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Abstract— Visual Odometry (VO) is crucial for autonomous
robotic navigation, especially in GPS-denied environments like
planetary terrains. While standard RGB cameras struggle in
low-light or high-speed motion, event-based cameras offer high
dynamic range and low latency. However, seamlessly integrating
asynchronous event data with synchronous frames remains
challenging. We introduce RAMP-VO, the first end-to-end
learned event- and image-based VO system. It leverages novel
Recurrent, Asynchronous, and Massively Parallel (RAMP)
encoders that are 8× faster and 20% more accurate than
existing asynchronous encoders. RAMP-VO further employs
a novel pose forecasting technique to predict future poses for
initialization. Despite being trained only in simulation, RAMP-
VO outperforms image- and event-based methods by 52% and
20%, respectively, on traditional, real-world benchmarks as well
as newly introduced Apollo and Malapert landing sequences,
paving the way for robust and asynchronous VO in space.

I. INTRODUCTION

Visual Odometry (VO) is a central building block in
many robotic and space exploration systems. It provides
autonomous navigation capabilities even in GPS-denied en-
vironments far from earth-bound satellites. Traditionally, VO
systems have relied exclusively on standard RGB cameras to
estimate the pose accurately. However, when navigating in
challenging scenarios, such as low-light environments, high
dynamic range scenes, or low-textured terrains at high speed,
standard VO methods typically fail. These shortcomings are
mostly caused by well-known limitations inherent in standard
cameras, such as their susceptibility to motion blur and
limited dynamic range.

Event-based cameras, on the other hand, promise to ad-
dress all these issues. They are bio-inspired sensors that asyn-
chronously record per-pixel brightness changes at microsec-
ond resolution. They exhibit high dynamic range (HDR), low
latency, and low power consumption, making them an ideal
complement to regular cameras in VO systems.

Their combination is indeed very promising for critical VO
applications where standard sensors such as GPS and LiDAR
cannot be used, when navigation involves rapid motion and
environments in partial shadow, and in all conditions where
Inertial Measurement Units (IMUs) fail due to radiation
and temperature variations. These conditions are typical in
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Fig. 1. Overview of the proposed method: Recurrent, Asynchronous,
and Massively Parallel Encoders are used to process images and events
asynchronously. The resulting encoding is used by DPVO [1] modules to
perform data-driven feature tracking and visual odometry. Thanks to the high
temporal resolution of the events, we use them to perform pose forecasting,
enabling improved pose initialization and early collision prediction.

planetary exploration and landing, making the design of VO
systems that fuse images and events extremely promising.

While significant advancements have been made in VO
systems fusing event data and images together with IMU
[2], [3], the field of monocular VO with only images and
events remains mostly unexplored, with only one prior work
[4]. These systems are all model-based and typically rely on
canonical corner features that can only be reliably extracted
in highly textured environments. Dark regions of celestial
bodies, like the Moon poles, however, often lack this type
of texture making feature extraction and tracking more
challenging, and as a result, traditional VO systems less
reliable. Data-driven methods like [1], [5] fill this gap by
learning to extract visual features end-to-end. Despite the
increased robustness in texture-less scenes, these methods
still rely on RGB data and, as such, continue to be vulnerable
to their failure cases.

While combining data-driven approaches and designing
systems that leverage images and events appears promising,
effectively combining event data—with its distinctive asyn-
chronicity and sparsity—into synchronous and dense frames
is a non-trivial challenge. As a result, traditional learning-
based methods usually employ feed-forward architectures
and sacrifice asynchronicity and high temporal resolution of
events by artificially building synchronized representations
at regular intervals. However, in tasks such as VO, this
simplification might significantly hinder the algorithm’s per-



formance and limit its ability to exploit asynchronous events
for tracking features.

This work introduces RAMP-VO, the first learning-based
VO method fusing events and frames. RAMP-VO leverages
RNN-inspired Recurrent, Asynchronous, and Massively Par-
allel (RAMP) encoders and internal pyramidal memory to
fuse images and events by explicitly considering their irreg-
ular and asynchronous nature. A motion-aware strategy based
on event data is then exploited to extract robust patch-based
feature tracks, which are later processed by a differentiable
bundle adjustment module [1]. A pose forecasting module
extrapolates each patch to future times, enabling future pose
prediction at arbitrary timestamps which further exploits the
high temporal resolution of the events.

