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Abstract— Visual Odometry (VO) is crucial for autonomous
robotic navigation, especially in GPS-denied environments like
planetary terrains. To improve robustness, recent model-based
VO systems have begun combining standard and event-based
cameras. Event cameras excel in low-light and high-speed
motion, while standard cameras provide dense and easier-
to-track features, even in low-textured areas. However, the
field of image- and event-based VO still predominantly relies
on model-based methods and is yet to fully integrate recent
image-only advancements leveraging end-to-end learning-based
architectures. Seamlessly integrating the two modalities remains
challenging due to their different nature, one asynchronous, the
other not, limiting the potential for a more effective image- and
event-based VO. We introduce RAMP-VO, the first end-to-end
learned image- and event-based VO system. It leverages novel
Recurrent, Asynchronous, and Massively Parallel (RAMP)
encoders capable of fusing asynchronous events with image
data, providing 8× faster inference and 33% more accurate
predictions than existing solutions. Despite being trained only
in simulation, RAMP-VO outperforms image- and event-based
methods by 46% and 60%, respectively, on traditional, real-
world benchmarks as well as newly introduced Apollo and
Malapert landing sequences, paving the way for robust and
asynchronous VO in space.

I. INTRODUCTION

Visual Odometry (VO) is a central building block in
many robotic platforms. Traditionally, VO systems have
relied exclusively on standard RGB cameras to estimate the
pose accurately. However, when navigating in challenging
scenarios, such as low-light environments, high dynamic
range scenes, or low-textured terrains at high speed, standard
VO methods typically fail. These shortcomings are mostly
caused by their susceptibility to motion blur, the limited
dynamic range, as well as their unfavorable bandwidth-vs-
latency tradeoff. While a higher frame rate would reduce
latency, it comes at the cost of a higher bandwidth and
increased processing power. Event-based cameras, on the
other hand, promise to address all these issues. They are
bio-inspired sensors that asynchronously record per-pixel
brightness changes at microsecond resolution. They exhibit
high dynamic range (HDR), low latency, and low power
consumption, making them an ideal complement to regular
cameras in VO systems.
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Fig. 1. Overview of the proposed method: Recurrent, Asynchronous, and
Massively Parallel (RAMP) Encoders are used to process asynchronous
events and images. Patches are extracted from the resulting encoding and
used by the Estimator inspired by DPVO [1] to perform data-driven feature
tracking and visual odometry. A simple pose forecasting module exploits
previously extracted patches to initialize poses in the bundle adjustment,
allowing for improved performance.

Their combination holds significant promise for critical
VO applications, especially in scenarios where conventional
sensors like GPS, LiDAR, and Inertial Measurement Units
(IMUs) cannot be used or are ineffective due to radiation and
temperature changes. These conditions are often encountered
in planetary exploration and landing missions, where rapid
motion and partial shadow are also common.

Recent model-based solutions [2] have shown potential
in fusing images and events. However, the fields of image-
only [1], [3] and event-only [4] VO have recently shown
that learning-based pipelines, trained end-to-end, have the
potential to surpass traditional model-based systems in accu-
racy and robustness. While the combination of data-driven
approaches with systems that leverage images and events
appears promising, effectively combining event data—with
its distinctive asynchronicity and sparsity—with synchronous
and dense frames is a non-trivial challenge in learning-based
solutions. Traditional learning-based methods typically resort
to artificially synchronizing events at image timestamps to
facilitate data fusion, reducing the rate at which events are
processed to that of the slower image modality. Nevertheless,
in tasks such as VO, this simplification is not ideal and
might limit the algorithm’s ability to exploit events received
in between images, which is crucial for tracking features
effectively.

To address these limitations, our work introduces an



adaptive fusion approach that adjusts the frequency of event
fusion based on the rate of incoming events, thus mir-
roring the pace of the scene dynamics. Our Recurrent,
Asynchronous, and Massively Parallel (RAMP) encoders
handle asynchronous1 events and images at varying rates
and fuse them into a pyramidal memory that serves as a data-
agnostic feature space. We use these encoders in RAMP-VO,
the first learning-based VO method that uses both events
and frames. RAMP-VO leverages a motion-aware strategy
based on event data to extract robust patch-based feature
tracks. These features are then processed by a differentiable
bundle adjustment module [1] which leverages a simple pose
forecasting module for initialization.

