
Learning Quadruped Locomotion using
Differentiable Simulation
Yunlong Song1, Sangbae Kim2, Davide Scaramuzza1

1 Robotics and Perception Group, University of Zurich, Switzerland
2 Biomimetic Robotics Laboratory, MIT, USA

Abstract—While most recent advancements in legged robot
control have been driven by model-free reinforcement learning,
we explore the potential of differentiable simulation. Differen-
tiable simulation promises faster convergence and more stable
training by computing low-variant first-order gradients using
the robot model, but so far, its use for legged robot control
has remained limited to simulation. The main challenge with
differentiable simulation lies in the complex optimization land-
scape of robotic tasks due to discontinuities in contact-rich
environments, e.g., quadruped locomotion. This work proposes
a new, differentiable simulation framework to overcome these
challenges. The key idea involves decoupling the complex whole-
body simulation, which may exhibit discontinuities due to contact,
into two separate continuous domains. Subsequently, we align
the robot state resulting from the simplified model with a
more precise, non-differentiable simulator to maintain sufficient
simulation accuracy. Our framework enables learning quadruped
walking in minutes using a single simulated robot without any
parallelization. When augmented with GPU parallelization, our
approach allows the quadruped robot to master diverse locomo-
tion skills, including trot, pace, bound, and gallop, on challenging
terrains in minutes. Additionally, our policy achieves robust
locomotion performance in the real world zero-shot. To the best
of our knowledge, this work represents the first demonstration of
using differentiable simulation for controlling a real quadruped
robot. This work provides several important insights into using
differentiable simulations for legged locomotion in the real world.

I. INTRODUCTION

Many grazing animals, such as giraffes, lambs, and calves,
can learn to stand and walk within minutes to hours after birth.
On the other hand, most machine learning algorithms, particu-
larly traditional model-free reinforcement learning (RL), need
massive parallelization to achieve a stable walking policy. How
can legged robots master walking in minutes with a few trials
and errors?

Recent progress in legged robot control has largely been
driven by GPU-accelerated massive simulation and reinforce-
ment learning [15, 20, 24, 30, 22, 9, 39, 19]. Central to these
advancements is the policy gradient algorithm [35, 34, 6]. The
policy gradient can generally be expressed as the following

∇θJ(θ) ≈ E[∇θ log πθ(ut|xt)R(τ )],

where it stands as a zero-order approximation of the true
gradient based on sampled trajectories τ . Despite impressive
real-world performance, this approach to gradient estimation is
known for its high variance. Consequently, several additional
strategies are required for stable training, such as using a
clipped surrogate objective [31], increasing the number of

Fig. 1: Graphical model for policy learning using differentiable
simulation, in which both the loss function and the dynamics
are differentiable.

samples, designing task-specific learning curriculums, em-
ploying distributed initialization techniques, and engineering
suitable reward functions.

As a result, RL struggles with complex tasks where data
generalization is slow, like vision-based navigation. Despite
the need for more effective learning algorithms, progress
has been limited. Instead, research leans towards imitation
learning, utilizing existing datasets or expert demonstrations
for more consistent learning outcomes. Notably, the learning-
by-cheating approach [4] is a popular imitation learning frame-
work: first, you train an RL teacher with privileged information
and then, you derive a student policy based on visual inputs.
However, the success of this approach heavily depends on
the quality of expert demos and lacks generalizability and
adaptability to new tasks.

In robotics, leveraging well-established knowledge about
robot dynamics can enable the construction of first-order gra-
dient estimations, which typically exhibit significantly lower
variance than their zero-order counterparts and hold great
potential for more stable training and faster convergence.
Recently, policy training using first-order gradient has been
notably advanced through differentiable simulation [8, 14, 36,
29, 37]; these works have shown promising results in reducing
both the number of simulation samples and total training time
compared to zero-order methods.

