
Actor-Critic Model Predictive Control

Angel Romero, Yunlong Song, Davide Scaramuzza

Abstract— An open research question in robotics is how
to combine the benefits of model-free reinforcement learning
(RL)—known for its strong task performance and flexibility in
optimizing general reward formulations—with the robustness
and online replanning capabilities of model predictive control
(MPC). This paper provides an answer by introducing a new
framework called Actor-Critic Model Predictive Control. The
key idea is to embed a differentiable MPC within an actor-
critic RL framework. The proposed approach leverages the
short-term predictive optimization capabilities of MPC with
the exploratory and end-to-end training properties of RL. The
resulting policy effectively manages both short-term decisions
through the MPC-based actor and long-term prediction via
the critic network, unifying the benefits of both model-based
control and end-to-end learning. We validate our method in
both simulation and the real world with a quadcopter platform
across various high-level tasks. We show that the proposed
architecture can achieve real-time control performance, learn
complex behaviors via trial and error, and retain the robustness
inherent to MPC.

SUPPLEMENTARY MATERIAL

Video of the experiments: https://youtu.be/
mQqm_vFo7e4

I. INTRODUCTION

The animal brain’s exceptional ability to quickly learn
and adjust to complex behaviors stands out as one of its
most remarkable traits, which remains largely unattained by
robotic systems. This has often been attributed to the brain’s
ability to make both immediate and long-term predictions
about the consequences of its actions, and plan accordingly
[1]–[3]. In the field of robotics and control theory, model-
based control has demonstrated a wide array of tasks with
commendable reliability [4], [5]. In particular, Model Pre-
dictive Control (MPC) has achieved notable success across
various domains such as the operation of industrial chemical
plants [6], control of legged robots [7], and agile flight with
drones [8]–[11]. The effectiveness of MPC stems from its
innate capability for online replanning. This enables it to
make decisions that optimize a system’s future states over a
specified short time horizon.

However, as tasks grow in complexity, model-based ap-
proaches necessitate substantial manual engineering, tailored
to each specific task. This includes the careful crafting of the
cost function and design of an appropriate planning strategy

The authors are with the Robotics and Perception Group, Department
of Informatics, University of Zurich, and Department of Neuroinformatics,
University of Zurich and ETH Zurich, Switzerland (http://rpg.ifi.
uzh.ch). This work was supported by the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No. 871479
(AERIAL-CORE) and the European Research Council (ERC) under grant
agreement No. 864042 (AGILEFLIGHT).

Cost map

Critic

Actor

DiffMPC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

O
bs

er
va

tio
ns

Reset

Environment

Rollout
buffer

Control inputs

Reward

State

Advantages

Fig. 1: A block diagram of the approach. We combine the strength
of actor-critic RL and the robustness of MPC by placing a differ-
entiable MPC as the last layer of the actor policy. At deployment
time the commands for the environment are drawn from solving an
MPC, which leverages the dynamics of the system and finds the
optimal solution given the current state.

[10], [12]. Often, conservative assumptions about the task are
made, leading to potentially sub-optimal task performance,
for instance, in tasks where the dynamical system is taken
to its limits [9], [10], or in applications that require discrete
mode-switching [13]. Furthermore, the modular structure of
model-based approaches may result in the progressive build-
up of errors, accumulating in a cascading manner. This can
compound inaccuracies, reinforce conservative estimations,
and diminish the overall effectiveness of the system [14]–
[16]. Most recently, reinforcement-learning-based control
has gained considerable traction, demonstrating exceptional
performance in various domains, such as board games [17],
video games [18], and drone racing [14], [19]. Some of the
most impressive achievements in robotics [13], [14], [19],
[20] using reinforcement learning (RL) are even beyond
the reach of existing model-based control methods. RL
offers several advantages over MPC in robotics, notably in
adaptability and flexibility [14]. RL can optimize policies
directly from interactions with the environment, making it
more flexible in defining the task goal. This flexibility and
adaptability can lead to more scalable solutions, particularly
in complex environments where MPC may struggle to pro-
vide optimal solutions [14].

However, RL architectures are not without their own set
of challenges [15], [21]. Training end-to-end without incor-
porating and leveraging prior knowledge, such as physics
or dynamic models, results in need to learn everything
from data. While the end-to-end paradigm is attractive, it
demands a substantial amount of data and often lacks in
terms of generalizability and robustness. This has resulted

https://youtu.be/mQqm_vFo7e4
https://youtu.be/mQqm_vFo7e4
http://rpg.ifi.uzh.ch
http://rpg.ifi.uzh.ch


in hesitancy in applying end-to-end learned architectures to
safety-critical applications and has fostered the development
of approaches that advocate for the introduction of safety in
learned pipelines [22]–[24].