We train RAMP-VO on an event-based version of Tar-
tanAir [5]. To address the lack of visual odometry datasets
that feature image and event data in challenging space
landing settings, we also introduce two novel datasets: the
Malapert landing and the Apollo landing datasets, which
feature challenging motion and lighting conditions due to
stark shadows cast by the sun. The first dataset represents a
realistic simulation of a spacecraft landing, covering several
kilometers of descent near the Malapert crater in the south
Moon pole. The second dataset, captured with real RGB and
event cameras, features landings on a 3D scale model of the
lunar surface and precise ground truth camera poses, making
it a valuable resource for research and evaluation.

Despite being trained purely in simulation, RAMP-VO
outperforms both image-based and event-based methods on
traditional real-world benchmarks, as well as on the newly
introduced Apollo and Malapert landing datasets. To sum-
marize our contributions are:

• A novel massively parallel feature extractor, termed
RAMP encoder that fuses images and events, both
spatially and temporally. Our encoder is 8 times faster
and achieves a 20% higher performance than other state-
of-the-art asynchronous solutions.

• RAMP-VO, the first learning-based VO using events
and frames, which outperforms both image-based and
event-based methods by 46% and 60%, respectively on
traditional real-world benchmarks.

• Two novel datasets, Apollo and Malapert landing, tar-
geting challenging planetary landing scenarios.

II. RELATED WORK

Learning-based Visual Odometry. Recent advancements
in VO have witnessed a paradigm shift towards learning-
based approaches [6], surpassing traditional methods in
accuracy and robustness [7], [8]. Unsupervised methods
[9], [10], [11] exploit additional depth and optical flow
predictors while recent methods employ neural radiance

1Notice that, in this work, with the term “asynchronous” we refer to the
ability of our network to handle data streams operating at different, and
possibly varying, rates. Our network processes either images or packets
of events (in the form of frame-like event representations) as soon as
they are available, without a stream synchronization step. This should not
be confused with networks operating on event-by-event processing where
“asynchronous” refers to the network’s layers functioning.

fields [12], [13], [14] to further improve performance. Su-
pervised methods, on the other hand, either rely on end-
to-end camera-motion regressors [15], [16], [17], [18] or
exploit hybrid solutions that combine geometric models with
deep neural networks [19], [20], [21]. Among these works,
DROID-SLAM [3] recently proposed to combine an iterative
learning-based optimization inspired by RAFT [22] with a
differentiable bundle adjustment layer. The follow-up work,
DPVO [1], further improves its efficiency by replacing dense
feature tracking with a sparse patch-based variant. Our work
builds upon DPVO, but significantly improves its robustness
by effectively fusing images and events together.

Event-based Motion Estimation. Although full 6DOF
pose estimation using only events has been successfully
demonstrated in the literature [23], [24], most event-based
VO rely on additional sensors. While some systems incor-
porate depth estimates from stereo or depth cameras [25],
[26], [27], others integrate IMU measurements to improve
robustness and scale recovery [28], [29], [30], [31], [32],
[33], [29]. Standard image frames have also been incorpo-
rated to extract features and then track them with events
[34] or to optimize additional residual errors [28], [2], often
exploiting DAVIS cameras [35] or beamsplitter setups [2].

Despite these advancements, challenges persist in low-
texture environments, directing toward exploration into deep
learning approaches. While early attempts focused on un-
supervised techniques [36], [37], DEVO [4] has recently
shown promise in transferring to out-of-distribution scenarios
by training on large simulated datasets. Notably, however,
DEVO only utilizes events and still depends on encoders pri-
marily optimized for images. In contrast, our work employs
a recurrent and pyramidal feature extractor that effectively
fuses images with events, preserving their incremental nature
and exploiting the best of both modalities.

Fusing events and frames. While a great variety of
approaches leverage, optimize, or fuse images and events for
different downstream tasks [38], [39], [40], [41], the topic of
effectively fusing the two data modalities while considering
their different nature has thus far been underexplored. Some
methods [38], [42], [39] synchronize and concatenate both
modalities and process them together with a shared encoder.
Others [40], [43], instead, use specialized feature extractors,
but still resort to data synchronization for processing.