However, the optimization landscape in robotic tasks is in-
herently complex, characterized by nonlinearities, non-smooth
and discontinuous dynamics, non-convexities, and long tem-
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poral horizons. Additionally, deploying real-world robots in-
troduces additional challenges, such as the sim-to-real gap,
noisy state estimation, and system delay. Consequently, policy
training through differentiable simulation can suffer from
issues like local minimum and gradient vanishing/explosion.
While differentiable simulation offers a promising avenue, its
effectiveness in significantly accelerating policy learning in
contact-rich environments and its applicability to real-world
scenarios like dynamic quadruped control remains an open
challenge in robotics.

This work set out to explore the potential of differentiable
simulation in accelerating policy training within contact-rich
scenarios like dynamic legged locomotion. Our goal is to
establish an effective policy training framework that lever-
ages the robot model for precise gradient computation while
mitigating the difficulties posed by complex, discontinuous
optimization landscapes. Moreover, we intend to evaluate the
strengths and weaknesses of this approach in comparison to
zero-order methods, particularly model-free policy gradients.
We aim to provide useful insights for developing more efficient
and robust methods that benefit from both worlds.

Contribution: We show that differentiable simulation of-
fers considerable advantages over model-free reinforcement
learning for policy training in legged locomotion. Notably, we
demonstrate that a single robot, without the need for paral-
lelization, can quickly learn to walk within minutes using our
approach. Leveraging the advantage of GPUs for parallelized
simulation, our robot learns diverse walking skills over chal-
lenging terrain in minutes. Specifically, we train a quadruped
robot to walk with different gait patterns, including trot, pace,
bound, and gallop, and with varying gait frequencies. While
model-free RL can also achieve similar performance given
sufficient parallelization, our approach requires much less data
and yields better performance.

More importantly, we show that the policy trained via
differentiable simulation can be transferred to the real world
directly without fine-tuning. To the best of our knowledge, this
work represents the first demonstration of using differentiable
simulation for controlling a real quadruped robot. This high-
lights the effectiveness of differentiable simulation for real-
world applications in dynamic legged locomotion scenarios.

The key to our approach is a novel policy training frame-
work that combines the smooth gradients obtained from a
simplified dynamics model for efficient backpropagation with
the high fidelity of a more complex, non-differentiable simula-
tor for accurate forward simulation. 1) Decoupling Simulation
Spaces: Rather than handling the whole body dynamics as
a unified differentiable simulator, which may encounter non-
smoothness due to contact interactions. We proposed to sepa-
rate the simulation into two distinct spaces: the floating base
space and the joint space. For the robot body, we employ
an approximation using single rigid-body dynamics, which
offers a continuous and effective representation of the floating
base (the robot body). 2) PD Control as A Differentiable
Layer: The simulation within the joint space benefits from the
inherent differentiability and smoothness of a Proportional-

Derivative (PD) controller. This allows us to treat the PD
control as an explicit, differentiable layer within our simulation
framework. 3) Alignment with Non-Differentiable Simulators:
To address potential inaccuracies arising from our simplified
rigid-body dynamics model, we incorporate a more precise,
non-differentiable simulator. This non-differentiable simula-
tor can simulate complex contact dynamics and is used to
align our simplified model, thereby ensuring that our training
pipeline remains grounded in realistic dynamics.

II. RELATED WORK

A. Model Predictive Control

Model predictive control (MPC) has a long history in legged
locomotion [18, 16]. MPC relies on fast online optimization
and an accurate dynamics model to control the robot. To
trade-off between model accuracy and computation speed,
many methods use a reduced optimization model, such as
single rigid-body dynamics [7, 11, 2]. Research has also
studied control using more complex formulations, including
centroidal [10] and whole-body dynamics [26]. Despite their
success, MPC lacks the flexibility in its optimization objective
design and robustness when facing disturbances or unexpected
scenarios. Empirical evidence suggests that MPC tends to
underperform when compared to data-driven approaches such
as deep reinforcement learning.

