and systematic noise in the input measurements, the training data is collected under conditions where no external forces act on the drone. Furthermore, our training approach does not require ground-truth force data. The training data can be generated using a Structure-from-Motion pipeline [20, 17] if a motion-capture system is not available. The neural networks are trained on a laptop running Ubuntu 20.04 with an Intel Core i9 2.3 GHz CPU and an Nvidia RTX 4000 GPU. Training is performed using the Adam optimizer with an initial learning rate of 1e-4. The inference runs either on the laptop or on an NVIDIA Jetson TX2, which is the computing platform onboard the quadrotor. The TCN inference runs at \approx 180 Hz on an NVIDIA Jetson TX2 which exceeds the required 100 Hz state-update rate of our controllers for agile flight.

IV. EXPERIMENTS ON BENCHMARK DATASETS

In our experiments, we compare our method against HDVIO VIMO, VID, and the same VIO system without the proposed hybrid-dynamics model (hereafter referred to as VIO). Following best practices for evaluating VIO algorithms [43], we use the following metrics: translation absolute trajectory error (ATE_T [m]), rotation absolute trajectory error (ATE_R [deg]), and relative translation and rotation errors. These error metrics are computed after aligning the estimated trajectory using the pose-yaw method [43]. For a detailed description of these metrics, we refer the reader to [43]. In addition to trajectory evaluation, we evaluate the accuracy of force estimation by computing the root mean squared error (RMSE) between the ground-truth and predicted forces.

A. NeuroBEM Dataset

Experimental Setup: In this set of experiments, we evaluate the hybrid dynamics model independently of the full VIO pipeline. Specifically, we evaluate the accuracy of the predicted external force, $f^{\mathcal{B}}$, acting on the quadcopter. For this evaluation, we utilize the challenging NeuroBEM dataset [6], which features data from indoor drone flights at speeds of up to 65 km/h. The dataset includes rotor speeds (from which thrust and torque measurements are derived), IMU measurements, and ground-truth force data. We compare the force estimation accuracy of our learned dynamics model to several state-ofthe-art baselines:

4

TABLE I: Comparison in terms of RMSE of the force, F, and torque, M, estimates on the test set of the NeurBEM dataset. Polyfit, NeuroBEM, and HDVIO2.0 are data-driven methods. Quadratic fit and BEM are first-principles methods. Our method performs remarkably well given it has no information about the velocity or orientation of the vehicle and only falls short of the NeuroBEM method which has access to the full vehicle state. The values for baseline methods are taken from [6]. In bold are the best values, and in underlined are the second-best values.

Model	Inputs	F _{xy} [N]	<i>F</i> z [N]	M _{xy} [Nm]	Mz [Nm]	F [N]	М [Nn]
Quadratic Fit BEM [6] PolyFit [7] NeuroBEM [6]	thrust full state full state full state	1.536 0.803 0.453 0.204	1.381 1.265 0.832 0.504	0.104 0.090 <u>0.027</u> 0.014	0.033 0.017 0.008 0.004	1.486 0.982 0.606 0.335	0.087 0.074 <u>0.022</u> 0.012
HDVIO2.0 (Ours)	dynamics+gyro	0.402	0.672	0.014	0.006	0.491	0.012

Groundtruth BEM HDVIO2.0 (Ours) Ξ_{6} 30 Drag Force F_{xy} [0 2 7 9 4 Ξ F_z 20Thrust 100 0 2

Time [s] Time [s] Fig. 3: This figure illustrates the results shown in Tab. I by exemplarily showing the force estimates on a very fast trajectory from the NeuroBEM dataset. Our HDVIO2.0 clearly outperforms the state-of-the-art first-principle model BEM and is able to model aerodynamic effects accurately on short timescales

• Quadratic Fit: The model used in VIMO and VID.

 $\mathbf{4}$

0

2

- BEM: A first-principles model that computes forces and torques acting on a propeller by integrating over infinitesimal area elements of the propeller [37, 6].
- PolyFit: A data-driven model that relies on polynomial basis functions to capture drone dynamics [7].
- NeuroBEM: A hybrid model that augments the BEM model with a learning-based component [6].

Notably, all baselines, except for the Quadratic Fit model, require the full vehicle state as input, including linear and angular velocities.