To date, only one prior study, RAM Net [44], has proposed
a specialized and asynchronous way of fusing events and
frames. However, RAM Net relies on a sequential hierarchi-
cal feature extraction process and utilizes slow Conv-GRU
modules. Our asynchronous encoders build upon RAM Net
but exploit pixel-wise operations and parallel extraction of
multi-scale features, demonstrating both higher performance
as well as improved efficiency.

III. METHODOLOGY

A. Overview

Our end-to-end event- and frame-based visual odometry
algorithm, RAMP-VO, takes inspiration from recurrent asyn-
chronous multimodal (RAM) networks [44] and deep patch
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Fig. 2. An overview of the proposed RAMP Net encoder. Events and images are first asynchronously processed by two parallel pixel-wise, multi-scale,
encoding branches (PWE) made of a set of convolutional layers followed by pixel-wise LSTMs Gs

k . Features coming from different data modalities k are
then fused (SF), at each scale, into a shared state Σs

t by employing sensor-specific encoders. The multi-scale features are then finally combined through
two separate fusion modules (MSF) to produce the matching and context features, mt and ct .

visual odometry (DPVO) [1]. Our RAMP encoder processes
a temporally ordered, asynchronous stream of data, which
we will call frames. These are either standard images or
frames made of events. Similar to DPVO [1], for each new
frame with index j we first compute matching m j and context
features c j through RAMP encoder, described in III-B, and
then extract N patches with dimension p × p from these
feature maps.

While DPVO [1] and DEVO [4] select these patches
randomly or through a learning-based strategy, respectively,
we opt for a simpler yet effective alternative based on events’
activity. In particular, we first compute an H×W density map
by counting the number of events for each pixel. Then, we
select the N locations on this map with the highest counts,
after having applied non-maximum suppression, which re-
moves candidates that are not the highest in their 11× 11
local neighborhood. The thus sampled locations act as the
centers of the selected patches.

Denote a patch Pl
j with index l extracted in frame j as

Pl
j =

[
x y 1 d

]T x,y,d ∈ R1×p2
. (1)

Note that, as in DPVO, we model patches as collections of
contiguous pixels, and not only as single points. Here d is
the patch depth (constant for all pixels within the patch), and
x,y are the coordinates of the pixels in the patch.

These patches are then projected into the previous frames
of index i ∈ { j− r, j− r+ 1, ..., j} and patches extracted in
previous frames (going back to frame j−r) are projected into
the current frame j. A visualization is provided in Figure 3.
Let the projection of patch Pl

j , into frame i be

P′l
ji ∼ KTiT−1

j K−1Pl
j (2)

where K is the 4× 4 camera matrix and Ti,Tj are poses at
frames i, j. We summarize this as P′l

ji = ω(Ti,T j,Pl
j).

Next, RAMP-VO computes camera motion by estimating
2D corrections ∆li ∈ R2 for each projected patch P′l

ji, as
well as importance values σli ∈ R2×2 through a series of
blocks involving a correlation lookup, 1D Convolution, Soft
Aggregation, Transition Block and Factor Head. Since these

Fig. 3. Illustration of pose initialization. Through patch extraction and pro-
jection into future frames we construct feature tracks for frames j, j−1, ...
which we use to construct the splines Sl(t j). To perform pose initialization,
we extrapolate the feature tracks to time t j+n, and apply bundle adjustment
to solve for the forecasted pose Tj+n.

operations are out of the scope of the current work, we
summarize them with the following relation

∆li,σli = F(P′l
ji,ci,mi,m j) (3)

where we compare context features ci with matching features
m extracted in frame i and j. The operator F represents the
update operator from [1], represented inside the estimator
block in Fig. 1.

Finally, given the corrected positions P′l
ji +∆li and their

weights σli, RAMP-VO performs a differentiable bundle
adjustment (BA) step, which minimizes the projection error:

∑
(l,i)∈E

∥∥∥[P̂′l
ji +∆li

]
− ω̂(Ti,T j,Pl

j)
∥∥∥2

σli
. (4)

Here the left-hand side is kept fixed, while the optimization
solves for the camera poses Ti,T j and depths dl

j. Theˆopera-
tor selects the central pixel of the patch, while E is a bipartite
graph connecting frames with patches projected onto each of
them. By using two Levenberg-Marquart optimization steps,
the BA layer updates the depth and camera poses in the time
window. This operation is fully differentiable, and thus used
during training to backpropagate errors.