B. Reinforcement Learning

Deep reinforcement learning has emerged as a dominant
approach for developing control policies in legged locomo-
tion [15, 20, 24, 19]. Recently, an important advancement in
this area has been the introduction of IsaacGym [21], which
is a GPU-accelerated simulator. IsaacGym can dramatically
reduce the time required for dynamics simulation and policy
training, enabling robots to learn to walk on flat ground in min-
utes [30]. This advancement has significantly accelerated the
pace of research in legged locomotion, opening new avenues
to address increasingly complex challenges [38, 1, 9, 22, 39].

Nevertheless, it is important to highlight that the progress
in applying reinforcement learning to legged locomotion is
primarily driven by the enhanced computational capabilities
provided by modern GPUs rather than substantial break-
throughs in the underlying algorithms. Consequently, in sce-
narios where data collection cannot be accelerated through
computational means, researchers may resort to alternative
strategies such as “learning-by-cheating” to circumvent these
limitations. This highlights a gap in the current approach
to deep RL in legged locomotion, suggesting a need for
innovative algorithmic developments that do not solely rely
on computational advancements.

C. Differentiable Simulation

Differentiable simulation has recently gained momentum,
thanks to the development of differentiable physics simula-
tors [8, 5, 12] and flexible automatic differentiation tools
like Jax, DiffTaichi, Pytorch [3, 13, 27]. In principle, policy



training through differentiable simulation allows better con-
vergence by replacing the zero-order gradient estimation of
a stochastic objective with a more accurate estimate based
on first-order gradients [33]. However, challenges such as
the noisy optimization landscape and issues of exploding or
vanishing gradients in long-horizon tasks render first-order
gradient methods less effective.

Several approaches have been developed to tackle these
challenges. For instance, SHAC [36] addresses the gradient
issue by truncating trajectories into several smaller segments,
which helps manage exploding or vanishing gradients. On the
other hand, PODS [25] takes advantage of second-order gradi-
ents. This approach facilitates monotonic policy improvement
and promises faster convergence than first-order methods.
However, PODS’ effectiveness relies on very accurate compu-
tation of second-order derivatives from the differentiable simu-
lator, making it sensitive to the precision of these derivatives.
Another notable example is DiffMimic [29], which focuses
on mimicking motion trajectories for physically simulated
characters.

Research in differentiable simulation has mainly been fo-
cused on speeding up policy optimization using first-order gra-
dients, alleviating local minima problems, addressing gradient
vanishing/explosion issues, or developing control policies for
simulated characters. They show that differentiable simulation
is a promising direction for improving sample efficiency.
However, the capability of differentiable simulation to substan-
tially speed up policy learning in contact-rich scenarios with
physical interactions, as well as their practical applicability to
real-world situations, such as quadruped locomotion, continues
to be a significant challenge in robotics.

Our research distinguishes itself from earlier studies by pre-
senting a novel perspective that leads to an effective solution
tailored for real-world robotic applications.

III. METHODOLOGY

A. Overview

Fig. 2 shows our training setup that employs differentiable
simulation. The fundamental idea is that the main body of a
legged robot can be modeled using differentiable and smooth
single rigid-body dynamics, while the simulation of the robot’s
four legs can be approached separately from its main body.
We use a Proportional-Derivative (PD) controller to connect
the legs dynamics with the main body. In the forward pass,
this PD controller converts joint angles into torques, which
then produce the contact forces needed for the robot’s rigid-
body simulation. During backpropagation, the PD controller
functions as a differentiable component, enabling gradients
to be propagated back through the system. Finally, we use
non-differentiable whole-body dynamics simulation to align
the state produced by our simplified rigid-body dynamics.

B. Problem Formulation

We formulate legged robot control as an optimization
problem. The robot is modeled as a discrete-time dynamical
system, characterized by continuous state and control input

spaces, denoted as X and U , respectively. At each time step
k, the system state is xk ∈ X , and the corresponding control
input is uk ∈ U . An observation ok ∈ O is generated at
each time step based on the current state xk through a sensor
model h : X → O, such that ok = h(xk). The system’s
dynamics are governed by the function f : X × U → X ,
which describes the time-discretized evolution of the system
as xk+1 = xk +∆t · f(xk, uk). The discrete-time instants are
tk = ∆t ·k, where k ranges from 0 to N , thereby establishing
a finite time horizon for the control problem. At each time
step k, the robot receives a cost signal lk = l(xk, uk), which
is a function of the current state xk and the control input uk.