We train RAMP-VO on an event-based version of Tar-
tanAir [6]. To address the lack of visual odometry datasets
that feature image and event data in challenging space
landing settings, we also introduce two novel datasets: the
Malapert landing and the Apollo landing datasets which
feature challenging motion and lighting conditions due to
stark shadows cast by the sun. The first dataset represents a
realistic simulation of a spacecraft landing, covering several
kilometers of descent near the Malapert crater in the south
Moon pole. The second dataset features landings on a 3D
scale model of the lunar surface. It is captured with a real
RGB camera, an event camera, and precise ground truth
camera poses, making it a valuable resource for research
and evaluation.

Despite being trained purely in simulation, RAMP outper-
forms both image-based and event-based methods by 60%
and 38% respectively on traditional real-world benchmarks,
as well as on the newly introduced Apollo and Malapert
landing datasets. To summarize our contributions are:

• A novel massively parallel feature extractor, termed
RAMP encoder that fuses images and events, both
spatially and temporally. It is 7.9 times faster and
achieves a 22% higher performance than state-of-the-
art asynchronous encoders.

• A new pose forecasting technique, that extrapolates
feature tracks and uses them to predict the camera pose
in the future, for improved pose initialization, leveraging
the high temporal resolution of the events.

• Two novel datasets, Apollo and Malapert landing, tar-
geting challenging planetary landing scenarios.

II. RELATED WORK

Event-based visual odometry. While pixel-level tasks
are mostly dominated by learned approaches, all the existing
event-based VO methods are model-based [7]. These are
usually distinguished as indirect or direct based on whether
they directly process raw pixels, or use intermediate repre-
sentations. Early direct methods [8], [9] are based on scene
reconstruction from events, while newer ones [4] propose
to also incorporate frames by minimizing a photo-metric
loss based on the Event Generation Model [10] (EGM). In
contrast, indirect approaches build upon event-based feature
extractors [11], [12], [13], [14] and trackers [15]. Some of

them [16], [17], [2] extract features from frames and track
them in the blind time with events. Others [3], motion-
compensate events and leverage additional sensors like the
IMU.

Despite reducing errors from geometry estimation or the
EGM, these methods still suffer in low-texture environments
as they typically rely on edge-like features. Similar robust-
ness issues are also typical in classical image-based VO, as
they still heavily rely on hand-crafted features [18], [19],
[20]. In and attempt to extend the operation domain of VO
systems to these environments, new data-driven approaches
emerged [5], [1], which extract deep features and track
them using RAFT-inspired [21] refinement modules. Our
work builds upon this recent trend and proposes the first
learning-based event-based VO system. Compared to other
model-based VO, we demonstrate improved performance and
increased robustness in challenging scenarios.

Fusing events and frames. While a great variety of
approaches leverage, optimize, or fuse images and events for
different downstream tasks [22], [23], [24], [25], the topic of
effectively fusing the two data modalities while considering
their different nature has thus far been underexplored. Some
methods [22], [26], [23] synchronize and concatenate both
modalities and process them together with a shared encoder.
Others [27], [28], instead, use specialized feature extractors,
but still resort to data synchronization for processing.

To date, only one prior study, RAM Net [29], has proposed
a specialized and asynchronous way of fusing events and
frames. However, RAM Net relies on a sequential hierarchi-
cal feature extraction process and utilizes slow Conv-GRU
modules. Our asynchronous encoders build upon RAM Net
but exploit pixel-wise operations and parallel extraction of
multi-scale features, demonstrating both higher performance
as well as improved efficiency.