Contrary to [1] which uses a simple linear initialization,
we bootstrap initial poses in our RAMP-VO by fitting a



continuous-time model over the available patch tracks, as
depicted in Figure 3. We do so by fitting two cubic univariate
splines Sl

x(t) and Sl
y(t) modeling the 2D motion of the patch

center along the last 11 frames, such that (xl
i ,yl

i)∼ Sl(ti) =
(Sl

x(ti),S
l
y(ti)). We then extrapolate the location of the camera

at time t j+1, by first evaluating Sl(t j+1), assuming the first
and second derivatives to be zero at the splines’ boundaries
and the depth to remain constant, and then optimizing its 6
DOF pose through BA:

∑
(l,i)∈E

∥∥∥Sl(t j+1)− ω̂(Ti,Tj,Pl
j)
∥∥∥2

σli
. (5)

The main innovations of this work are related to how
the context and matching features c j and m j are generated
by fusing asynchronous events and frames. These topics are
discussed next.

B. Asynchronous and Massively Parallel Encoders

Denote the stream of data {xk j(t j)}T
j=1 captured at times-

tamps t j. Here x (henceforth denoted as ”frame”) denotes
either a 5×H ×W sized event stack [45], in the case of
events, or a C×H×W sized image2. The variable k j ∈ {e, i}
denotes the sensor at timestamp t j. We encode these data
structures using a Recurrent, Asynchronous and Massively
Parallel (RAMP) encoder. An overview of the architecture is
provided in Figure 2. We employ two different Multi-Scale
Fusion modules, with identical structures, to generate either
the context or the matching feature maps.

The RAMP encoders first transduce the data stream us-
ing pixel-wise encoders starting with a stream of features
{ f s

k j
}T

j=1 at three different scales. To encode this data we
use separate sensor-specific encoders, one for each scale

f s
k j
(t j) = Es

k j
(xk j(t j)). (6)

These encoders have a kernel size 1× 1, 3× 3, and 5× 5
respectively, and a stride of 2s with s = 0,1,2.

This stream of features is then further encoded in two
recurrent stages: (1) intra-sensor fusion, and (2) inter-sensor
fusion. In the intra-sensor fusion step, we process features
originating from a single sensor and scale with an LSTM
operating on individual pixels, inspired by [46]

hs
k j
(t j) = Gs

k j
( f s

k j
(t j)), (7)

where we have omitted the cell state for the sake of clarity.
The inter-sensor fusion step, instead, fuses the hidden

states from separate sensors asynchronously using only a
single depth-wise convolution in the following way:

Σ
s
j = Hk j

(
[hs

k j
(t j)∥Σ j−1]

)
(8)

where ∥ denotes concatenation. A different depth-wise con-
volution Hk j is used each time depending on which sensor
the data being fused is generated from.

Note that the RAMP encoder fuses each pixel inde-
pendently and only relies on a simple inter-sensor fusion

2For color images C = 3 and for gray-scale images C = 1.

strategy, and thus can be done efficiently in parallel. This
is in contrast to the encoder in [47], which requires se-
quential processing, and expensive ConvGRU operations at
two stages. After generating inter-sensor fused states Σ j at
each time t j, a hierarchical encoder is used to generate either
the context or the matching feature maps, each at 1/4 the
original resolution

z j = K({Σ
s
j}2

s=0). (9)

Here z j can be either c j or m j, i.e., context and matching
features, required by the DPVO backend.

Multi-Scale Fusion. The Multi-scale Fusion (MSF) module
follows the feature extractors in [1] and consists of a 7×7
convolution with stride 2, four residual blocks (two at 1/2
and two at 1/4 of the initial resolution), and a final 1× 1
convolution. We use the same configuration in [1], providing
full-scale features Σ0

j as input to the encoder, but injecting
Σ1

j and Σ2
j after the second and fourth residual blocks

respectively. We do so by concatenating these features with
the residual block’s outputs and adjusting the channels of the
next operation to accommodate the additional features.