The control policy is represented as a deterministic, differ-
entiable function such as a neural network uk = πθ(ok). The
neural network takes the observation ok as input and outputs
the control input uk. The optimization objective is to find the
optimal policy parameters θ∗ by minimizing the total loss via
gradient descent:

min
θ
Lθ =

N−1∑
k=0

l(xk, uk) =

N−1∑
k=0

l(xk, πθ(ok)) (1)

θ ← θ − α∇θLθ (2)

where α is the learning rate and l(xk, uk) is the differentiable
loss at simulation time step k.

C. Forward Simulation

Legged robots are characterized by complex dynamics re-
sulting from their multi-body configuration and the contact be-
tween their body and the environment. The contacts introduce
discontinuities in the dynamics, making first-order gradient-
based optimization algorithms difficult. An important aspect of
our approach involves separating the simulation of the robot’s
body from that of its joints. This design choice allows a simple
implementation of the differentiable simulator.

First, we represent the robot’s main body using single rigid-
body dynamics. Single rigid-body dynamics have been shown
to be useful for dynamic locomotion using online gradient-
based optimization [7, 11]. The single rigid-body model of-
fers a continuous representation of the robot base dynamics,
avoiding the complex optimization landscape introduced by
contacts. We develop our differentiable simulation using the
single rigid-body dynamics, which is expressed as follows,

ṗWB = vWB v̇WB =
1

m

∑
i

fi + g

q̇WB =
1

2
Λ(ωB) · qWB ω̇B = I−1 (η − ωB × (IωB))

In this approximation, the state of our system is

x = [p,q,v,ω],

where pWB ∈ R3 is the position and vWB ∈ R3 is the linear
velocity of the center of mass in the world frame W , We use
a unit quaternion qWB to represent the orientation of the body
in the world frame and use ωB to denote the body rates in
the body frame B. Here, Λ(ωB) is a skew-symmetric matrix.



Fig. 2: System overview of legged robot control using differentiable simulation. Our approach leverages the differentiability
and smoothness of a single rigid-body dynamics for dynamics simulation. Additionally, we treat PD control as a differential
layer in our computation graph. Finally, we use the state from a more accurate, non-differentiable simulator (IsaacGym) to
align the simulated state in the simple rigid-body simulation.

The control inputs are the ground reaction force fi from the
legs.

To simulate the rigid-body dynamics, it is important to know
the ground reaction force. One option for the control policy
design is to output the ground reaction force directly, similar to
the MPC design [7, 11]. Another option is to control the robot
in the joint space, e.g., output desired joint position, which
allows more control authority for the policy and adaptive
behavior. In this case, it is required to convert the neural
network output (joint position) into the control input of the
single rigid-body model, which is the ground reaction force.
This conversion is achieved using a PD controller for forward
propagation,

τ = kp(q
ref − q) + kd(q̇

ref − q̇) (3)

which calculates the required motor torque τ . Here, kp and
kd are fixed gains, qref and q are the reference joint position
and the current joint position separately, and q̇ref and q̇ are
the reference joint velocity and the current joint velocity
respectively.

Subsequently, the motor torques are then converted to
ground reaction forces f using the foot Jacobian J:

f = Jτ .

The continuous nature of PD control enables the backprop-
agation of policy gradients. Consequently, our simulation

framework treats the PD controller as an explicit, differentiable
layer.

