
A Monocular Event-Camera Motion Capture System

Leonard Bauersfeld and Davide Scaramuzza
Robotics and Perception Group, University of Zurich, Switzerland

Blinking IR-LED Marker

Infrared 
LED

Agile Quadrotor Monocular Event-Camera Motion Capture System 

Event-
Camera

state 
estimate

Detected MarkersSqPnP Solver

Fig. 1. Overview of the monocular event-camera motion capture system: the object to track (e.g. a small quadrotor) is equipped with N >= 4 infrared
LED markers that blink at different frequencies. A single, calibrated event-camera is used to detect all markers and estimate the pose of the object by
solving the perspective-n-points problem (PnP) with SqPnP [1]. The state estimate from this motion-capture system can then be used for closed-loop
control.

Abstract— Motion capture systems are a widespread tool in
research to record ground-truth poses of objects. Commercial
systems use reflective markers attached to the object and then
triangulate pose of the object from multiple camera views.
Consequently, the object must be visible to multiple cameras
which makes such multi-view motion capture systems unsuited
for deployments in narrow, confined spaces (e.g. ballast tanks of
ships). In this technical report we describe a monocular event-
camera motion capture system which overcomes this limitation
and is ideally suited for narrow spaces. Instead of passive
markers it relies on active, blinking LED markers such that
each marker can be uniquely identified from the blinking
frequency. The markers are placed at known locations on the
tracking object. We then solve the PnP (perspective-n-points)
problem to obtain the position and orientation of the object. The
developed system has millimeter accuracy, millisecond latency
and we demonstrate that its state estimate can be used to fly a
small, agile quadrotor.

I. INTRODUCTION

Motion capture systems are external camera systems that
provide high-accuracy, low-latency pose estimates of an
object by tracking markers attached to the object. The 3D
position and orientation of the tracked object is then com-
puted through multi-view triangulation. Such motion capture
systems are ubiquitous in mobile robotics and they are used
for platforms ranging from autonomous drones [2], [3],
remotely controlled (RC) cars [4], and swimming vehicles [5]
to manipulation [6]. However, such motion capture systems
require the object to be in view of multiple cameras, making
deployment in narrow, confined spaces extremely difficult.
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Furthermore, the portability of the systems is negatively
impacted by the long set-up time of the multi-camera system.

To overcome these drawbacks we developed the monoc-
ular, event-camera motion capture system shown in Fig. 1.
In contrast to multi-camera motion-capture systems that rely
on triangulation, a monocular system must solve the PnP
(perspective-n-point problem) problem [7] to obtain the pose
of the object in the camera frame. For a unique solution, at
least four 3D ↔ 2D correspondances must be known [8].
Put differently, it is not enough to detect the markers, but
the markers must also be uniquely identified. Note, in the
PnP-setting it is always assumed that the locations of the
markers on the tracking object are known, for example from
a CAD model.

Event-cameras are an excellent tool to overcome the above
limitations and build a monocular motion capture system.
By using blinking LEDs as active markers the markers
can be easily detected by the event-camera. To uniquely
identify each marker, the LEDs blink at different, known
frequencies [9]. The blinking frequency for each detected
marker is then measured from the event stream to associate
the detection in the image with an LED marker. The high
temporal resolution of event cameras makes it possible to
use very fast blinking frequencies and obtain a low-latency
system, which is ideally suited for challenging real-world
robotics tasks.

The idea to use blinking LEDs in combination with an
event camera for localization has been explored for over a
decade [9]–[12], but most prior works focus on using the
event camera on a mobile robot to localize w.r.t fixed mark-
ers. In this setting, the compute is constrained but markers
can be large and consist of multiple LEDs. The availability
of IMU measurements from the robot additionally simplifies
the task when the event-camera is mounted the robot itself.



Our system is different as it uses a static event camera and
active markers on the robot, and as such presents a much
improved version of [9] featuring true 6-DOF tracking, a
50-fold improvement in accuracy, and a 4-fold improvement
in update rate. To the best of the authors knowledge, it is
the first true monocular motion-capture system providing
millimeter-accuracy 6-DOF pose estimates at update rates as
high as 1 kHz. This advance is enabled by modern sensors, an
efficient, cache-friendly event-processing pipeline, utilizing
a novel signed delta-time volume event representation in
combination with the very accurate and robust SqPnP [1]
algorithm to estimate the pose of the tracked object.