Evaluation: The results are summarized in Tab. I. The NeuroBEM method, which has access to the full robot state, achieves the best performance. However, our HDVIO2.0 outperforms the BEM model in terms of residual thrust estimates by a factor of three and the PolyFit model by a factor of two. This is further illustrated in Fig. 3, which shows the groundtruth forces alongside the forces estimated by BEM and our HDVIO2.0 during the first five seconds of a high-speed flight. In this flight, the quadrotor accelerates to 15 m/s while following a lemniscate track. The performance of our HDVIO2.0 is remarkable as it achieves this performance without access to ground-truth state information, such as the vehicle's linear or angular velocity, which the baselines require. Moreover, our HDVIO2.0 achieves very similar accuracy as NeuroBEM in estimating torques. From this experiment, we conclude that our learning-based component effectively captures the aerodynamic forces acting on the quadrotor, demonstrating its suitability for integration into a VIO pipeline. Additionally, the ability to estimate aerodynamic forces with such precision

Fig. 4: The performance of VIO, HDVIO and HDVIO2.0 is compared on the Egg 8 m/s trajectory. The ground truth is depicted in black in the Top-Down view (right plot). Our new proposed method outperforms HDVIO and the VIO.

using only a history of thrust, torque and gyroscope measurements is an interesting and significant finding in itself.

B. Blackbird Dataset

Experimental Setup: In this set of experiments, we evaluate our system and the baseline methods on the Blackbird dataset [18]. The dataset provides rotor speed measurements recorded onboard a quadrotor flying within a motion-capture system, which we use to compute mass-normalized collective thrust measurements. Additionally, the dataset includes IMU measurements and, in some sequences, photorealistic images of synthetic scenes. The Blackbird dataset comprises 18 diverse trajectories with speeds ranging from 0.5 m/s to 9.0 m/s. Since the dataset does not feature external disturbances, we focus on evaluating the accuracy of pose estimates. Among the trajectories with available camera images, we select six representative sequences for evaluation: Bent Dice, Clover, Egg, Mouse, Star, and Winter. The remaining 80% of the trajectories, corresponding to approximately 2 hrs of flight data, are used for training, and 20 % are reserved for validation of our neural networks. To assess the generalization capability of our system, we also train our network on a reduced training dataset containing only trajectories with speeds up to 2 m/s. This allows us to evaluate the performance of our method on higher-speed trajectories beyond those seen during training.

Evaluation: We present the ATE_T and ATE_R results for the evaluation sequences in Table II. Our approach consistently outperforms VIO baseline, VIMO, VID, and HDVIO demonstrating the effectiveness of our 6-DoF hybrid drone model. The performance improvement becomes more pronounced at higher speeds, achieving an improvement of the ATE_T of 57 % and 27 % compared to VIO and HDVIO respectively, at the maximum velocity of 8 m/s. This result is explained by the fact that our method includes the learned drag forces as measurements in the dynamics motion constraint. In Fig. 4, we provide the relative translation error alongside a topdown view of the trajectories estimated by HDVIO2.0 and the ground truth. Notably, our system continues to outperform the baselines across almost all sequences, even when the networks are trained on the reduced dataset (containing trajectories with speeds up to 2 m/s), as shown in the last column of Table II. This result highlights that HDVIO2.0 is capable of generalizing to velocities up to 4x higher than those present in

the training data. The fact that the accuracy of HDVIO2.0 and HDVIO2.0* is higher than HDVIO in most of the sequences highlights the benefit of incorporating the rotational dynamics in the dynamics residuals. In Table III, we show an ablation study to evaluate the effect of learning residual thrusts and torques. The results on the faster sequences of the Blackbird dataset show that including learned residuals in the drone dynamics improve the trajectory estimates.

C. VID Dataset

Experimental Setup: In this set of experiments, we evaluate the ability of our system to estimate external forces acting on the quadrotor and test the performance of our learned component in scenarios where ground-truth data from a motion capture system is unavailable. For this purpose, we use the VID dataset [2], which includes visual, inertial, and actuation inputs, as well as ground-truth force measurements. The dataset contains data recorded onboard a quadrotor flying both indoors, in an office room equipped with a motioncapture system, and outdoors, in a parking area. We use the provided rotor speed measurements to compute the thrust and torque values. The indoor sequences, which include portions with ground-truth force data, are used to evaluate our system capability to estimate external forces. The outdoor sequences are used to validate our learned module when ground-truth training data for position, velocity, and orientation is obtained from an offline visual-inertial SLAM system [17] rather than a motion-capture system. Since the outdoor sequences do not include ground-truth force measurements, we focus on the estimation of the drone poses. Since the quadrotor mass differs between the indoor and outdoor sequences, we train different neural networks for the indoor drone configuration and the outdoor configuration. For the indoor configuration, we train our neural networks using sequences without external perturbations. These sequences consist of hover, circle, and figure 8 trajectories, amounting to only 6 min of flight data. Of this data, 80% is used for training and 20% for validation. For the outdoor configuration, the sequences include circle, figure 8, and rectangle trajectories. We use one figure 8 and one rectangle trajectory for testing. The remaining data, totaling 11 min of flight time, is split into 80% for training and 20%for validation.