IV. EXPERIMENTS

Training. We train RAMP-VO on the synthetic TartanAir
[5] dataset, with same train and test-split in [1], which we
augment with events using VID2E [48]. During training, we
follow the DPVO [1] training scheme to select and filter
frames for training. Additionally, we also enforce a minimum
of 1.2M events between every pair of frames and remove
additional frames if this condition is not satisfied. Finally, we
feed RAMP-VO with both events and frames by interleaving
two event stacks for every pair of selected frames. We create
the first event stack by stacking the 600,000 events received
just before the mid-timestamp between the pair of images,
and the second event stack by aggregating the 600,000 events
preceding the second frame. Since ground truth poses are
only given for frames, we do not compute a loss for the
mid-frame events. At inference time, we feed the model with
asynchronous images and events, by creating a new event
stack each time M events are received. As the number of
triggered events depends on the scene dynamics, with more
events triggered with faster motion, the number of event
stacks collected relative to a scene varies adaptively. For
comparisons, we also test our model with the same strategy
used during training, which we call synchronized since events
are collected at regular rates.

We train RAMP-VO for 350,000 steps with sequences of
15 images and 30 event stacks on a Quadro RTX 8000 GPU.
The remaining hyperparameters are set as in DPVO [1]. Full
training takes around 8 days on our hardware.

Datasets. We use the Stereo DAVIS [49], EDS [2] dataset,
and the TartanAir [5] test-split used in the ECCV 2020
SLAM competition to compare our method against the state-
of-the-art. We use the TartanAir test-split used in [1] to
ablate the crucial components of RAMP-VO architecture.
Additionally, due to the limited availability of datasets
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Fig. 4. Comparisons of the ablated models (a) and of RAMP with asynchronous and synchronized data (b) on the full TartanAir test set. We show the
importance of using a RAMP encoder as in RAMP-VO over a sequential, single-scale encoder and feed-forward encoder. We also show the benefits of
using the full event information in RAMP-VO with finer discretizations. The RAMP encoder is better at maintaining memory than the RAM-Net-like
encoder, as highlighted in low framerate VO experiments (c) on the carwelding sequences of TartanAir.

(a) Malapert dataset (b) Apollo dataset
Fig. 5. Preview, and qualitative trajectory comparison on Malapert dataset (a), and Apollo dataset (b). Note that while the Malapert sequence is measured
in kilometers, the Apollo sequence, recorded at a miniature scale of the Moon’s surface, is in centimeters.

with challenging lighting conditions, we introduce two new
benchmarks that replicate lunar surface landings: Apollo
landing and Malapert landing. These benchmarks feature
rapid motion, high dynamic range, and textureless terrains.
Malapert landing. Malapert landing consists of 20 minutes
of simulated data, divided into 2 sequences of the Malapert
south Moon region. We use the planets and satellites simula-
tor PANGU 3 to generate realistic descent trajectories, each
250 km long in altitude and 40 km in translation, featuring
partial or complete darkness. Ground truth poses of the
spacecraft’s center of mass are provided at 5Hz, together with
640×480 synchronized RGB images. We generate synthetic
events using Vid2E [48] with default settings.
Apollo landing. Apollo landing is a real dataset consisting
of a total of 5 minutes of recording, split into 6 trajectories,
featuring both vertical and lateral descent trajectories on a
260× 260 cm scale replica of the Apollo 17 landing site.
Frames and events are recorded with a beam-splitter setup
featuring a 20Hz FLIR BFS-U3-12263c RGB camera and
a Prophesee Gen4 event camera, similar to the one used in
[2]. Poses are recorded with an OptiTrack motion capture
system. We downsample frames and events to a resolution
of 640×480 before processing.
Baselines. We evaluate the proposed RAMP-VO architecture
against several VO state-of-the-art methods making use of
images only (I), events only (E) as well as based on both
images and events (I+E). We follow the evaluation in
[2], [1], [4] and select ORB-SLAM2 [50], ORB-SLAM3

3https://pangu.software/

[51], COLMAP [52], [53], DROID [3] and DPVO [1] as
image-only baselines, while we use EDS [2] for comparison
against methods fusing images and events, being the only
VO system of this kind in the literature. We implement an
event-only DPVO baseline, EDPVO, that directly processes
event stacks, as well as one that processes images and
events concatenated together, DPVO+events. Finally, we also
compare against DEVO [4] which makes use of a similar
DPVO-based architecture but only relies on events, contrary
to our method that also uses images.