D. Backpropagation Through Time

In differentiable simulation for policy learning, the back-
ward pass is crucial for computing the analytic gradient of
the objective function with respect to the policy parameters.
Following [23], the policy gradient can be expressed as follows

∂Lθ

∂θ
=

1

N

N−1∑
k=0

 k∑
i=1

∂li
∂xi

k∏
j=i

(
∂xj

∂xj−1

)
∂xi

∂θ
+

∂lk
∂uk

∂uk

∂θ

 ,

(4)

where the matrix of partial derivatives ∂xj/∂xj−1 is the Jaco-
bian of the dynamical system f . Therefore, we can compute
the policy gradient directly by backpropagating through the
differentiable physics model and a loss function lk that is
differentiable with respect to the system state and control
inputs. A graphical model for gradient backpropagation in
policy learning using differentiable simulation is given in
Fig. 1. Due to the usage of multiplication

∏
, there are two

potential issues in using Eq. (4) for policy gradient: 1) gradient
vanishing or exploding, 2) long computation time. We tackle
these two problems via short-horizon policy training.



E. Short-Horizon Policy Training

Although smoothed physical models (e.g., single rigid-
body dynamics) improve the local optimization landscape, the
complexity of the optimization problem escalates significantly
in long-horizon problems involving extensive concatenation
of simulation steps. The situation further deteriorates when
the actions within each step are interconnected through a
nonlinear and nonconvex neural network control policy. The
complexity of the resulting reward landscape leads simple
gradient-based methods to become trapped in local optima
quickly. Instead of directly solving a long-horizon policy
training problem, following [36, 30], where long-horizon sim-
ulation tasks are truncated into short-horizon simulation, we
utilize short-horizon policy learning to achieve stable gradient
backpropagation over a short horizon.

F. Alignment with A Non-Differentiable Simulator

Due to the simplification of our single rigid-body dynamics,
the robot state can diverge from its actual one, eventually
leading to unrealistic states due to compounding errors. We
proposed to align the body state in our differentiable simula-
tion using information from other simulators that use accurate
whole-body dynamics. Specifically, we align the robot state in
our differentiable simulation with the state information from
IsaacGym [21].

We use the following equation to align the robot state.

xdiff
t+1 = xnon-diff

t+1 + α ∗ (xdiff
t+1 − xdiff, detach

t+1 ) (5)

Here, xdiff, detach
t+1 and xdiff

t+1 represent the same robot state of our
differentiable simulator at time step t + 1; hence, they share
the same value. The word detach indicates that xdiff, detach

t+1 is
detached from the computational graph for automatic differ-
entiation. Therefore, we can reset the robot state using the
value from the non-differentiable simulation during forward
simulation: xdiff

t+1 = xnon-diff
t+1 + α ∗ 0. During backpropagation,

the gradient of the state at a given time t is computed as
follows

∂xdiff
t+1/∂x

diff
t = 0+ α ∗ ∂xdiff

t+1/∂x
diff
t . (6)

Here, 0 < α ≤ 1 is used to decay the gradient.
The non-differentiable simulator can simulate complex con-

tact dynamics and is used to align our simplified model,
thereby ensuring that our differentiable training pipeline re-
mains grounded in realistic dynamics. At the same time, our
approach benefits from the simplified differentiable simulator,
which offers smooth gradients for backpropagation. Fig. 2
shows the computational graph of the forward propagation and
backpropagation using alignment.

G. Differentiable Loss Function

A fundamental difference between policy training using
differentiable simulation and reinforcement learning is that the
loss function has to be differentiable when using differentiable
simulation. On the one hand, RL allows the direct optimization
of non-differentiable rewards, such as binary rewards 0/1. On
the other hand, differentiable simulation requires a smooth

differentiable cost function to provide learning signals for the
desired control inputs.

We formulate a loss function tailored for velocity tracking,
where the main objective is to follow a specified velocity com-
mand, denoted as vref. Additionally, we maintain the robot’s
body height, represented by pz . To enhance the robustness of
this system, we incorporate several regularization terms: one
to mitigate large angular velocity, thus controlling the body
rate; another to limit the output action, preventing large control
actions; and a term aimed at stabilizing the robot’s orientation
using projected gravity vector.

l(xt,ut) = b∥v − vref∥2 + a∥pz − pref
z ∥+ c∥ω∥2

+d∥u∥2 + f∥gproj∥+ g∥pfoot − pref
foot∥2 (7)

Finally, we use a foot position loss function to provide
a learning signal for the swing legs. This loss is critical
for the swing leg since it contains information about the
motor position. The swing trajectory is computed by fitting
a quadratic polynomial over the lift-off, mid-air, and landing
position of each foot, where the lift-off position is the foot
location at the beginning of the swing phase, the landing
position is calculated using the Raibert Heuristics [28].