Evaluation: We compare the external force estimates of VIMO, VID, HDVIO, and HDVIO2.0 in an indoor sequence where the drone is attached to an elastic rope, with the other end connected to a force sensor, and in a sequence where an unknown external load is attached to the drone, as summarized in Table IV. The force estimates are aligned with the motion-capture reference frame using the *posyaw* alignment method [43]. HDVIO2.0 significantly outperforms the baselines, VIO and VID, while the performance increase compared to HDVIO is smaller. As shown in Fig. 5, our method significantly improves force estimation along the *z*-axis. This improvement is attributed to our neural network. We believe that the proposed network has learned to compensate for a systematic residual error in the thrust inputs, likely caused by inaccuracies in the thrust coefficients used

TABLE II: Evaluation of the trajectory estimates in the Blackbird dataset. HDVIO2.0* (ours) is trained on a reduced training set, with speeds up to 2 m/s to evaluate generalization performance. In bold are the best values, and in underlined are the second-best values. Our method, either using the full training dataset or the reduced one, outperforms the baselines in all the sequences.

Trajectory		Evaluation Metric: ATE _T [m] / ATE _R [deg]					
Name	[m/s]	VIO	VIMO	VID	HDVIO	HDVIO2.0 (Ours)	HDVIO2.0* (Ours)
Bent Dice	3	0.20 / 1.78	0.31 / 1.53	0.25 / 1.18	0.21 / 1.53	0.18 / 0.84	0.16 / 0.90
Clover	5	0.90 / 3.52	0.88 / 3.66	0.83 / 2.48	0.60 / 2.08	0.49 / 1.99	0.48 / 1.93
Egg	5	1.07 / 1.54	0.75 / 1.34	0.81 / 1.61	0.59 / 1.21	0.56 / 1.07	0.56 / <u>1.20</u>
Egg	6	1.40 / 2.35	0.98 / 4.89	1.10 / 2.42	0.83 / 1.62	<u>0.69</u> / 1.60	0.58 / 1.86
Egg	8	1.79 / 4.55	1.57 / 3.69	1.47 / 4.84	1.06 / 2.89	0.77 / 2.61	1.44 / 2.51
Mouse	5	1.10 / 4.54	0.76 / 2.14	0.54 / 2.10	0.36 / 1.40	0.22 / 0.99	0.34 / 1.01
Star	1	0.17 / 0.78	0.18 / 1.05	0.18 / 0.54	0.16 / 0.58	0.09 / 0.74	0.10 / 0.49
Star	3	0.62 / 3.50	0.43 / 1.38	0.50 / 2.93	0.38 / 1.40	0.19 / 0.93	0.27 / 0.96
Winter	4	0.97 / 2.92	0.69 / 2.46	0.66 / 2.05	0.57 / <u>1.54</u>	0.12 / 0.78	0.51 / 2.02

TABLE III: Ablation study of the effect of learning residuals (LR) on the trajectory estimates for the Blackbird dataset. In bold are the best values.

Traj.	$v_{\rm max}$ [m/s]	ATE _T [m]		ATE_R [deg]		
		w/ LR	w/o LR	w/ LR	w/o LR	
Clover	5	0.49	0.71	1.99	2.24	
Egg	6	0.69	0.92	1.60	1.84	
Mouse	5	0.22	0.43	0.99	1.86	

TABLE IV: Comparison of the external force estimate due to a pulling elastic rope (*sequence 17* of the VID dataset) or an external load (*sequence 16* of the VID dataset). HDVIO2.0 drastically improves the force estimation along the z axes. In bold are the best values.

Method	Pullin	External Load	
	F_{z} [N]	F [N]	F_{z} [N]
VIMO	1.73	1.08	0.81
VID	1.96	1.12	0.45
HDVIO	0.55	0.65	0.34
HDVIO2.0 (Ours)	0.39	0.59	0.34

to compute the collective thrust from rotor speed measurements. In these sequences, the slow vehicle motion and the textured environment simplify the pose estimation problem. Consequently, VIO, VIMO, VID, HDVIO and our method achieve similar pose estimation performance, with a ATE_T of 0.02 m and of 0.10 m, respectively.

The Table . V presents the evaluation of pose estimates

Fig. 5: Comparison of the external force estimate in the *sequence 17* of the VID dataset. In this sequence, the drone is attached to an elastic rope. The other end of the rope is attached to a force sensor. HDVIO2.0 drastically improves the force estimation along the z axes.

TABLE V: We demonstrate the performance of HDVIO2.0 in a setting where
the training data for the learning-based component is obtained from a vision-
based SLAM system in the outdoor sequences of the VID dataset. The flown
trajectories are at low speeds, below 3 m/s, allowing all the methods to perform
well, with HDVIO2.0 showing the highest accuracy. In bold are the best
values.