II. RELATED WORK

The field of monocular pose estimation is mostly re-
searched in the context of robot localization and approaches
can be categorized into three families:

1) standard cameras with fiducial markers (e.g. Aruco)
2) standard cameras with active point markers (e.g. LEDs)
3) event-cameras with active markers (e.g. blinking

LEDs)

A. Pose Estimation with Standard Cameras

Most works on monocular pose estimation for mobile
robots use standard cameras because those are readily avail-
able on most robots. With a standard camera, the common
approach [13]–[15] is to use fiducial markers (e.g. April-
Tag [16], Aruco [17]) as such markers can robustly identified
in RGB and grayscale images.

Fiducial markers have a minimum size because the camera
must still be able to detect the structure of the marker.
Therefore, using infrared LEDs has been proposed as an
alternative solution [18] to further miniaturize the system.
The LEDs can be detected by thresholding an IR-filtered
image, but in this setup the points can’t be uniquely identified
as all LEDs look the same to the camera. The pose estimation
algorithm thus has to exhaustively search through all possible
combinations.

Independent of the marker type, standard cameras are
not well-suited for a low-latency monocular motion capture
system as the latency of the overall system is strongly limited
by the framerate of the camera.

B. Pose Estimation with Event Cameras

In contrast to a frame-based camera an event-camera is
inherently low-latency as events are output with microsecond
latency. A major challenge is to design algorithms in a way
that they are able to make use of this high update rate.

The first work [9] using event-cameras for localization—in
a sense a direct predecessor of this work—uses blinking
LEDs as active markers that can be identified based on
their frequency. However, the pipeline is not able to estimate
the location along the optical axis of the event-camera.
Furthermore, it has noise levels on the order of 10 cm, and
thus is unsuitable for closed-loop control.

More recent monocular event-camera pose-estimation
pipelines [10], [12] rely on very large active markers, up to
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Fig. 2. Definition of the camera frame (zC is aligned with the optical
axis), the body frame B and the world frame W . The position of the active
markers is defined in body-frame and must be known. The transform TCB
is estimated through PnP and the pose of the camera in the world frame is
assumed to be known.

60×60 cm to achieve accurate localization. The markers are
also containing multiple LEDs such that their identification
is not just via frequency-detection, but similar to fiducial
markers.

III. SYSTEM DESIGN

This section gives a brief overview of the developed
monocular event-camera motion-capture system. Details re-
garding the implementation of the blinking LED detection
are given in Sec. V. The blinking LED circuit itself is
discussed in Sec. VI.

A. Prerequisites

In order to obtain accurate 3D pose estimation of the
tracked objects, the event-camera must be calibrated and the
location of the blinking LEDs must be known. Furthermore,
the transform TCW between the camera frame C and the
world frame W must be known. The coordinate systems are
illustrated in Fig. 2.

To calibrate the camera, we follow the approach from [19]
where the calibration is performed by first converting the
event stream into event frames and then calibrating these
using Kalibr [20]. The calibration also estimates the lens
distortion and in this work we rely on a double-sphere
distortion model because of its accuracy and computation
efficiency [21]. The event-camera is mounted horizontally on
a stable tripod such that the transform from camera-frame C
to world-frame W is fixed and known.

To ensure that the locations of the blinking LEDs are
known and fixed, a 3D-printed LED holder is used. The
locations of the LEDs are then directly known from the CAD
model. The blinking frequency of each LED is also known,
see Sec. VI for details on the circuit design.

B. LED detection

Robustly detecting blinking LEDs in an event-stream in
real-time is the critical component of the motion-capture sys-
tem. Events are processed in batches between 1 ms (1 kHz)



and 2.5 ms (400 Hz), depending on the desired pose update
rate. In a first step, all pixels whose event rate is below a
threshold are discarded. The threshold is calculated based
on the assumption that each LED period at least triggers
two events and that a transition is detected with a given
probability (e.g. 80 %).