III. METHODOLOGY

A. Overview

Our end-to-end event- and frame-based visual odometry
algorithm, RAMP-VO, takes inspiration from recurrent asyn-
chronous multimodal (RAM) networks [29] and deep patch
visual odometry (DPVO) [1]. The RAMP encoder processes
events and frames as a temporally ordered, asynchronous
stream of data, which we will call frames. Similar to DPVO,
for each new frame with index j the following processing
steps are performed, found in more detail in [1]: First,
matching m j and context features c j are computed from
frame j through a sequence of feature extractors, then N
patches with dimension p× p are extracted from these feature
maps. While DPVO opts for a random sampling strategy, we
instead extract corners where there is a high event density
and apply non-maximum suppression to apply equal spacing.
Without this measure, many corners would fall in regions
with few events. Denote a generic patch Pl

j with index l
extracted in frame j as

Pl
j =

[
x y 1 d

]T x,y,d ∈ R1×p2
. (1)
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Fig. 2. An overview of the proposed RAMP Net encoder. Events and images are first asynchronously processed by two parallel pixel-wise, multi-scale,
encoding branches (PWE) made of a set of convolutional layers followed by pixel-wise LSTMs Gs

k . Features coming from different data modalities k are
then fused (SF), at each scale, into a shared state Σs

t by employing sensor-specific encoders. The multi-scale features are then finally combined through
two separate fusion modules (MSF) to produce the matching and context features, mt and ct .

Note that, as in DPVO, we model patches as collections of
contiguous pixels, and not only as single points. Here d is
the patch depth (constant for all pixels within the patch), and
x,y are the coordinates of the pixels in the patch.

These patches are then projected into the previous frames
of index i ∈ { j− r, j− r+ 1, ..., j} and patches extracted in
previous frames (going back to frame j−r) are projected into
the current frame j. A visualization is provided in Figure 3.
Let the projection of patch Pl

j , into frame i be

P′l
ji ∼ KTiT−1

j K−1Pl
j (2)

where K is the 4× 4 camera matrix and Ti,Tj are poses at
frames i, j. We summarize this as P′l

ji = ω(Ti,Tj,Pl
j).

Next, RAMP-VO computes camera motion by estimating
corrections ∆li ∈ R2 for each projected patch P′

li, as well
as importance values σli ∈ R2×2 through a series of blocks
involving a correlation lookup, 1D Convolution, Soft Ag-
gregation, Transition Block and Factor Head. Since these
operations are out of the scope of the current work, we
summarize them with the following relation

∆li,σli = F(P′l
ji,ci,mi,m j) (3)

where we compare context features ci with matching features
extracted in frame i and j.

Finally, leveraging the position corrections and their
weights, RAMP-VO performs a differentiable bundle ad-
justment (BA) step, which optimizes the camera poses and
depths of each patch to minimize the projection error:

∑
(l,i)∈E

∥∥∥P̂′l
ji +∆li − ω̂(Ti,Tj,Pl

j)
∥∥∥2

σli
. (4)

The ˆ operation indicates that the center pixel is used, and
E is a bipartite graph that connects frames with patches
that are projected into that frame. By using two Levenberg-
Marquart optimization steps, the BA layer updates the depth
and camera poses in the time window. This operation is fully
differentiable, and thus used during training to backpropagate
errors. The main innovations of this work are related to how
the context and matching features c j and m j are generated,

and how the BA layer is used to perform pose forecasting.
These topics are discussed next.

B. Asynchronous and Massively Parallel Encoders

Denote the stream of data {xk j(t j)}T
j=1 captured at times-

tamps t j. Here x (henceforth denoted as ”frame”) denotes
either a 5×H ×W sized event stack [30], in the case of
events, or a C×H×W sized image1. The variable k j ∈ {e, i}
denotes the sensor at timestamp t j.

We encode these data structures using a Recurrent,
Asynchronous and Massively Parallel (RAMP) encoder. An
overview of the architecture is provided in Figure 2. We
employ two different Multi-Scale Fusion modules, with
identical structures, to generate either the context or the
matching feature maps.

The RAMP encoders first transduce the data stream us-
ing pixel-wise encoders starting with a stream of features
{ f s

k j
}T

j=1 at three different scales. To encode this data we
use separate sensor-specific encoders, one for each scale

f s
k j
(t j) = Es

k j
(xk j(t j)) (5)

These encoders have a kernel size 1× 1, 3× 3, and 5× 5
respectively, and a stride of 2s with s = 0,1,2.