In this work, we introduce a new architecture called Actor-
Critic Model Predictive Control to bridge the gap between
Reinforcement Learning and Model Predictive Control. This
architecture equips the agent with a differentiable MPC [25],
located at the last layer of the actor network, as shown
in Fig. 1, that provides the system with online replanning
capabilities and allows the policy to predict and optimize the
short-term consequences of its actions. Instead of relying in
intermediate representations such as trajectories, we directly
learn a map from observations to cost. Therefore, at deploy-
ment time, the control commands are drawn from solving an
MPC, which leverages the system’s dynamics and finds the
optimal solution given the current state. The differentiable
MPC module, which incorporates a model of the system’s
dynamics, provides the agent with prior knowledge even
before any training data is received. The second component
of our actor is the cost map, a deep neural network that
encapsulates the dependencies between observations and
the cost function of the MPC. In other words, while the
MPC captures temporal variations inside its horizon, the
neural cost module encodes the dependencies in relation to
the observations. This architecture thereby incorporates two
different time horizon scales: the MPC drives the short-term
actions while the critic network manages the long-term ones.
We demonstrate that our approach can tackle the agile flight
problem with a highly non-linear quadrotor system, validated
in both simulation and in real-world deployment.

II. RELATED WORK

Several methods have been developed to learn cost func-
tions or dynamic models for MPC [26]–[31]. For example, in
[28], [29], a policy search strategy is adopted that allows for
learning the hyperparameters of a loss function for complex
agile flight tasks. On the other hand, in [30], [31] they
use Bayesian Optimization to tune the hyperparameters and
dynamics of MPC controllers for different tasks such as car
racing. However, these approaches use black-box optimiza-
tion methods and do not exploit the gradient through the
optimization problem, thus cannot leverage the full advantage
of the prior knowledge embedded in the MPC.

Sampling-based MPC algorithms [32], are designed to
handle intricate cost criteria and general nonlinear dynamics.
This is accomplished by integrating neural networks for
approximating system dynamics with the Model Predictive
Path Integral (MPPI) control framework [32] for optimizing
control in real-time. A vital aspect of sampling-based MPC
is the generation of a large number of samples on-the-fly,
often carried out in parallel using Graphics Processing Units
(GPUs). Consequently, running sampling-based MPC on
embedded systems can be both computationally demanding
and memory intensive.

Alternatively, approaches leveraging differentiability
through controllers have been on the rise. For example, for

tuning linear controllers by getting the analytic gradients
[33], for differentiating through an optimization problem for
planning the trajectory for a legged robot [34], or for creating
a differentiable prediction, planning and controller pipeline
for autonomous vehicles [35]. On this same direction, MPC
with differentiable optimization [25], [36]–[38] proposed
to learn the cost or dynamics of a controller end-to-end.
This approach is facilitated by analytically differentiating
through the fixed point of a nonlinear iLQR solver [39].
Consequently, this method boasts substantial efficiency: it
is less demanding in terms of computation and memory.
However, all these approaches were only demonstrated in
the context of imitation learning. While imitation learning
is effective, its heavy reliance on expert demonstrations is a
constraint. This dependence prevents exploration, potentially
inhibiting its broader capabilities.

We address this issue by leveraging the advantages of both
differentiable MPC and model-free reinforcement learning.
By equipping the actor with a differentiable MPC, our ap-
proach provides the agent with online replanning capabilities
and with prior knowledge, which is a significant advantage
over model-free RL, where the actor is a randomly initialized
feedforward neural network. Unlike conventional MPC, our
approach emphasizes robustness and adaptability, flexibly
allowing for the optimization of intricate objectives through
iterative exploration and refinement.

III. METHODOLOGY

A. Preliminaries

Consider the discrete-time dynamic system with continu-
ous state and input spaces, xk ∈ X and uk ∈ U respectively.
Let us denote the time discretized evolution of the system
f : X × U 7→ X such that xk+1 = f(xk,uk), where the
sub-index k is used to denote states and inputs at time tk.
The general Optimal Control Problem considers the task of
finding a control policy π(x), a map from the current state
to the optimal input, π : X 7→ U , such that the cost function
J : X 7→ R+ is minimized:

π(x) = argmin
u

J(x)

subject to x0 = x, xk+1 = f(xk,uk)

xk ∈ X , uk ∈ U (1)

where k ranges from 0 to N for xk and from 0 to N − 1
for uk.

B. General Quadratic MPC formulation

Most MPC approaches need an explicit manual selection
of a cost function that properly encodes the end task. For a
standard tracking MPC this encoding is done through plan-
ning by finding a dynamically feasible reference trajectory
that translates the task into suitable cost function coefficients
for every time step. However, this approach presents two
drawbacks: i) finding a dense, differentiable cost function
can be difficult, and ii) even if this cost function is found,
extra effort needs to be spent in fine tuning the parameters for
real-world deployment. More generally, all receding horizon



architectures such as MPC need to run in real-time when a
deployment in the real world is desired. Because of this, the
optimization problem is often approximated and converted
from a non-linear optimization problem to a Quadratic Pro-
gram (QP). Therefore, a more general cost function can be
written as in Eq. (2).