IV. EXPERIMENTAL SETUP

Simulation Setup: We develop our own differentiable simu-
lation using PyTorch and CUDA. Our differentiable simulator
allows both forward propagation of the robot dynamics and
backpropagation of the policy gradient. Additionally, we run
IsaacGym alongside our differentiable simulation and use it
to align the robot state resulting from our simplified robot
dynamics. IsaacGym simulates the whole-body dynamics and
complicated contacts between the robot and its environment.
Both simulations are parallelized on GPU. We use a discretized
simulation time step of 0.002 s and use a control frequency
of 100Hz.

Observation and Action: The policy observation includes
random commands (cmdrand) for the reference velocity, si-
nusoidal and cosinusoidal representations of gait phases, the
base velocity (vWB), the base orientation (qWB), the an-
gular velocity (ωB), motor position deviations from default
(q − qdefault), and a projected gravity vector (gprojected). The
policy action δq is the desired joint position offset from the
default joint position.

Observation Dimension Action Dimension
cmdrand 3

δq 12

sin(gait phase) 4
cos(gait phase) 4

vWB 3
qWB 4
ωB 3

q − qdefault 12
gprojected 3

TABLE I: Policy observation and action.



Fig. 3: Learning to walk with one simulated robot. We
run 10 experiments with different random seeds. The plot is
smoothed using a moving average.

Hardware: We use Mini Cheetah [17] for our real-world
experiments. Mini Cheetah is a small and inexpensive, yet
powerful and mechanically robust quadruped robot, intended
to enable rapid development of control systems for legged
robots. The robot uses custom back-driveable modular actu-
ators, which enable high-bandwidth force control, high force
density, and robustness to impacts [17]. The control policy
runs at 100Hz during deployment.

V. EXPERIMENTAL RESULTS

A. Learning to Walk with One Robot

This section explores whether a robot can learn to walk
in a single simulation environment without parallelization.
We design a simple velocity tracking task where the robot
is required to follow a constant velocity in the x-axis, e.g.,
vx = 0.2 m/s. At each training iteration, we simulate
24 times steps with one single robot. Hence, each training
iteration contains only 24 data points. We trained the policy
for a total 1000 iterations, which corresponded to 24,000 data
points and 4 minutes of real-time experiences in total. The
result is given by the learning curve in Fig. 3. Surprisingly,
despite extremely limited data, our policy successfully learns
to walk after minutes of training. As a comparison, model-free
reinforcement learning failed to yield positive outcomes under
the same condition.

B. Learning Diverse Walking Skills on Challenging Terrains

Though our approach enables tracking a constant velocity
using one simulated robot on flat ground, it is generally
helpful to parallelize the simulation for more complex tasks.
To this end, we design a more difficult task: learning diverse
locomotion skills over challenging terrains. Specifically, we
design four different gait patterns, including trot, pace, bound,
and gallop. Additionally, we vary the gait frequency from 1Hz
to 4Hz. The robot receives a high-level velocity command and
is required to track randomly commanded velocity and yaw.

Fig. 5 shows the learning curves using different numbers
of robots for policy training. We compare the learning per-
formance of our method with a model-free RL algorithm

Fig. 4: Learning to walk on challenging terrains, reinforce-
ment learning versus differentiable simulation. Differen-
tiable simulation achieves faster and more stable convergence,
given limited simulation samples.

(PPO) [31]. Given minimal samples, e.g., only four robots,
RL has a plodding convergence speed and does not learn
meaningful walking skills, e.g., the policy constantly falls after
a few simulation steps. In contrast, differentiable simulation
achieves much higher rewards and can acquire useful walking
skills, albeit with relatively low success rates.