Method	Figure 8		Rectangle		
	ATE _T [m]	ATE _R [deg]	ATE _T [m]	ATE _R [deg]	
VIO	1.89	4.02	2.09	2.01	
VIMO	1.67	3.70	1.89	1.92	
VID	1.84	3.50	1.99	2.49	
HDVIO	1.48	3.70	1.72	1.68	
HDVIO2.0 (Ours)	1.41	0.71	1.69	1.61	

in the outdoor sequences. Since the trajectories are flown at low speeds below 3 m/s, all three methods demonstrate good performance, with HDVIO2.0 achieving the highest accuracy. Remarkably, including the rotational dynamics in the estimation process improves the rotation error of 80%compared to the previous system HDVIO in the sequence *Figure 8*. This experiment highlights that our learning-based dynamics model can be effectively trained without relying on an external motion-capture system.

V. FLIGHTS IN CONTINUOUS WIND

In these experiments, we demonstrate that HDVIO2.0 can estimate continuous external disturbances, such as continuous wind, outperforming all the state-of-the-art methods. To this end, we fly a quadrotor in a controlled wind field, as illustrated in Fig.6. Details about the quadrotor platform can be found in[44]. The platform is equipped with an onboard Intel RealSense T265² camera, which provides camera and IMU measurements. While the camera includes stereo fisheye sensors, we only use images from the left camera. Rotor speed measurements are not available on this quadrotor platform. Instead, we use the collective thrust commands output by the MPC controller [44] to control the vehicle. The quadrotor is flown in a motion-capture system that provides pose data at an update rate of 200 Hz. We conduct experiments using two quadrotor configurations: one with the vehicle in its nominal state and another with a 22 cm×16 cm dragboard attached. The dragboard is mounted such that its normal aligns with

²https://www.intelrealsense.com/wp-content/uploads/2019/09/Intel_ RealSense_Tracking_Camera_Datasheet_Rev004_release.pdf

Fig. 6: A quadrotor with a dragboard attached is flown on a circular trajectory through a wind field generated with three industrial fans. Our HDVIO2.0 is used to estimate the position of the drone (shown in red) and the external disturbance force (black arrows) acting on the vehicle. The ground-truth position of the vehicle is shown in blue.

the drone's body y-axis. This attachment increases drag in the y-direction by more than a factor of two, making the vehicle significantly more sensitive to crosswinds.

1) Wind Generation: To generate a wind field, we placed three axial fans (Ekström 12 inch, as shown in Fig. 6) in an office-like room measuring 8x10 m. The fans were positioned at a height of 1.6 m above the ground and angled slightly inwards to ensure high wind speeds across a virtual tube in front of them. Each fan has an advertised air circulation rate of $1.3 \text{ m}^3/\text{s}$ and produces a measured wind speed of up to 8 m/s at its front grill. To quantitatively evaluate the performance of our method, we require ground-truth data for the external wind forces. In the following, we describe the procedure used to obtain this ground-truth data.

2) Wind Speed Map: In the first step, we measured the wind produced by our experimental setup. Local wind speeds were recorded at 50 points within the wind cone in front of the fans, with a higher sampling density in regions where wind speed changes more rapidly. Measurements were taken using a handheld anemometer (Basetech BS-10AN), and the position of the anemometer was tracked using the motion-capture system. To generate the ground-truth wind speed map shown in Fig. 6, a smoothing spline was fitted to the recorded data.

3) Lift and Drag Coefficients: We compute the wind force based on the wind speed map. The aerodynamic forces acting on a quadrotor are primarily determined by three components: the body/fuselage drag f_d^{fus} , the induced drag from the propellers f_d^{ind} , and the lift and drag incurred by the flat-plate drag board attached to the top of the quadrotor, f_l^{brd} and f_d^{brd} . The magnitudes of these forces can be approximated using

TABLE VI: Trajectories estimates in drone flights in a wind field with wind gusts up to 25 km/h. We use (d) to indicate that a drag board was attached to the drone. In bold are the best values.

	$ATE_T [m] / ATE_R [deg]$			
Method	Circle (d)	Circle	Lemniscate	Lemniscate
			(d)	
VIO	0.07 / 2.02	0.06 / 1.21	0.38 / 2.39	0.27 / 2.44
VIMO	0.10 / 1.80	0.08 / 1.19	0.34 / 2.93	0.32 / 1.93
VID	0.10 / 2.31	0.06 / 1.37	0.53 / 2.39	0.28 / 2.05
HDVIO	0.07 / 2.06	0.06 / 1.17	0.30 / 2.81	0.20 / 1.84
HDVIO2.0 (Ours)	0.05 / 1.02	0.04 / 1.02	0.21 / 2.34	0.14 / 1.53

TABLE VII: Comparison of the external force estimate due to continuous wind with gusts up to 25 km/h. We use (d) to indicate that a drag board was attached to the drone. In bold are the best values.