JQ(x) =

N∑
k=0

[
xk

uk

]T

Qk

[
xk

uk

]
+ pk

[
xk

uk

]
(2)

In our paper, we propose to directly search for the matrix
coefficients of Eq. (2). This way, by varying Qk and pk,
we are able to capture a larger family of problems, without
suffering from the dependency on a feasible trajectory.

C. Actor-Critic Reinforcement Learning
The Actor-Critic method is a widely-used approach in

reinforcement learning (RL) that combines the advantages
of both value-based and policy-based methods. It consists of
two main components: the Actor and the Critic. The key idea
is to simultaneously learn a state-value function Vω(s) and
learn a policy function πθ, where the value function (Critic)
and policy (Actor) are parameterized by ω and θ separately.
The policy is updated via the policy gradient theorem [40],

∇θJ(πθ) =
1

N

N∑
i=1

T∑
k=1

∇θ log πθ(a
i
k|sik)Aω(s

i
k, a

i
k) (3)

where A(sk, ak) = r(sk, ak) + γVω(sk+1) − Vω(sk) is the
advantage function. Here, sk ∈ S is the observation, ak ∈ A
is the action. In a standard actor-critic method, the policy is
a stochastic representation where the mean is ak = fθ(sk) a
function approximator, such as a feedforward neural network.

D. Actor-Critic Model Predictive Control
This paper proposes an Actor-Critic MPC controller ar-

chitecture where the MPC is differentiable [25] and the cost
function is learned end-to-end using RL. The MPC block
is introduced as the differentiable layer of the actor in an
actor-critic PPO pipeline, as shown in Fig. 1. In contrast to
previous work [28], [41] where the MPC is taken as a black-
box controller and the gradient is sampled, in our case the
gradient of the cost function with respect to the solution is
analytically computed and propagated using a differentiable
MPC [25]. Therefore, for every backward and forward pass
of the actor network, we need to solve an optimization
problem. Instead of resorting to task specific engineering of
the cost function, we propose a neural cost map where the
Qk and pk terms are the output of a neural network. This
allows to encode the end task directly as a reward function,
which is then trainable end-to-end using the PPO training
scheme. The main benefit of this approach with respect to
training a pure Multi Layer Perceptron (MLP) end-to-end
is that the final layer of the actor is a model-based MPC
controller,

uk ∼ N{diffMPC(xk, Q(sk), p(sk)),Σ} (4)

and therefore it retains its generalizability and robustness
properties. The model-based controller in the final layer en-
sures that the commands are always feasible for the dynamics

at hand, and that they respect the system constraints. To allow
for exploration, during training the control inputs are sampled
from a Gaussian distribution where the mean is the output
of the MPC block, and the variance is controlled by the PPO
algorithm. However, during deployment the output from the
MPC is used directly on the system, retaining all properties
of a model-based controller.

Algorithm 1: Actor-Critic Model Predictive Control
Input: initial neural cost map, initial value function V
for i = 0, 1, 2, · · · do

Collect set of trajectories Di{τ} with
uk ∼ N{diffMPC(xk, Q(sk), p(sk)),Σ}

Compute reward-to-go R̂k

Compute advantage estimates Âk based on value
function V (sk)

Update the cost map by policy gradient (e.g., PPO-clip
objective) and diffMPC backward [25]

Fit value function by regression on mean-squared error
Output: Learned cost map

E. Neural Cost Map

The cost function for the model predictive control architec-
ture presented in Section III-D is learnt as a neural network,
depicted in Fig. 1 as Cost Map. Several adaptations to the
system are needed in order to properly interface the neural
network architecture with the optimization problem. First,
we constrain the Q(sk) matrix to be diagonal.

Q(sk) = diag(Q(sk)x1 , . . . , R(sk)u1 , . . . )

p(sk) = [p(sk)x1 , . . . , p(sk)u1 , . . . ] ∀k ∈ 0, . . . , T

where x1, . . . and u1, . . . are the states and inputs to the
system, respectively, and Q(sk) and p(sk) are the learnable
parameters, interface from the neural network to the opti-
mization problem.

The purpose of the diagonalization of the Q matrix is to
reduce the dimensionality of the learnable parameter space.
Therefore, the dimensionality of the output dimension of the
Cost Map is 2T (nstate + ninput). In order to ensure the
positive semi-definiteness of the Q matrix and the positive
definiteness of the R matrix, a lower bound on the value of
these coefficients needs to be set. To this end, the last layer of
the neural cost map has been chosen to be a sigmoid which
allows for upper and lower bounds on the output value. This
lower and upper limits are chosen equal for Q and p, of
0.1 and 100000.0, respectively. The upper bound is needed
because otherwise a behaviour where the coefficients would
grow to infinity is observed. Threfore, the final neural cost
map consists of two hidden layers of width 512 with ReLUs
in between and a sigmoid non-linearity at the end. The critic
network consists also of two hidden layers of width 512 and
ReLUs. The ouput of the critic network is a scalar.