As the number of robots increases, the performance for both
algorithms improved. Notably, the performance improvement
for RL is much more significant than our approach. This
indicates the that the zero-order gradient estimates used by
reinforcement learning is generally inaccurate and requires
much more samples to achieve stable training. On the contrary,
the first-order gradient estimates used by our differentiable
simulation can have very stable and accurate gradients even
given very limited simulation samples. Fig. 5 demonstrates
diverse walking skills over challenging terrains using a blind
policy trained via differentiable simulation.

Additionally, we compare the training wall-clock time and
the performance of the resulting policies between the two
methodologies. Differentiable simulation often involves the
creation of a complex computational graph to facilitate gra-
dient computation, especially for backpropagation through
time. As the simulation horizon extends, the length of the
computational graph can increase proportionally, leading to a
substantial increase in the total training time. This increase
can diminish its benefits in situations where gathering a large
number of samples is both cheap and fast.

As presented in Table II, a differentiable simulation achieves
comparable overall training time. This efficiency is achieved
by employing a truncated simulation timestep, which results in
a smaller computational graph and enables fast and effective
backpropagation. RL requires marginally longer training time
due to its mini-batch and multi-epoch training scheme, in
contrast, differentiable simulation only uses one gradient up-
date. Differentiable simulation achieved overall higher reward
during evaluation.



Fig. 5: Diverse locomotion skills over challenging terrains using a blind policy trained via differentiable simulation.

Robots
Final Reward Training Time [min]

PPO Ours PPO Ours

4 −25.82 ± 2.16 −3.83 ± 3.01 7.27 ± 0.12 7.28 ± 0.12

16 −8.07 ± 1.30 −2.03 ± 0.69 7.54 ± 0.06 7.50 ± 0.08

64 −6.42 ± 0.29 −2.49 ± 0.37 8.46 ± 0.16 8.23 ± 0.07

1024 −2.80 ± 0.13 −2.69 ± 0.06 11.44 ± 0.13 11.55 ± 0.09

TABLE II: Learning to walk on challenging terrains,
reinforcement learning versus differentiable control. We
compare the final reward and the total training walk-clock
time.

C. On the Importance of Non-differentiable Terminal Penalty

This subsection highlights one important benefit of Rein-
forcement Learning (RL) compared to differentiable simula-
tion: RL can significantly enhance its robustness by directly
optimizing through non-differentiable rewards or penalties.
Specifically, we use an non-differentiable value p = 200
to penalize the robot (Eq. 7) when the robot experiences
termination during training, e.g., falling on the ground.

r(xt,ut) =

{
−l(xt,ut)− p if termination
−l(xt,ut) otherwise

(8)

Fig. 6 shows a study of using non-differentiable terminal
penalty for both RL and differentiable simulation. The results
show that adding a final penalty can greatly affect how well
reinforcement learning (RL) works. Without a penalty, RL
might get trapped in a local minimum. However, with a large
penalty at the end, RL can achieve better task reward as
well as more robust control performance. This is because RL
optimizes a discounted return, which estimates “how good”
it is to be in a given state. RL uses a state-value function to
encode this information

Vπ(s) = E[G|S0 = s] = E

[ ∞∑
t=0

γtRt+1|S0 = s

]
, (9)

Fig. 6: A comparison of non-differentiable terminal penalty
for policy training. Using a non-differentiable terminal
penalty, PPO can achieve robust control performance, e.g.,
longer episode length. We use 1024 robots for simulation.

On the other hand, a terminal penalty has no impact on
differentiable simulation since the gradient of a constant value
is equal to zero. As a result, differentiable simulation requires
well-defined continuous functions, e.g., a potential function or
control barrier functions for robust control.

D. Real World Experiment

We demonstrate the performance of our policy in the real
world using Mini Cheetah. Fig. 7 shows several snapshots of
the robot’s behavior using different gait patterns. We trained a
blind policy in simulation using 64 robots and then transfer the



Fig. 7: Real-world deployment using a Mini Cheetah. All the experiments are conducted using one single blind policy.

policy directly to the real world without fine-tuning. The robot
can walk forward and backward with different gait patterns and
frequencies. Moreover, the policy proved robust, enabling the
robot to manage certain disruptions, such as unexpected forces
applied to its body and locomotion on deformable terrain.