A. Effects of RAMP blocks

We start by analyzing the individual contribution of
RAMP-VO modules and input modalities on the TartanAir
[5] test set. In this section, we adopt the evaluation protocol
in [1], which analyzes the percentage of sequences from the
TartanAir test set below a given absolute trajectory error
threshold, producing plots like the one in Fig. 4. This is
done to discount the effect of individual diverging sequences,
which report abnormally high trajectory errors, and would
skew the average. We use 5000 different thresholds equally
spaced between an ATE[m] of 0 to 1. We summarize the
results by computing the the area under the curve (AUC),
and use it to compare between ablations.

Results: From Figure 4 (a), DPVO+events has the lowest
performance among the methods we tested (AUC of 0.56),
highlighting that a trivial event-image fusion is not suffi-
cient to exploit events. Moreover, our RAMP-VO encoder
in synchronous mode outperforms the baseline that uses
RAM-Net both when we use multiple scales, as in RAM-



Net, but also when just one scale is used. The single-scale
RAMP-VO (AUC of 0.71) achieves a 11% increase over
the RAM-Net encoder (AUC 0.64), while the multi-scale
version (AUC 0.81) improves by 33% over RAM-Net. When
events are processed asynchronously, using M = 250000, the
performance increases even more, reaching a 0.85 AUC.

In Figure 4 (b), we further analyze the performance of
RAMP-VO using asynchronous images and events while
varying the number of events M from 100000 to 750000.
Although RAMP-VO is trained with synchronized events
stacks and frames, it demonstrates consistent performance
with asynchronous data. Notably, as the event sequence’s
discretization becomes finer (i.e., smaller M values), perfor-
mance improves, peaking at M = 250,000, where it achieves
a 5% improvement compared to synchronous event feeding.

Low Framerate VO: In this section, we demonstrate that
our method is not only able of asynchronous processing, but
it can also cope with frames provided at very low rates. Since
our RAMP encoders build sensor agnostic features, we can
exploit the faster data stream, like events voxels, to keep the
feature embedding updated, and generate a consistent pose.

To test this capability, we design an experiment on the
carwelding hard p003 and carwelding easy p007 sequences
of the TartanAir, where we artificially reduce the framerate
of the images, subsampling them, but keeping event stacks
fixed at 20 Hz. We then evaluate the trajectory error against
ground truth poses at 20 Hz for DPVO+events, RAMP-VO,
and RAMP-VO with RAM-Net-like encoder, and report the
results in Fig. 4 (c). Both the RAM-Net-like and RAMP
encoders exhibit lower absolute trajectory errors compared
to DPVO+events, particularly at lower framerates. This im-
provement stems from their ability to process asynchronous
events in between frames. Notably, however, our RAMP
encoder consistently outperforms the RAM-Net-like encoder,
indicating its superior performance.

Timing Results: To further motivate the use of the pro-
posed RAMP encoders, as opposed to RAM Net [44], we
time the two encoders on the TartanAir test set. We measure
the average time required to extract features Σ j from a single
frame (or event) on a Quadro RTX 8000 GPU. RAM Net
takes 370 ms on average, while the proposed RAMP Net only
takes 47 ms, resulting in a 8× speedup. Leveraging pixel-
wise feature processing, our encoder exploits significantly
higher parallelism than RAM Net.

B. Results on Space Data

Next, we validate RAMP-VO on the low light and low
frame rates Malapert and Apollo landing datasets, where
report the average absolute trajectory error over 5 runs.

Results: In Table I, we start by analyzing the performance
on the challenging Malapert landing dataset. RAMP-VO is
able to recover accurate poses that deviate only 0.2% to 1.7%
from the ground truth poses, if we consider that trajectories
cover 250km in distance. DPVO, instead, can not recover a
valid trajectory leading to ATE errors of several kilometers,
equivalent to 20% to 30%. When events are added, DPVO
decreases the error by 45.14% to 29.46%, highlighting the