	F [N]			
Method	Circle (d)	Circle	Lemniscate (d)	Lemniscate
VIMO	0.62	0.26	0.52	0.44
VID	0.56	0.33	0.73	0.51
HDVIO	0.54	0.23	0.44	0.33
HDVIO2.0 (Ours)	0.51	0.23	0.39	0.31

established aerodynamic models [6, 8, 45]:

$$f_d^{\text{fus}} = 0.5 \rho A^{\text{fus}} c_d^{\text{fus}} v_{\text{rel}}^2$$

$$f_d^{\text{ind}} = k v_{\text{rel}}$$

$$f_{l|d}^{\text{brd}} = 0.5 \rho A^{\text{brd}} c_{l|d}^{\text{brd}}(\alpha) v_{\text{rel}}^2,$$
(9)

where ρ is the air density, A is a surface area, v_{rel} the relative air speed, α is the angle of attack of the dragboard, k is the propeller drag coefficient, and $c_{l|d}$ are the lift and drag coefficients of the fuselage and dragboard. The relative air speed is calculated as the norm of the relative velocity, which is the sum of the vehicle's ego motion and the wind velocity.

In this model, the fuselage is approximated as a square prism with an angle-of-attack-independent drag coefficient of $c_d^{\text{fus}} = 2.0$ [46]. For the flat-plate wing, we employ a simplified high-angle-of-attack model widely used in propeller modeling [37, 45], which also aligns well with experimental data for flat-plate wings [47]:

$$c_l^{\text{brd}}(\alpha) = \sin(2\alpha)$$
, $c_d^{\text{brd}}(\alpha) = 2\sin^2(\alpha)$.

To validate the predicted forces for the fuselage and drag board described in Eq. (9), the quadrotor was mounted on a load cell³. At a wind speed of 7 m/s, the measured lift and drag forces were within 10% of the calculated values. Additionally, the linear propeller drag coefficient was determined to be k = 0.145 Ns/m.

4) Wind Forces: Our method distinguishes between aerodynamic effects (such as body drag and induced drag) and external forces. To obtain the ground truth for the disturbance caused by the wind, we calculate the forces acting on the quadrotor with the fans turned on and subtract the forces calculated when the fans are turned off.

A. Dataset Collection

The training data consists of approximately 10 min of random trajectories flown without wind. We use 80% of

Fig. 7: Wind disturbance estimates. The magnitude and the y-axis component of the wind force estimated by HDVIO2.0 and VIMO. Left: drone equipped with a dragboard. Right: standard drone configuration. In all the plots, it is visible that HDVIO2.0 achieves more accurate force estimates than VIMO.

Fig. 8: Accelerometer bias estimates. The ground-truth (GT) bias is obtained from the VIO system. The estimates of our HDVIO2.0 match the ground-truth values, while, VIMO and VID estimates diverge along the x-axis and the y-axis.

this data for training the neural network and the remaining 20% for validation. We exclusively use *random* trajectories, generated by sampling position data with a Gaussian Process. This method ensures diverse training data and helps prevent overfitting to specific trajectories. The test data is collected with the quadrotor flying in a wind field with gusts reaching up to 25 km/h. The test trajectories include a circle and a lemniscate, both with a maximum speed of 2 m/s. Additionally, we recorded a second dataset that features the same training, validation, and test trajectories, but with the quadrotor equipped with a drag board. In this setup, the drag and the external force due to wind gusts are increased, emphasizing the advantage of HDVIO2.0 over the baselines.

1) Evaluation: We present the estimation of the external force due to wind gusts in Fig. 7 and Table VII. Since the wind gusts impact the quadrotor along the y-axis of the world reference frame, we display both the y-component of the estimated force and the force norm. The external forces are estimated in the quadrotor's body frame, then aligned to the world frame (which corresponds to the motion-capture reference frame) using the ground-truth orientations. This alignment allows for a direct comparison between the estimates of our method and those from the baselines. Notably, HDVIO2.0 is able to

acccurately predict the wind gusts when the quadrotor enters the wind field. This is evident in Fig. 7 from the fact that our method accurately captures the peaks of the wind force.

As noted by the authors [1], the measurement model in VIMO, when dealing with continuous external disturbances, introduces an inconsistency in the estimation of the accelerometer bias, leading to decreased motion estimate accuracy. We show in Fig. 8 the accelerometer bias estimated by the VIO algorithm, VIMO, VID, and our method for a sequence in which the quadrotor, equipped with the drag board, flies a circle trajectory. Although we do not have access to the ground-truth accelerometer bias, we consider the one estimated by the VIO algorithm to be a good approximation of the true value, given that VIO achieves very high performance in this sequence (see Table VI) due to the high number of visual features being tracked. The bias estimate of HDVIO2.0 closely tracks the VIO estimate, while VIMO and VID estimate diverges along the x-axis and y-axis to an incorrect value. We include the position and orientation absolute trajectory errors in Table VI. In all four sequences, the rich texture environment simplifies the pose estimation problem, resulting in accurate poses estimates for all the algorithms. However, improvements in the rotation estimates, driven by the inclusion of rotational dynamics in the estimation process, are evident.