IV. EXPERIMENTS

This section presents a set of experiments, both in simula-
tion and the real world. All experiments have been conducted
using a quadrotor platform. To showcase the capabilities of
our method, we have chosen the task of agile flight through a
series of gates in different configurations: horizontal, vertical,
circular, and SplitS. To further highlight the flexibility of our



x

x

y

y

x

z

-2 -2

2
-2

-2

4

0

0

6

2

2

8

10

2

2

-5-10

4 6

0 5 10 15 20

0

-15 0

Va
lu

e

Value

-5

-10

0

5

10

15

20

25

0

5

10

15

20

Ve
lo

ci
ty

 (m
/s

)

0 4 8 12 16
Velocity (m/s)

Fig. 2: Actor-Critic Model Predictive Control (AC-MPC) applied
to agile flight: Velocity profiles and corresponding value function
plots. The left side illustrates horizontal flight, while the right
side shows vertical flight. In the value function plots, areas with
high values (depicted in yellow) indicate regions with the highest
expected returns. The MPC predictions are shown as black Xs.
approach, we also show perception-aware flight through a
circular track. Additionally, to show the sim-to-real transfer
capabilities, both circular and SplitS tracks are deployed in
the real world. We train in a simple simulator in order to
speed up the training and evaluate in BEM, a high-fidelity
simulator [42], which has a higher level of similarity in
terms of aerodynamics with the real world. The quadrotor
platform’s dynamics are the same as in [14]. For every
different task, the policies are retrained from scratch. For
these experiments, the observation space consists of linear
velocity, rotation matrix, and relative measurement of the
target gate’s corners. The control input modality is collective
thrust and body rates. Even if the MPC block uses a model
that limits the actuation at the single rotor thrust level,
collective thrust and body rates are computed from these
and applied to the system. This ensures that the computed
inputs are feasible for the model of the platform. Lastly,
all experiments have been conducted using a modification
of the Flightmare software package [43] for the quadrotor
environment and PPO implementation and Agilicious [44]
for the simulation and deployment.

A. Observation space and rewards

1) Observations: For all tasks presented in our
manuscript, the observation space does not change,
and it consists of two main parts: the vehicle
observation oquad

t and the race track observation otrack
t .

We define the vehicle state as oquad
t = [vt,Rt] ∈ R12,

which corresponds to the quadrotor’s linear velocity and
rotation matrix. We define the track observation vector
as otrack

t = [δp1, · · · , δpi, · · · ], i ∈ [1, · · · , N ], where
δpi ∈ R12 denotes the relative position between the vehicle
center and the four corners of the next target gate i or
the relative difference in corner distance between two
consecutive gates. Here N ∈ Z+ represents the total number
of future gates. This formulation of the track observation
allows us to incorporate an arbitrary number of future
gates into the observation. We use N = 2, meaning that
we observe the four corners of the next two target gates.
We normalize the observation by calculating the mean and
standard deviation of the input observations at each training
iteration. The control inputs modality to the platform is

collective thrust and body rates.
2) Rewards: For all the experiments, one reward term in

common is the gate progress reward, which encourages fast
flight through the track. The objective is to directly maximize
progress toward the center of the next gate. Once the current
gate is passed, the target gate switches to the next one. At
each simulation time step k, the reward function is defined
by:

r(k) = ∥gk − pk−1∥ − ∥gk − pk∥ − b∥ωk∥, (5)

where gk represents the target gate center, and pk and pk−1
are the vehicle positions at the current and previous time
steps, respectively. Here, b∥ωk∥ is a penalty on the bodyrate
multiplied by a coefficient b = 0.01. To discourage collisions
with the environment, a penalty (r(k) = −10.0) is imposed
when the vehicle experiences a collision. To encourage gate
passing, a positive reward (r(k) = +10.0) is added after
each gate passing. The agent is also rewarded with a positive
reward (r(k) = +10.0) upon finishing the race.

B. Horizontal and Vertical tracks

We start with horizontal and vertical flight through gates.
The vertical task can show if the approach is able to find a
solution that lies directly in the singularity of the input space
of the platform since the platform can only generate thrust in
its positive body Z direction. When flying fast downwards,
the fastest solution is to tilt the drone as soon as possible,
direct the thrust downwards, and only then command positive
thrust [9]. However, many approaches are prone to get stuck
in a local optimum [10], where the commanded thrust is zero
and the platform gets pulled only by gravity. Fig. 2 shows the
simulation results of deploying the proposed approach, which
was trained in the horizontal and vertical tracks (left and
right side of Fig. 2, respectively). We show velocity profiles
and value-function profiles. The value-function profiles have
been computed by selecting a state of the platform in the
trajectory and modifying only the position while keeping the
rest of the states fixed. For the horizontal track, we sweep
only the XY positions, and for the vertical track, the XZ
positions. Additionally, 10 MPC predictions are shown and
marked with Xs. In these value function plots, areas with
high values (in yellow) indicate regions with high expected
returns.