For all pixels with a sufficient event rate, the average
period and standard deviation is calculated. For details on
this process, see Sec. V. After identifying the average pe-
riod, neighboring pixels with similar periods are clustered
together. If the average period of the cluster is closer than
25µs to one of the expected blinking frequencies from the
LED, it is matched to that LED. The centroid of each LED
is tracked with a constant-velocity particle filter.

C. Pose Estimation

To estimate the pose from the detected LED centroids,
the centroids are undistorted first. Then, the PnP-problem is
solved with SQPnP [1]. We chose this algorithm over other
well-known algorithms such as EPnP [22] because SQPnP
is fast enough and globally optimal [1].

The pose-estimate in the camera-frame is finally trans-
formed into the world-frame and published via ROS.

IV. EXPERIMENTAL RESULTS

Often a motion capture systems are chosen because of their
low noise levels and low latency which is ideally suited for
robot control. Therefore, we demonstrate the performance of
the developed system, by flying the small drone depicted in
Fig. 1 in closed-loop with the event-camera motion capture
being the only source of state estimation. We use a Prophesee
Gen 3.1 event-camera (640 × 480 px, 3/4 inch sensor) with
either a 25 mm or a 50 mm lens resulting in a horizontal FoV
(field of view) of 22 deg and 11 deg, respectively.

A. Pose Estimation Noise

In a first experiment the drone is rigidly placed at various
distances in front of the camera. Then, 10 seconds of data are
recorded with the event-camera and we calculate the standard
deviation of the pose estimate. Since the drone is static, all
deviations from the mean are only due to noise. The results
of this analysis summarized in Fig. 3. A few interesting
observations can be made which are subsequently discussed
in detail:

1) The noise levels along the zC axis are much larger
compared to the xC and yC axis.

2) The SqPnP [1] algorithm achieves a much better per-
formance than EPnP [22].

3) For SqPnP the noise levels in position scale quadrat-
ically with the distance from the camera, while the
orientation noise scales linearly.

The zC-axis is the optical axis of the camera and hence
the zC coordinate can only be inferred from the scale of
the object. Assuming that elongation of the object along the
optical axis is small compared to the distance to the camera
(i.e. the object is nearly flat), a well-known result from
stereo-vision applies [7]: for a given inter-marker distance
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Fig. 3. The object is placed at distances between 70 cm and 5 m statically
in front of the camera (with the 25 mm lens). The plots show the standard
deviation in the position measurement (zC and xC , yC) as well as the
orientation measurements. We can clearly see that SqPnP [1] outperforms
EPnP [22] by a large margin.

d, focal length f and a marker detection with uncertainty σu

(in pixels) the depth uncertainty σpz scales with the square
of the distance z as

σpz =
∂zC
∂u

· σu =
b · f
z2C

· σu ∼ 1

z2
. (1)

For the positional errors in xC and yC we observe a similar
quadratic dependency on the camera-object distance, how-
ever with much less noise. Intuitively, this makes sense as
the translation along xC and yC are directly observable from
each marker and thus the estimate is much more accurate.

The position noise plots also highlight the superior per-
formance of SqPnP for this task: the optimization-based
approach is able to estimate the position with much less
variance given the same input data. This discrepancy be-
comes even larger when considering the orientation estima-
tion shown at the bottom plot of Fig. 3. SqPnP dramatically
outperforms EPnP which performs between two and four
times worse. Interestingly, we observe that EPnP shows a
large but nearly constant orientation uncertainty after 2 m,
whereas SqPnP shows a linear increase in the noise standard
deviation. Note that we do not compare against EPnP with
nonlinear refinement as the OpenCV implementation requires
at least six points for iterative refinement.
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Fig. 4. Closed-loop experiments: the drone flies a rectangular pattern
starting at (2,0.1) and then lands at a distance of 2.5 m. The event-camera
is located at the origin of the coordinate system at (xW , yW ) = (0, 0) and
the optical axis of the 50 mm lens is aligned with the xW direction. The
bottom plot shows the roll and pitch angle measurements during the flight.