VI. DISCUSSION

The proposed hybrid dynamics model, which integrates a point-mass quadrotor model with a learning-based residual force and torque terms, addresses the limitations of the state-of-the-art visual-inertial-model-based odometry systems, VIMO and VID, under conditions of significant model mismatch (e.g., high speeds, systematic noise) and continuous external disturbances, such as persistent wind. Moreover, the inclusion of rotational dynamics in VIO estimation process provides additional information into the robot's behavior, resulting in improved performance compared to the previous method, HDVIO, particularly in terms of pose estimation accuracy. Our learning-based module outperforms the state-of-the-art first-principle quadrotor models, which have access to the full quadrotor state, in predicting aerodynamic drag forces. Notably, unlike these methods, our HDVIO2.0 relies only on thrust, torque and gyroscope measurements, which are commonly available on most commercial drone platforms.

Another advantage of our approach is that our network does not require ground-truth thrust forces for supervised training. Instead, our training strategy minimizes the difference between the relative position, velocity and orientation changes predicted by propagating our hybrid drone dynamics and the supervision quantities. The supervision signal can be obtained from SLAM solutions [17, 20], which rely solely on camera and IMU data, eliminating the need for costly motion-capture systems and simplifying the data collection process. In Table V, we present an experiment where the learning-based component was trained exclusively using position, velocity and orientation signals obtained via SLAM. Furthermore, data collection is simplified to the extent that even a human pilot can control the drone, as expert pilots typically issue collective thrust commands alongside desired body rates [48]. This simple training data collection mitigates a limitation of our hybrid drone model: while a single dynamics model is tailored to a specific drone, recording new data to train a model for a different drone is straightforward.

Our hybrid drone model demonstrates strong generalization capabilities to velocities and trajectories that were not included in the training data. To show generalization to unseen velocities, we train HDVIO2.0* on the dataset introduced in Sec. IV-B, which contains speeds only up to 2 m/s, compared to HDVIO2.0 which is trained on speeds up to 9 m/s. When tested on the full range of speeds (up to 8 m/s), HDVIO2.0* achieves comparable results to HDVIO2.0 and still outperforms the baselines (see Table II). We further evaluate generalization across different trajectory types in various scenarios. For example, in the NeuroBEM dataset (see Table I), 30% of the test trajectories were entirely unseen during training, while the remaining 70% differ in speed and size. In this setup, our method surpasses BEM and PolyFit by 50% and 20% in terms of force estimates, respectively, and performs comparably to NeuroBEM, which has access to the full vehicle state. Moreover, our system estimates the external force acting on a drone following an unseen random trajectory in Fig. 5). Finally, in Sec. V-A, we exclusively train our network on random trajectories and observe improved wind force estimates (see Fig. 7 and Table VII) and consistent accelerometer bias predictions (see Fig. 8). This highlights our model's robustness and versatility in real-world applications.

Furthermore, HDVIO2.0 demonstrates high robustness to VIO failures and continuous external disturbances. In Sec. IV-B, HDVIO2.0 achieves the largest improvements, with reductions of 57% and 43% in translation and rotation error compared to the VIO on the fastest trajectory, Egg 8 m/s (see Table II and Fig 4). In this scenario, motion blur and fast yaw changes make feature tracking difficult, causing the VIO system to accumulate significant drift. Additionally, neglecting drag effects in the drone model, as done in VIMO and VID, is not a valid assumption at such high speeds, and including measurements on the drone's rotational dynamics increases the information used to solve the state estimation problem (see Eq. 3).

We also evaluate the ability of HDVIO2.0 to estimate external forces in the presence of continuous perturbations, such as a pulling rope (Sec.IV-C) and wind (Sec.V). In all these challenging scenarios, HDVIO2.0 outperforms the baselines.

In this work, as in the baselines, the model is assumed to remain fixed during a flight. Changes in actuation inputs (e.g., hardware degradation) are treated as external forces. A promising direction for future work would be to train the neural network to estimate these model changes as residual forces overcoming the challenge of generating suitable training data.

In HDVIO2.0, as well as in all the baselines, we opted to use the visual frontend proposed in [14]. This decision is motivated by the high robustness demonstrated by [14], attributed to its semi-direct approach to visual feature tracking and its low computational requirements. These features make it particularly well-suited for VIO applications onboard flying vehicles.

VII. CONCLUSION

In this work, we introduces a novel method for modeling 6-DoF quadrotor dynamics in visual-inertial odometry systems. Our dynamics model integrates a first-principles quadrotor model with a learning-based component that captures unmodeled effects, such as aerodynamic drag. The proposed method addresses the limitations of the state-of-the-art systems, VIMO, VID, and HDVIO, improving the accuracy of motion estimation and external force estimation.