In the supplementary video, one can observe the evolution
of the value function over time. Given the sparse nature
of the reward terms (see Section IV-A.2), one can observe
that when a gate is successfully passed, the region of high
rewards quickly shifts to guide the drone towards the next
gate. This can be interpreted as a form of discrete mode
switching enabled by the neural network cost map. Such
mode-switching behavior is a challenging feat to accomplish
using traditional MPC pipelines. The intuition behind this is
that the critic is able to learn long-term predictions, while the
model-predictive controller focuses on the short-term ones,
effectively incorporating two time scales.
C. Ablation study: robustness to disturbances

We perform various studies where the standard actor-critic
PPO architecture [14] (labeled as AC-MLP) and a standard



z

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

z

0
00 0 022 2 2-2 -2 -2

2

4

6

8

10

0

5

10

15

20

25

30

x x x

Velocity (m
/s)

Velocity (m
/s)

Velocity (m
/s)

AC-MLP AC-MPC

0 50 100 150 200 250
Step

10

5

0

5

10

15

20

25

Re
w

ar
d

Vertical

5

0

5

10

15

Re
w

ar
d

Horizontal

AC-MPC (N=2)
AC-MPC (N=5)
AC-MPC (N=10)

AC-MLP

AC-MPC (N=2)
AC-MPC (N=5)
AC-MPC (N=10)

AC-MLP

A B

2

4

6

8

10

12

14
MPC

Fig. 3: Baseline comparisons between our AC-MPC, a standard PPO (termed AC-MLP), and a standard tracking MPC. (A):
Robustness against wind disturbances (vertical track). All policies are trained without disturbances. Black arrows indicate the quadrotor’s
attitude. (B): The learning curve for AC-MPC and AC-MLP, where N indicates the horizon length. (C): Robustness against changes in
initial conditions (horizontal track). Trajectories are color-coded, with crashed trajectories in red and successful in blue.

TABLE I: Performance Comparison. SR stands for success rate and
v for average velocity

Horizontal Vertical Vertical Wind

SR [%] v [m/s] SR [%] v [m/s] SR [%] v [m/s]

AC-MLP 74.78 7.74 53.61 10.56 6.5 10.67

MPC 64.94 4.15 72.27 4.25 0.0 6.44

AC-MPC 90.37 6.51 64.47 10.05 83.33 10.76

tracking MPC are compared to our approach (labeled as
AC-MPC) in terms of generalization and robustness to dis-
turbances. AC-MLP and AC-MPC approaches are trained
with the same conditions (reward, environment, observation,
simulation, etc.). All these evaluations are conducted using
the high-fidelity BEM simulator [42]. The MPC approach
tracks a time-optimal trajectory obtained from [9]. As shown
in Fig. 3B, in terms of sample efficiency and asymptotic
performance, for both the horizontal and the vertical flight
tasks, our approach falls slightly behind AC-MLP. This
is because, when using AC-MPC, we impose a modular
dynamic structure compared to the flexibility of the single
neural network used by the AC-MLP architecture.

In terms of disturbance rejection and out-of-distribution
behavior, we conduct three ablations, shown in Fig. 3 and
Table I). In Fig. 3A (and the Vertical Wind column of Table
I), we simulate a strong wind gust that applies a constant
external force of 11.5 N (equivalent to 1.5x the weight of the
platform). This force is applied from z = 10m to z = 8m.
We can see how neither the AC-MLP nor the MPC policies
can recover from the disturbance and complete the track
successfully. On the other hand, AC-MPC achieves a higher

success rate (83.33%, as shown in Table I), and exhibits
more consistency among repetitions. This showcases that
incorporating an MPC block enables the system to achieve
robustness.

For the Vertical and Horizontal experiments in Table I,
we simulate 10000 iterations for each controller where the
starting points are uniformly sampled in a cube of 3m of
side length where the nominal starting point is in the center.
In the Horizontal case, the results are shown in Fig. 3C. It is
important to highlight that during training of AC-MLP and
AC-MPC, the initial position was only randomized in a cube
of 1m of side length. The successful trajectories are shown
in blue in Fig. 3C, while the crashed ones are shown in
red. In Table I, we can observe that the AC-MPC presents a
higher success rate than AC-MLP in both experiments. One
can also see that AC-MPC has a higher success rate than
the MPC approach in the Horizontal task, but this is not the
case in the Vertical task. The reason behind this is that in
the Vertical task, the MPC is not able to track the solution
that turns the drone upside down, therefore resulting in the
sub-optimal solution of setting all thrusts to near-zero state
and dropping only by the effect of gravity, which results in
slower but safer behavior. This is evident by looking at the
average speed column.