TABLE I
AVERAGE ABSOLUTE TRAJECTORY ERROR ON THE MALAPERT AND

APOLLO DATASETS

Input Malapert [km] Apollo [cm]
cam-1 cam-2 rec-1 rec-3 rec-4

DPVO [1] I 73,1 48,2 0,9 0,3 1,3
DPVO [1] I+E 40,1 34,0 0,9 0,2 1,1

RAMP-VO SS (Ours) I+E 1,1 9,4 0,7 0,2 1,0
RAMP-VO (Ours) I+E 0,6 4,3 0,8 0,2 0,9

TABLE II
AVERAGE ABSOLUTE TRAJECTORY ERROR (CM) ON STEREO DAVIS

Input Bin Boxes Desk Monitor
ORB-SLAM2 [50] I 2.5 7.0 9.3 10.3

DPVO [1] I 3.6 6.7 7.0 11.5
DPVO [1] E 5.8 7.2 7.8 14.4
EDS [2] I+E 2.6 5.8 5.0 8.0

DPVO [1] I+E 4.2 5.3 4.9 6.2
RAMP-VO (Ours) I+E 3.1 5.1 3.1 4.2

importance of events in dark regions. We report a qualitative
comparison on a Malapert sample in Figure 5.

On the Apollo landing dataset, both RAMP-VO versions,
multi- and single-scale (SS), outperform image and im-
age+event DPVO baselines by up to 30.77%, reaching an
error from 2% to 6% of the ground truth. Contrary to
Malapert, Apollo scenes feature clear frames and events,
which explains the lower performance improvement given by
the events. Single-scale and multi-scale RAMP-VO achieve
similar results on Apollo, differently from Malapert where
errors are around two times higher for single-scale. This
suggests that when information is scarce, like in Malapert
low-light environments, having the ability to focus on both
global and fine-grained details improves robustness.

C. Comparison with State of the Art

We conclude by comparing our RAMP-VO with state-
of-the-art methods on the Stereo DAVIS [49] dataset, the
EDS [2] benchmark, and the Tartan Air test-split from the
ECCV 2020 SLAM competition. We generate events for
the ECCV2020 competition using VID2E [48] with default
settings. We run RAMP net asynchronously for all tests,
using M = 20000 for Stereo DAVIS [49] and M = 250000
events with the ECCV2020 competition test-split and EDS.
Poses are collected after processing a frame.

Results: Results for ECCV 2020 competition are available
in Table III, where we follow the evaluation in [1], reporting
the ATE[m] of the median of 5 runs with scale alignment.
RAMP-VO is able to recover a better pose compared to all
other image-based state-of-art methods [51], [54], [52], [3],
[1] in most cases, outperforming by 20% and 50% DPVO
[1] and DROID-SLAM using loop closure [3], respectively.

Results on Stereo DAVIS are reported in Table II. Given
our emphasis on space applications, where space-graded
cameras such as the AURICAMTM [55] often operate at low-
FPS, we evaluate performance using the 5 FPS benchmark
introduced in the supplementary analysis of [2]. Except for
Bin, the proposed RAMP-VO outperforms all other baselines
that use either both or just one of the two modalities on



TABLE III
AVERAGE ABSOLUTE TRAJECTORY ERROR (M) ON ECCV 2020 SLAM
COMPETITION MONOCULAR TEST-SPLIT. METHODS MARKED WITH (✓)

USE GLOBAL OPTIMIZATION / LOOP CLOSURE. TOP PERFORMING

(NON-GLOBAL) METHOD IN BOLD, SECOND BEST UNDERLINED.
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Input I I I I I I I+E
Global ✓ ✓ ✓ ✗ ✗ ✗ ✗
ME00 13.61 15.20 0.17 9.65 0.22 0.16 0.20
ME01 16.86 5.58 0.06 3.84 0.15 0.11 0.04
ME02 20.57 10.86 0.36 12.20 0.24 0.11 0.10
ME03 16.00 3.93 0.87 8.17 1.27 0.66 0.46
ME04 22.27 2.62 1.14 9.27 1.04 0.31 0.16
ME05 9.28 14.78 0.13 2.94 0.14 0.14 0.13
ME06 21.61 7.00 1.13 8.15 1.32 0.30 0.12
ME07 7.74 18.47 0.06 5.43 0.77 0.13 0.12
MH00 15.44 12.26 0.08 9.92 0.32 0.21 0.36
MH01 2.92 13.45 0.05 0.35 0.13 0.04 0.06
MH02 13.51 13.45 0.04 7.96 0.08 0.04 0.04
MH03 8.18 20.95 0.02 3.46 0.09 0.08 0.04
MH04 2.59 24.97 0.01 - 1.52 0.58 0.41
MH05 21.91 16.79 0.68 12.58 0.69 0.17 0.25
MH06 11.70 7.01 0.30 8.42 0.39 0.11 0.11
MH07 25.88 7.97 0.07 7.50 0.97 0.15 0.07