Our learning-based component demonstrates strong generalization capabilities to trajectories and speeds beyond those present in the training dataset. Furthermore, an evaluation of residual force estimation accuracy reveals that our learningbased approach outperforms first-principles models, even those with access to the full state of the quadrotor. Controlled experiments in windy conditions further validate our hybrid dynamics model's ability to accurately predict forces acting on the quadrotor due to continuous wind.

The HDVIO2.0 approach enhances the safety of autonomous drone operations in challenging scenarios, such as high-speed flights and operations in windy environments. With the growing integration of drones into everyday applications, these improvements are relevant.

REFERENCES

- Barza Nisar, Philipp Foehn, Davide Falanga, and Davide Scaramuzza. VIMO: Simultaneous visual inertial modelbased odometry and force estimation. *Robotics: Science and Systems (RSS)*, 2019.
- [2] Ziming Ding, Tiankai Yang, Kunyi Zhang, Chao Xu, and Fei Gao. Vid-fusion: Robust visual-inertial-dynamics odometry for accurate external force estimation. In *IEEE Int. Conf. Robot. Autom. (ICRA)*, 2021.
- [3] Chuchu Chen, Yulin Yang, Patrick Geneva, Woosik Lee, and Guoquan Huang. Visual-inertial-aided online mav

system identification. In IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2022.

- [4] Mederic Fourmy, Thomas Flayols, Pierre-Alexandre Léziart, Nicolas Mansard, and Joan Solà. Contact forces preintegration for estimation in legged robotics using factor graphs. In *IEEE Int. Conf. Robot. Autom. (ICRA)*, 2021.
- [5] Jeonguk Kang, Hyunbin Kim, and Kyung-Soo Kim. View: Visual-inertial external wrench estimator for legged robot. *IEEE Robot. Autom. Lett.*, 2023.
- [6] Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, and Davide Scaramuzza. NeuroBEM: Hybrid aerodynamic quadrotor model. *Robotics: Science and Systems (RSS)*, 2021.
- [7] Sihao Sun, Coen C de Visser, and Qiping Chu. Quadrotor gray-box model identification from high-speed flight data. *Journal of Aircraft*, 2019.
- [8] Leonard Bauersfeld and Davide Scaramuzza. Range, endurance, and optimal speed estimates for multicopters. *IEEE Robot. Autom. Lett.*, 2022.
- [9] Michael O'Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural-fly enables rapid learning for agile flight in strong winds. *Science Robotics*, 2022.
- [10] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. *Nature*, 2023.
- [11] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monocular visual-inertial state estimator. *IEEE Trans. Robot.*, 2018.
- [12] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. *IEEE Trans. Robot.*, 2016.
- [13] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016. Accessed: 2023-19-05.
- [14] Christian Forster, Zichao Zhang, Michael Gassner, Manuel Werlberger, and Davide Scaramuzza. SVO: Semidirect visual odometry for monocular and multicamera systems. *IEEE Trans. Robot.*, 2017.
- [15] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale. Keyframe-based visual-inertial odometry using nonlinear optimization. *Int. J. Robot. Research*, 2015.
- [16] Giovanni Cioffi, Leonard Bauersfeld, and Davide Scaramuzza. Hdvio: Improving localization and disturbance estimation with hybrid dynamics vio. *Robotics: Science* and Systems (RSS), 2023.
- [17] Giovanni Cioffi, Titus Cieslewski, and Davide Scaramuzza. Continuous-time vs. discrete-time vision-based slam: A comparative study. *IEEE Robot. Autom. Lett.*, 2022.
- [18] Amado Antonini, Winter Guerra, Varun Murali, Thomas Sayre-McCord, and Sertac Karaman. The blackbird uav

dataset. Int. J. Robot. Research, 2020.