These experiments provide empirical evidence showing
that AC-MPC exhibits enhanced performance in handling un-
foreseen scenarios and facing unknown disturbances, which
makes it less brittle and more robust.



x
− 6

− 4
− 2

0
2

4
6

y

− 8

− 6

− 4

− 2

0

2

4

6

8

10

z

0
1
2
3

0

2

4

6

8

10

12

14

x
−5 .0

−2 .5
0.0

2.5
5.0

7.5
10.0

12.5

y

− 8

− 6

− 4

− 2

0

2
4

6
8

10

z

0
1
2
3
4

0

2

4

6

8

10

12

14

16

Velocity (m
/s)

Velocity (m
/s)

(a) Simulation results

x
6

4
2

0
2

4
6

y

8

6

4

2

0

2

4

6

8

10

z

0
1
2
3

2

4

6

8

10

x

7.5
5.0

2.5
0.0

2.5
5.0

7.5
10.0

12.5

y

8

6

4

2

0

2

4

6

8

10

z

0
1
2
3
4

2

4

6

8 

10

12

14

Velocity (m
/s)

Velocity (m
/s)

(b) Real-world results
Fig. 4: AC-MPC trained for the task of agile flight in complex
environments. On the left is the Circle track, and on the right is the
SplitS track for both the real world and simulation. These figures
show how our approach is able to be deployed in the real world
and how they transfer zero shot from simulation to reality. The plots
show the flown trajectories by our quadrotor platform, recorded by
a motion capture system.

x
− 6

− 4
− 2

0
2

4
6

y

− 7 . 5

− 5 . 0

− 2 . 5

0.0

2.5

5.0

7.5

10.0

z

0.00.51.01.52.02.53.0

2

4

6

8

10

x
− 6

− 4
− 2

0
2

4
6

y

− 7 . 5

− 5 . 0

− 2 . 5

0.0

2.5

5.0

7.5

10.0

z

0.00.51.01.52.02.53.0

4

6

8

10

12

Velocity (m
/s)

Velocity (m
/s)

AC-MLP AC-MPC

Fig. 5: The proposed Actor-Critic Model Predictive Controller
trained for the task of agile perception aware flight. The star in
the middle of the track is the point to be kept in the middle of the
camera frame.

D. Perception Aware Flight

Additionally, we train our approach in the task of flying
in a circle while keeping a certain point in the center of
the camera frame, similar to the approach in [45]. Given
an interest point in the world frame (which is marked as
an orange star in Fig. 5), we minimize the angle between
the Z-axis of the camera and the line that joins the center
point of the camera with the objective. This reward term is
then summed to the previously presented progress reward
term, which incentivizes the drone to move through the
gates. In Fig. 5, we show how both AC-MLP and AC-
MPC approaches can learn this behavior. The black arrows
represent the direction of the camera Z-axis. Since yaw
control effectiveness is the lowest for a quadrotor – a large
amount of actuation is needed for a small change in yaw –
this task poses a competing reward problem, where if the
drone moves faster, it will necessarily be at the expense of
losing perception awareness. This is the reason behind the
unnatural shapes that emerge, shown in Fig. 5.

E. Real-world Deployment

We test our approach in the real world with a high-
performance racing drone. We deploy the policy with two
different race tracks: Circle track and SplitS track. We use the

Agilicious control stack [44] for the deployment. The main
physical parameters and components of this platform are
referred to [14], under the name 4s drone. Fig. 4 illustrates
the trajectories that flew in both simulation and the real
world: our policy transfers to the real world without fine-
tuning. The real-world experiments are also shown in the
supplementary video.

F. Training time and inference time

In Table II we show the training times (SplitS track) and
the forward pass times for AC-MLP and for the proposed
AC-MPC for different horizon lengths.

TABLE II: Comparison of solve times and inference times for
different architectures

Training time Inference time

AC-MLP 21m 0.5 ± 0.037 ms
AC-MPC (N=2) 11h:30m 13.5 ± 1.1 ms
AC-MPC (N=5) 22h:6m 37.5 ± 14.5 ms
AC-MPC (N=10) 39h:36m 69.9 ± 22 ms

V. DISCUSSION AND CONCLUSION

This work presented a new learning-based control frame-
work that combines the advantage of differentiable model
predictive control with actor-critic training. We showed that
our method can tackle challenging control tasks with a
highly nonlinear and high-dimensional quadrotor system,
and achieves robust control performance for agile flight.
Additionally, our approach achieved zero-shot sim-to-real
transfer, demonstrated by successfully controlling a quadro-
tor at velocities of up to 14 m/s in the physical world.

However, there are some limitations to be mentioned and
to be improved in the future. First, an analytic model of
the system is required for the differentiable MPC block,
which limits our approach to mainly systems where the
dynamics are known beforehand. Furthermore, training AC-
MPC takes significantly longer than AC-MLP (see Table II),
due to the fact that an optimization problem needs to be
solved for both the forward and the backward pass through
the actor network. In fact, there are open-source libraries
[36], [37] that are recently evolving and implementing more
efficient versions of differentiable MPC. Another limitation
is that the differentiable MPC controller does not support
state constraints. This could be addressed by adding state
constraints to the implementation. Showcasing the approach
in different tasks with different robots is another future
direction.