B. Closed-Loop Deployment

In this experiment we fly the small drone shown in Fig. 1
in closed-loop and the event-camera motion capture runs at
400 Hz leading to a system latency of 2.5 ms. The monocular
event-camera motion capture system is the only source of
state-estimation for the MPC controller [23] of the quadrotor.
The drone is tasked to fly a rectangular pattern, hover and
then land. The trajectory is shown in the top plot Fig. 4
and the roll and pitch angle measurements are shown at the
bottom. When the drone is further away at xW = 3m the
position and orientation estimate become more noisy but
overall we find that the system is able to safely fly the
small drone, thereby demonstrating the performance of the
developed system.

V. IMPLEMENTATION DETAILS

To ensure real-time operation of the event-camera motion
capture system the delay in the processing pipeline must be
kept to a minimum. This is achieved through an efficient,
multi-threaded implementation in combination with filtering
data early on in the pipeline. This section gives an overview
of the most important concepts, specifically the data repre-
sentation, the filtering and the multi-threading.

A. Event Data Representation

A single event as supplied by the camera is given as
a four-tuple, consisting of an x and a y coordinate (both
uint16 t), a polarity p which is either -1 or 1 (int8 t),
and a timestamp t (uint64 t). Additionally, 3 bytes of
padding are included for 16-byte alignment. The event cam-
era supplies a stream of such raw events. For the following
discussion of different data representations for blinking LED

detection, an event stream containing k events over a time
period T coming from an event camera with image width
W , height H and N = W ×H pixels is considered.

1D Representations: The event stream is the most basic
and raw representation of events and has recently gained
some attention in combination with spiking neural net-
works [24]. For LED detection with classical CPU architec-
tures however this representation is completely unsuitable.
To extract any spatial information, the entire event stream
must be searched for pixels with matching coordinates.
Furthermore, having a memory layout where each event is
stored serially is not efficiently using the cache: if we search
for a given x coordinate, the remaining 14 bytes of the raw
event representation are unused and just occupy cache space.

2D Representations: In the event frame representation the
events are stored as a 2D grid by either summing the polarity
or by counting the number of events. The accumulation is
done for the time window of length t which represents the
equivalent of the exposure time. The conversion from an
event stream to an event frame is fast as can be done in
linear time O(k) by iterating once over the stream. This
representation is suitable for filtering out which pixels have
a sufficiently high number of events to be candidates for
a blinking LED, however it does not include any time
information which would allow robust frequency detection.

A time-surface representation is also a 2D image, but
each pixel in this 2D grid is assigned the value of the latest
timestamp. For detecting blinking LEDs this representation
is unsuitable as it contains no information related to periodic
on-off transitions of a pixels.

3D Representations: In an event volume, events are stored
as a 3D grid in a form that can be thought of as a stack
of multiple event frames. This representation also includes
time information and, given a sufficiently fine binning in the
time domain, could be used to detect the frequency of a
blinking LED. However, to accurately detect the frequency
the binning would have to be very fine, yielding a huge
memory footprint. For an accuracy of 5µs, a window length
t = 2ms, VGA resolution and uint8 t storage, the event
volume would occupy 117 MB of memory. This size exceeds
all levels of the processor cache, potentially affecting runtime
adversely.

Signed Delta-Time Volume: To get past the shortcomings
of those widely used event representation we propose a data
representation that is ideally suited for the task of blinking
LED detection: the signed delta-time volume (SDTV). It is
a 3D volume of size W × H × D where D is the stack
depth. For each pixel the time difference to the last event is
stored and the polarity of the event is encoded in the sign of
this time difference. This is possible because time must be
monotonically increasing, so we can re-purpose the sign-bit
for polarity encoding. The idea is illustrated in Fig. 5 for a
single pixel stack of the SDTV.

Because of the fast blinking of the LEDs the time dif-
ferences (in microseconds) between consecutive events are
always within int16 t range, making storage compact. As
most operations are done per pixel-stack, the memory layout
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Fig. 5. Illustration on the construction of the Signed Delta-Time Volume
(SDTV) from an event stream. a) The LED is blinking with a period of
300µs with a duty cycle of 10 %. b) A single pixel of the event camera
records a noisy signal of this blinking LED. False double events (e.g. at
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c) Construction of the SDTV illustrated before processing the latest time
window and after processing the time window. d) Periods robustly identified
from the SDTV by summing up absolute time differences between negative
→ positive transitions (the first positive value is included). All events until
the first positive → negative transition are discarded.

is such that the D-dimension is consecutive. Similar to the
other representations, converting an event stream to SDTV is
linear in the number of events. The signed delta-time volume
is not computed per window of length T but updated as a
cyclic buffer. This increases the accuracy of the frequency
detection for LEDs blinking at a lower frequency than fmax
since the amount of LED periods available for frequency
identification is independent of the frequency.