- [19] Kunyi Zhang, Tiankai Yang, Ziming Ding, Sheng Yang, Teng Ma, Mingyang Li, Chao Xu, and Fei Gao. The visual-inertial-dynamical multirotor dataset. In *IEEE Int. Conf. Robot. Autom. (ICRA)*, 2022.
- [20] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In *IEEE Conf. Comput. Vis. Pattern Recog. (CVPR)*, 2016.
- [21] Teodor Tomić and Sami Haddadin. A unified framework for external wrench estimation, interaction control and collision reflexes for flying robots. In *IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS)*, 2014.
- [22] Burak Yüksel, Cristian Secchi, Heinrich H Bülthoff, and Antonio Franchi. A nonlinear force observer for quadrotors and application to physical interactive tasks. In 2014 IEEE/ASME Int. Conf. on Advanced Intel. Mechatronics, 2014.
- [23] Fabio Ruggiero, Jonathan Cacace, Hamid Sadeghian, and Vincenzo Lippiello. Impedance control of vtol uavs with a momentum-based external generalized forces estimator. In *IEEE Int. Conf. Robot. Autom. (ICRA)*, 2014.
- [24] Christopher D McKinnon and Angela P Schoellig. Unscented external force and torque estimation for quadrotors. In *IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS)*, 2016.
- [25] Federico Augugliaro and Raffaello D'Andrea. Admittance control for physical human-quadrocopter interaction. In *IEEE Eur. Control Conf. (ECC)*, 2013.
- [26] Andrea Tagliabue, Mina Kamel, Sebastian Verling, Roland Siegwart, and Juan Nieto. Collaborative transportation using mavs via passive force control. In *IEEE Int. Conf. Robot. Autom. (ICRA)*, 2017.
- [27] Dinuka Abeywardena, Zhan Wang, Gamini Dissanayake, Steven L Waslander, and Sarath Kodagoda. Model-aided state estimation for quadrotor micro air vehicles amidst wind disturbances. In *IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS)*, 2014.
- [28] Lucas Wälti and Alcherio Martinoli. Lumped drag model identification and real-time external force detection for rotary-wing micro aerial vehicles. In *IEEE Int. Conf. Robot. Autom. (ICRA)*, 2024.
- [29] Yuhan Yin, Qingkai Yang, and Hao Fang. Error-state kalman filter based external wrench estimation for mavs under a cascaded architecture. In *IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS)*, 2023.
- [30] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint kalman filter for vision-aided inertial navigation. In *IEEE Int. Conf. Robot. Autom. (ICRA)*, 2007.
- [31] Andrea Tagliabue, Aleix Paris, Suhan Kim, Regan Kubicek, Sarah Bergbreiter, and Jonathan P How. Touch the wind: Simultaneous airflow, drag and interaction sensing on a multirotor. In *IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS)*, 2020.
- [32] Amir Moeini, Alan F Lynch, and Qing Zhao. Visualinertial-actuator odometry for multirotor uavs with rotor drag and external disturbance. *Int. Jo. of Dynamics and Control*, 2024.

- [33] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. Rotors—a modular gazebo mav simulator framework. In *Robot operating system (ROS)*, 2016.
- [34] Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and Davide Scaramuzza. Flightmare: A flexible quadrotor simulator. In *Conf. on Robot. Learning* (*CoRL*), 2020.
- [35] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In *Field and service robotics*, 2018.
- [36] Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and Oskar Von Stryk. Comprehensive simulation of quadrotor uavs using ros and gazebo. In *International conference on simulation*, *modeling, and programming for autonomous robots*, 2012.
- [37] Rajan Gill and Raffaello D'Andrea. Propeller thrust and drag in forward flight. In 2017 IEEE Conf. on Control Tech. and Applications (CCTA), 2017.
- [38] Gabriel Hoffmann, Haomiao Huang, Steven Waslander, and Claire Tomlin. Quadrotor helicopter flight dynamics and control: Theory and experiment. In *AIAA guidance, navigation and control conference and exhibit*, 2007.
- [39] Matko Orsag and Stjepan Bogdan. Influence of forward and descent flight on quadrotor dynamics. *Recent Advances in Aircraft Technology*, 2012.
- [40] Christiane Sommer, Vladyslav Usenko, David Schubert, Nikolaus Demmel, and Daniel Cremers. Efficient derivative computation for cumulative b-splines on lie groups. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11148– 11156, 2020.
- [41] William H Press, William T Vetterling, Saul A Teukolsky, and Brian P Flannery. *Numerical recipes*. Cambridge University Press, London, England, 1988.
- [42] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018. Accessed 2023-03-02.
- [43] Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative trajectory evaluation for visual(-inertial) odometry. In *IEEE/RSJ Int. Conf. Intell. Robot. Syst.* (*IROS*), 2018.
- [44] Philipp Foehn, Elia Kaufmann, Angel Romero, Robert Penicka, Sihao Sun, Leonard Bauersfeld, Thomas Laengle, Giovanni Cioffi, Yunlong Song, Antonio Loquercio, and Davide Scaramuzza. Agilicious: Open-source and open-hardware agile quadrotor for vision-based flight. *Science Robotics*, 2022.
- [45] Guillaume Ducard and Minh-Duc Hua. Modeling of an unmanned hybrid aerial vehicle. In 2014 IEEE Conf. on Control Applications (CCA), 2014.
- [46] Nils Paul van Hinsberg. Aerodynamics of smooth and rough square-section prisms at incidence in very high reynolds-number cross-flows. *Experiments in Fluids*, 2021.
- [47] Robert E. Sheldahl and Paul C. Klimas. Aerody-

namic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. In *Sandia National Labs., Albuquerque, NM (USA)*, 1981.

[48] Christian Pfeiffer, Simon Wengeler, Antonio Loquercio, and Davide Scaramuzza. Visual attention prediction improves performance of autonomous drone racing agents. *Plos one*, 2022.