Average 14.38 12.50 0.33 7.32 0.58 0.21 0.17

Stereo DAVIS, surpassing the top-performing method, EDS,
by 25%. On the EDS benchmark reported in Table IV, our
method consistently improves over DPVO and achieves an
average 30% improvement over DEVO which, contrary to
our method, is trained on additional data from the TartanAir
test set. These benchmarks represent completely new scenar-
ios compared to the TartanAir training setting. Stereo DAVIS
features gray-scale frames and a lower 180×240 resolution,
while EDS has a higher resolution from Prophesee Gen3.1
and FLIR cameras, and an increased variety of test cases,
including light and dark scenes and wider motions. Similar
to the Apollo landing dataset, RAMP-VO is thus required to
generalize from simulated to real sensor data.

It is worth noting how effective processing and fusion
of event data is particularly important to achieve high per-
formance in these benchmarks. Indeed, naive adaptations of
DPVO for event processing fall short, while specialized event
fusion techniques, like ours, can achieve better generalization
and transfer to real-world data.

V. CONCLUSION

In this work, we introduce RAMP-VO, an end-to-end VO
system tailored for challenging environments such as those
encountered during lunar descents. RAMP-VO exploits asyn-
chronous and massively parallel encoders to efficiently and
effectively fuse asynchronous event data into synchronous
frames, achieving a 8× speedup and 33% improvement
over state-of-the-art asynchronous encoders. Moreover, by
incorporating events, RAMP-VO reduces the trajectory error
of existing deep-learning-based solutions by 60%, as well
as model-based VO methods fusing images and events by

TABLE IV
AVG. ABSOLUTE TRAJECTORY ERROR (CM) AND Rrmse (DEG) ON EDS.
(∗) INDICATES METHODS TRAINED ON TARTANAIR TRAIN+TEST DATA.

TOP PERFORMING (NON-GLOBAL) VO METHOD IN BOLD, SECOND BEST
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Input I I E I+E
Global ✓ ✗ ✗ ✗

ATE / Rrmse ATE / Rrmse ATE / Rrmse ATE / Rrmse
pean. dark 6.15 / 11.40 1.26 / 1.83 4.78 / 2.49 1.20 / 0.64
pean. light 27.26 / 6.88 12.99 / 2.66 21.07 / 3.84 9.03 / 6.40
pean. run 16.83 / 5.78 25.48 / 11.19 38.10 / 18.28 13.19 / 11.43

rocket dark 10.12 / 9.75 27.41 / 5.23 8.78 / 4.16 7.20 / 2.63
rocket light 32.53 / 11.39 63.11 / 10.44 59.83 / 9.28 17.53 / 4.04

ziggy 26.92 / 4.42 14.86 / 3.45 11.84 / 2.32 19.05 / 7.66
ziggy hdr 81.98 / 17.67 66.17 / 10.32 22.82 / 9.07 28.78 / 5.13
ziggy fly. 20.57 / 8.02 10.85 / 3.66 10.92 / 3.39 6.35 / 5.07
all chars 21.37 / 9.02 95.87 / 29.00 10.76 / 3.62 28.61 / 9.89
Average 27.08 / 9.37 35.33 / 8.64 21.00 / 6.27 14.57 / 5.88

27.6% on average. Experiments show that RAMP-VO can
transfer zero-shot to real data despite being trained only on
synthetic one, while still outperforming the other baselines.
We designed RAMP-VO with a focus on space applications.
While our primary focus was on improving accuracy and
processing speed, future endeavors should prioritize opti-
mizing the method for deployment on resource-constrained
hardware. Approaches such as model quantization, network
compression, and efficient hardware implementation should
be explored to make our neural network space-ready [56].
Despite these limitations, we view this work as a milestone
in event data fusion for VO, and we believe it can spark
new interest in the use of event cameras and learning-based
approaches for robust navigation.
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