VI. LIMITATIONS

A fundamental advantage of reinforcement learning (zero-
order gradient optimization) lies in its optimization objective:
RL can directly optimize non-differentiable rewards, including
task-level rewards [32]. Conversely, differential simulation
relies on information to be backpropagated from its differ-
entiable loss function, making it challenging to explore novel
solutions guided by task-level objectives, e.g., how to make
survive differentiable?

Our system design requires the specification of foot position
using heuristic methods, which is a limitation compared to RL.
RL’s flexibility allows for more robust performance enhance-
ments, such as implementing a simple termination penalty to
discourage falling behaviors or employing constant survival
rewards to promote longevity.

VII. CONCLUSION

In conclusion, we propose a novel framework leveraging the
advantages of differentiable simulators for the complex task
of quadruped locomotion in the real world. Our framework
overcomes the challenges of contact-rich environments for
differentiable simulators by integrating a simplified rigid-body
model with a non-differentiable model for whole-body dynam-
ics. In this setting, the learned locomotion policy is updated
by directly backpropagating the differentiable loss function
through the simplified model while the state of the robot is
aligned using the more precise whole-body dynamics model.
This framework not only introduces the advantages of faster
and more stable training convergence of differential simulators
to legged robots but also ensures the accurate simulation of

complex contact forces. Notably, our experiments demonstrate
that the proposed framework can train a policy to walk in
minutes using only one simulation environment, a setting in
which model-free RL falls short. Furthermore, the policy,
aligned with an accurate simulator, seamlessly transfers to the
real world in a zero-shot fashion.

An interesting future application of our simulator alignment
is the task of learning directly on the hardware, where the lo-
comotion policy is continually updated using the differentiable
model in an online fashion while aligning robot states directly
with real-world states. Beyond this, the proven training stabil-
ity and fast training convergence of our differential simulator
framework holds the promise for addressing the high-sample
inefficiency in tasks like vision-based policy for navigation.
In summary, our work bridges the gap between differentiable
simulators and real-world legged locomotion, opening avenues
for numerous future applications.
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Krähenbühl. Learning by cheating. In Conference on
Robot Learning, pages 66–75. PMLR, 2020.

[5] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey
Allen, Josh Tenenbaum, and J Zico Kolter. End-to-end
differentiable physics for learning and control. Advances
in neural information processing systems, 31, 2018.

[6] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters,
et al. A survey on policy search for robotics. Foundations
and Trends® in Robotics, 2(1–2):1–142, 2013.

[7] Jared Di Carlo, Patrick M Wensing, Benjamin Katz,
Gerardo Bledt, and Sangbae Kim. Dynamic locomotion
in the mit cheetah 3 through convex model-predictive
control. In 2018 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pages 1–9. IEEE,
2018.

[8] C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan
Girgin, Igor Mordatch, and Olivier Bachem. Brax–a
differentiable physics engine for large scale rigid body
simulation. arXiv preprint arXiv:2106.13281, 2021.

[9] Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep
whole-body control: learning a unified policy for manipu-
lation and locomotion. In Conference on Robot Learning,
pages 138–149. PMLR, 2023.

[10] Ruben Grandia, Fabian Jenelten, Shaohui Yang, Farbod
Farshidian, and Marco Hutter. Perceptive locomotion
through nonlinear model-predictive control. IEEE Trans-
actions on Robotics, 2023.

[11] Seungwoo Hong, Joon-Ha Kim, and Hae-Won Park.
Real-time constrained nonlinear model predictive control
on so (3) for dynamic legged locomotion. In 2020
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3982–3989. IEEE, 2020.

[12] Taylor Howell, Simon Le Cleac’h, Jan Bruedigam, Zico
Kolter, Mac Schwager, and Zachary Manchester. Dojo:
A differentiable simulator for robotics. arXiv preprint
arXiv:2203.00806, 2022. URL https://arxiv.org/abs/2203.
00806.

[13] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun,
Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand.
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