We believe that the proposed method represents an impor-
tant step in the direction of generalizability and robustness
in RL. It demonstrates that modular solutions that combine
the best of learning-centric and model-based approaches are
becoming increasingly promising. Our approach potentially
paves the way for the development of more robust RL-based
systems, contributing positively towards the broader goal of
advancing AI for real-world robotics applications.



ACKNOWLEDGMENTS

We would like to thank Brandon Amos, for sharing his
insights regarding the implementation of the differentiable
MPC code, and Jiaxu Xing for the insightful discussions.

REFERENCES

[1] R. P. N. Rao and D. H. Ballard, “Predictive coding in the visual
cortex: a functional interpretation of some extra-classical receptive-
field effects,” Nature Neuroscience, vol. 2, no. 1, pp. 79–87, 1999.

[2] K. Friston, “The free-energy principle: a unified brain theory?” Nature
Reviews Neuroscience, vol. 11, no. 2, pp. 127–138, 2010.

[3] Y. LeCun, “A path towards autonomous machine intelligence version
0.9. 2, 2022-06-27,” Open Review, vol. 62, 2022.

[4] T. Tzanetos, M. Aung, J. Balaram, H. F. Grip, J. T. Karras, T. K. Can-
ham, G. Kubiak, J. Anderson, G. Merewether, M. Starch, M. Pauken,
S. Cappucci, M. Chase, M. Golombek, O. Toupet, M. C. Smart,
S. Dawson, E. B. Ramirez, J. Lam, R. Stern, N. Chahat, J. Ravich,
R. Hogg, B. Pipenberg, M. Keennon, and K. H. Williford, “Ingenuity
mars helicopter: From technology demonstration to extraterrestrial
scout,” in 2022 IEEE Aerospace Conference (AERO). IEEE, 2022,
pp. 01–19.

[5] E. Arthur Jr and J.-C. Ho, Applied optimal control: optimization,
estimation, and control. Hemisphere, 1975.

[6] M. Ellis, J. Liu, and P. D. Christofides, Economic Model Predictive
Control: Theory, Formulations and Chemical Process Applications.
Springer, 2016.

[7] P.-B. Wieber, R. Tedrake, and S. Kuindersma, “Modeling and control
of legged robots,” in Springer handbook of robotics. Springer, 2016,
pp. 1203–1234.

[8] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” Robotics: Science and Systems (RSS), 2020.

[9] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for
quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, 2021.

[10] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive
contouring control for time-optimal quadrotor flight,” IEEE Transac-
tions on Robotics, vol. 38, no. 6, pp. 3340–3356, 2022.

[11] A. Romero, R. Penicka, and D. Scaramuzza, “Time-optimal online
replanning for agile quadrotor flight,” IEEE Robotics and Automation
Letters, vol. 7, no. 3, pp. 7730–7737, 2022.

[12] D. V. Lu, D. Hershberger, and W. D. Smart, “Layered costmaps
for context-sensitive navigation,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 709–715.

[13] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[14] Y. Song, A. Romero, M. Mueller, V. Koltun, and D. Scaramuzza,
“Reaching the limit in autonomous racing: Optimal control versus
reinforcement learning,” Science Robotics, p. adg1462, 2023.

[15] N. Roy, I. Posner, T. D. Barfoot, P. Beaudoin, Y. Bengio, J. Bohg,
O. Brock, I. Depatie, D. Fox, D. E. Koditschek, T. Lozano-Perez,
V. K. Mansinghka, C. J. Pal, B. A. Richards, D. Sadigh, S. Schaal,
G. S. Sukhatme, D. Thérien, M. Toussaint, and M. van de Panne,
“From machine learning to robotics: Challenges and opportunities for
embodied intelligence,” ArXiv, vol. abs/2110.15245, 2021.

[16] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and
control for mobile robot navigation using machine learning: a survey,”
Autonomous Robots, vol. 46, no. 5, pp. 569–597, 2022.

[17] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016.

[18] O. Vinyals, I. Babuschkin, W. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[19] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and
D. Scaramuzza, “Champion-level drone racing using deep reinforce-
ment learning,” Nature, vol. 620, no. 7976, pp. 982–987, Aug 2023.

[20] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[21] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati,
and A. P. Schoellig, “Safe learning in robotics: From learning-based
control to safe reinforcement learning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 5, pp. 411–444, 2022.

[22] ——, “Safe learning in robotics: From learning-based control to safe
reinforcement learning,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 5, pp. 411–444, 2022.

[23] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
“Learning-based model predictive control: Toward safe learning in
control,” Annual Review of Control, Robotics, and Autonomous Sys-
tems, vol. 3, pp. 269–296, 2020.

[24] K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger,
“Probabilistic model predictive safety certification for learning-based
control,” IEEE Transactions on Automatic Control, vol. 67, no. 1, pp.
176–188, 2021.