The minimal depth D can be calculated based on the
window length T and the frequency of the fastest LED fmax
as D = 2T fmax because every LED should trigger two
events (once on and once off) per period. Typical values
of D are between 4 and 16, reducing the memory footprint
by a factor of 25 to 100 compared to a event volume.

B. Filtering

When computing the signed delta-time volume represen-
tation from the event stream for a time window t of events,
we also compute an event frame based on the event count of
each pixel. Only pixels with more than β · 2tfmin events are
considered further where β is the probability that a transition

triggers an event. We use β = 0.8 to purposely underestimate
the detection probability.

For all selected pixels the SDTV is used to calculate mean,
median and standard deviation of the period. The period is
defined as the time between two on-events with at least one
off-event in between as illustrated in Fig. 5d). In agreement
with [9] we find that this is a robust measure. After rejecting
pixels with a too-large standard deviation in the period, pixels
are clustered together. Too small and too large clusters are
rejected as the expected size of an LED is roughly known a
priori. Clusters are then assigned to the individual LEDs by
matching the measured average period in a cluster with the
blinking frequencies of the LEDs. Each LED is tracked by
a particle filter that gets the assigned clusters for each LED
as an input.

C. Multi-Theading

In a real-time application like this, relying on generic
multi-threading tools such as OpenMP can be problematic.
For this reason, the threading is manually implemented to
ensure optimal performance. Each thread in the pipeline
shares its memory with the next thread in the pipeline. To
ensure threads do not block each other, each thread allocates
the required memory two times. During operation, the thread
writes to one of its allocations while the other memory chunk
is processed by the next pipeline step. Subsequently, the
memory pointers are swapped and the newly filled batch
processed.

The pipeline primarily consists of three threads. They
1) copy events from event camera driver into a buffer,
2) convert a linear event buffer into the optimized SDTV

representation described in Section V-A, and
3) process the accumulated data to detect the LEDs,

assign the LED clusters and solve the PnP (perspective-
n-points) problem.

This design makes it possible to run the pipeline at hight
speeds on a modern laptop. Speeds exceeding 1 kHz are
possible, but due the slowest LED blinking at 1700 Hz
increasing the processing frequency beyond 800 Hz might
degrade robustness.

VI. BLINKING LED CIRCUIT

A. Choice of LEDs

For the accuracy of the event-based mocap system it
is important that the center of the blinking LED can be
detected easily by the event camera. To achieve this, the
LED should be small, very bright and have a short switching
time to produce a well-defined rising and falling edge. These
requirements are ideally met by LEDs optimized for pulsed
operation, such as infrared LEDs for data transmission.

In this work, the Osram SFH4350 [25] IR-LED 3 mm was
selected as it features an extremely short switching time of
12 ns. Being designed for opto-electronics it also permits up
to 1 A pulsed forward-current for pulses shorter than 100µs
if the duty cycle is below 2 %. The LED has its peak emission
around 850 nm with a spread of 50 nm which is within the
sensitivity of most CMOS-based imaging sensors.
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B. Circuit Design

The design of the LED driver circuit is tightly coupled
with the entire event-based motion capture system:

1) Faster blinking frequencies increase the reactiveness
of the system as at least one full period must be
detected for identifying an LED. For robustness, a
more conservative approach to detect at least two
periods is better. Consequently, if the LEDs blink at
1 kHz the overall system is limited to 500 Hz output
rate.

2) If the LEDs blink too fast, measuring the signal be-
comes difficult. Typically event cameras perform very
well at measuring signals with frequencies up to 2-
3 kHz [26]–[28] and the events are timestamped with
1µs time resolution.

3) At least four LEDs are neccessary to yield a unique
solution to the PnP problem.

4) the individual frequencies should not alias into each
other. This means that, ideally, all LEDs have blinking
frequencies within a factor of two.

5) Due to the limitations of the LED a duty cycle of 2 %
can not be exceeded.

To control the blinking LED either a microcontroller or an
analog circuit can be used. Because the high LED forward
current of 1 A necessitates an analog output stage, we opted
for a fully analog design using NE555 [29] precision timers.
To generate the signal for the LEDs, the NE555 is operated
in A-stable mode (c.f. Sec. 8.3.2 [29]).

The current output of the precision timer is limited to
200 mA, but its performance significantly degrades if the
output current exceeds 10 % of the maximum value (c.f.

TABLE I
Resistor and capacitor values (see Fig. 6) for the different LEDs. The
calculated periods as well as the measured frequencies f and duty-cycles
α are listed.

Part Specification Calc. from Sec. 8.3.2 [29] Measured
RA

[kΩ]
RB

[kΩ]
C
[nF]

ton
[µs]

toff
[µs]

f
[kHz]

fmeas
[kHz]

αmeas
[%]

68.1 0.39 10 2.7 477 2.094 1.73 0.66
59.0 0.39 10 2.7 415 2.413 1.98 0.75
51.1 0.39 10 2.7 359 2.781 2.29 0.87
44.2 0.39 10 2.7 312 3.207 2.61 0.99
40.2 0.39 10 2.7 284 3.520 2.86 1.09

Figure 3 of [29]). Therefore an SPST (single pole, single
throw) digital switch is used. We selected an ADG802 as it
features close to 1 A pulsed current and has typical switching
times around 55 ns [30]. While considerably slower than the
LED, it is still fast enough for the given application.

The LEDs, precision timers and switches are all supplied
with a single LM7805 voltage regulator. This is possible
because the time-averaged load is well below the design limit
of the voltage regulator. Each NE555 draws INE555 = 3mA
of supply current. The time averaged current ĪLED for an
LED pulsed with a duty cycle α = ton/tperiod with a pulse
current Ip = 1A is given by

ĪLED = α · Ip (2)

Assuming there is N = 5 LEDs and they are operated at an
average duty cycle of 1 % this leads to a total, time averaged
current of

Ī = N ·
(
ĪLED + INE555

)
= 65mA (3)

which is within specifications for an LM7805 [31] without
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Fig. 7. Current through an LED blinking at the lowest frequency of
1.73 kHz. The upper plot shows the entire period t = ton +toff, whereas the
lower plot shows only the pulse through where the LED is on for 3.8µs.
From the plot, we get a switch-on time constant τon of the LED of 84 ns
(time to reach 63 % of the steay-state value).

any additional cooling (given the TO220 package and a 12 V
supply). Therefore, a sufficiently large decoupling capacitor
CDC charged through RDC is used to supply the LEDs with
power, effectively shielding the LM7805 from all current
spikes caused by the LEDs. Based on all the above consid-
erations, the circuit shown in Fig. 6 has been designed and
subsequently manufactured into a PCB with SMD version
of the NE555 and the ADG802. The dotted line marks the
components in the circuit that are replicated for each LED.

The resistor and capacitor values used in the NE555 timer
circuit are listed in Tab. I. The values have been calculated
such that the frequencies of all 5 LEDs follow the points
2 to 5. After building and manufacturing of the PCB, the
measured frequencies are also listed in Tab. I. Note that
the mismatch w.r.t the calculated values is about 20 %. This
mismatch is consistent across 5 identical copies of the board
and of no concern for the practical applications as it is
straightforward to measure the blinking frequency with an
oscilloscope. Exemplarily, Fig. 7 shows the current through
one LED.

VII. CONCLUSION

In this technical report we present that a low-latency,
high-accuracy monocular motion-capture system with an
event-camera. The experiments with static objects show that
the system has millimeter accuracy and the closed-loop
experiments with the small quadrotor demonstrate that it is
is well-suited for real-time control in mobile robotics tasks.

Originally, we developed the system with a focus on
confined environments where a commercial, multi-camera
system can not be used. However, we now believe that
monocular event-camera motion-capture systems are highly
relevant in a broader sense: event-cameras are expensive
sensors, but the cost of a single event camera is 10 to 100
times less than that of a full motion-capture system, making
the presented approach appealing for low-cost applications
where the limited tracking volume (only in front of the
event-camera) is a great trade-off for the small form factor,
portability and cost.
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