[25] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differen-
tiable mpc for end-to-end planning and control,” Advances in neural
information processing systems, vol. 31, 2018.

[26] A. Saviolo, G. Li, and G. Loianno, “Physics-inspired temporal learn-
ing of quadrotor dynamics for accurate model predictive trajectory
tracking,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.
10 256–10 263, 2022.

[27] G. Torrente, E. Kaufmann, P. Föhn, and D. Scaramuzza, “Data-driven
mpc for quadrotors,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3769–3776, 2021.

[28] A. Romero, S. Govil, G. Yilmaz, Y. Song, and D. Scaramuzza,
“Weighted maximum likelihood for controller tuning,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 1334–1341.

[29] Y. Song and D. Scaramuzza, “Policy search for model predictive
control with application to agile drone flight,” IEEE Transactions on
Robotics, vol. 38, no. 4, pp. 2114–2130, 2022.

[30] L. P. Fröhlich, C. Küttel, E. Arcari, L. Hewing, M. N. Zeilinger,
and A. Carron, “Contextual tuning of model predictive control for
autonomous racing,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 10 555–
10 562.

[31] A. Gharib, D. Stenger, R. Ritschel, and R. Voßwinkel, “Multi-objective
optimization of a path-following mpc for vehicle guidance: A bayesian
optimization approach,” in 2021 European Control Conference (ECC),
2021, pp. 2197–2204.

[32] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applica-
tions to autonomous driving,” IEEE Transactions on Robotics, vol. 34,
no. 6, pp. 1603–1622, 2018.

[33] S. Cheng, L. Song, M. Kim, S. Wang, and N. Hovakimyan,
“Difftune+: Hyperparameter-free auto-tuning using auto-
differentiation,” in Proceedings of The 5th Annual Learning for
Dynamics and Control Conference, ser. Proceedings of Machine
Learning Research, N. Matni, M. Morari, and G. J. Pappas, Eds., vol.
211. PMLR, 15–16 Jun 2023, pp. 170–183.

[34] F. Yang, C. Wang, C. Cadena, and M. Hutter, “iplanner: Imperative
path planning,” Robotics: Science and Systems Conference (RSS),
2023.

[35] P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone, “Diffstack: A
differentiable and modular control stack for autonomous vehicles,” in
Conference on Robot Learning. PMLR, 2023, pp. 2170–2180.

[36] L. Pineda, T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. T. Chen,
J. Ortiz, D. DeTone, A. Wang, S. Anderson, J. Dong, B. Amos,
and M. Mukadam, “Theseus: A Library for Differentiable Nonlinear
Optimization,” Advances in Neural Information Processing Systems,
2022.

[37] C. Wang, D. Gao, K. Xu, J. Geng, Y. Hu, Y. Qiu, B. Li, F. Yang,
B. Moon, A. Pandey, Aryan, J. Xu, T. Wu, H. He, D. Huang,
Z. Ren, S. Zhao, T. Fu, P. Reddy, X. Lin, W. Wang, J. Shi, R. Talak,
K. Cao, Y. Du, H. Wang, H. Yu, S. Wang, S. Chen, A. Kashyap,
R. Bandaru, K. Dantu, J. Wu, L. Xie, L. Carlone, M. Hutter, and
S. Scherer, “PyPose: A library for robot learning with physics-based
optimization,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023.

[38] S. East, M. Gallieri, J. Masci, J. Koutnik, and M. Cannon, “Infinite-
horizon differentiable model predictive control,” in International Con-
ference on Learning Representations, 2019.

[39] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.” in ICINCO (1). Citeseer,
2004, pp. 222–229.



[40] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[41] Y. Song and D. Scaramuzza, “Learning high-level policies for model
predictive control,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS),
2020.

[42] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza,
“Neurobem: Hybrid aerodynamic quadrotor model,” Proceedings of
Robotics: Science and Systems XVII, p. 42, 2021.

[43] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,

“Flightmare: A flexible quadrotor simulator,” in Conference on Robot
Learning, 2020.

[44] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld,
T. Laengle, G. Cioffi, Y. Song, A. Loquercio, and D. Scaramuzza, “Ag-
ilicious: Open-source and open-hardware agile quadrotor for vision-
based flight,” Science Robotics, vol. 7, no. 67, p. eabl6259, 2022.

[45] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “Pampc: Perception-
aware model predictive control for quadrotors,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1–8.


	Introduction
	Related Work
	Methodology
	Preliminaries
	General Quadratic MPC formulation
	Actor-Critic Reinforcement Learning
	Actor-Critic Model Predictive Control
	Neural Cost Map

	Experiments
	Observation space and rewards
	Observations
	Rewards

	Horizontal and Vertical tracks
	Ablation study: robustness to disturbances
	Perception Aware Flight
	Real-world Deployment
	Training time and inference time

	Discussion and Conclusion
	References