This stream of features is then further encoded in two
recurrent stages: (1) intra-sensor fusion, and (2) inter-sensor
fusion. In the intra-sensor fusion step, we process features
originating from a single sensor and scale with an LSTM
operating on individual pixels, inspired by [31] and by the
recurrent connections in [32]

hs
k j
(t j) = Gk j( f s

k j
(t j)) (6)

where we have omitted the cell state for the sake of clarity.
The inter-sensor fusion step, instead fuses the hidden states

from separate sensors asynchronously using only a single
depth-wise convolution in the following way:

Σ
s
j = Hk j

(
[hs

k j
(t j)∥Σ j−1]

)
(7)

1For color images C = 3 and for gray-scale images C = 1.



Fig. 3. Illustration of pose forecasting. Through patch extraction, and
projection into future frames we construct feature tracks for frames j, j−
1, ... which we use to construct the splines Sl(t j). To perform pose forcasting,
we extrapolate the feature tracks to time t j+n, and apply bundle adjustment
to solve for the forecasted pose Tj+n.

where ∥ denotes concatenation. A different depth-wise con-
volution Hk j is used each time depending on which sensor
the data being fused is generated from.

Note that the RAMP encoder fuses each pixel inde-
pendently and only relies on a simple inter-sensor fusion
strategy, and thus can be done efficiently in parallel. This
is in contrast to the encoder in [33], which requires se-
quential processing, and expensive ConvGRU operations at
two stages. After generating inter-sensor fused states Σ j at
each time t j, a hierarchical encoder is used to generate either
the context or the matching feature maps, each at 1/4 the
original resolution

z j = K({Σ
s
j}2

s=0). (8)

Here z j can be either c j or m j, i.e. context and matching
features, required by the DPVO backend.

Multi-Scale Fusion. The Multi-scale Fusion (MSF) module
follows the feature extractors in [1] and consists of a 7×7
convolution with stride 2, four residual blocks (two at 1/2
and two at 1/4 of the initial resolution), and a final 1× 1
convolution. We use the same configuration in [1], providing
full-scale features Σ0

j as input to the encoder, but injecting
Σ1

j and Σ2
j after the second and fourth residual blocks

respectively. We do so by concatenating these features with
the residual block’s outputs and adjusting the channels of the
next operation to accommodate the additional features.

C. Pose Forecasting

On top of the patch extraction and pose optimization steps
described in Section III-A, RAMP-VO incorporates a novel
pose forecasting module to bootstrap future camera poses.

After processing a frame k, the set of available patches
comprises patches Pl

k extracted at the latest time tk, paired
with their projections P′l

ki in previous frames i, together with
patches extracted at previous instants t j combined with their
projections P′l

jw in future and past frames tw. Each of these
sequences can thus be used to fit a continuous-time model
of the patch movement along time.

We do so by fitting two cubic univariate splines Sl
x(t) and

Sl
y(t), each modeling the motion of the patch center along the

x and y axis of the image plane, such that (xl
i ,yl

i)∼ Sl(ti) =
(Sl

x(ti),S
l
y(ti)). Given this model, we can then extrapolate

the position where the patch will be tracked in the future
timestamp tk+1 by evaluating the splines in tk+1 and assuming
the first and second derivatives to be zero at that point.

We consider patches extracted from the last 11 frames,
together with their projections, and extrapolate their future
locations at tk+n, assuming the depth of these patches to
remain constant. We then extrapolate the location of the
camera at time tk+n by optimizing its 6 DOF pose through
Bundle Adjustment, according to the forecasted patch tracks.
In particular, we solve

∑
(l,i)∈E

∥∥∥Sl(tk+n)− ω̂(Ti,Tj,Pl
j)
∥∥∥2

σli
. (9)

IV. EXPERIMENTS

Training. We train RAMP-VO on the synthetic TartanAir
[6] dataset, which we augment with events using VID2E
[34]. Given a training sequence, we follow the DPVO [1]
training scheme to select and filter frames for training.
Additionally, we also enforce a minimum of 1.2M events
between every pair of frames and remove additional frames
if this condition is not satisfied. Finally, we feed RAMP-VO
with both events and frames by interleaving two event stacks
for every pair of selected frames. We create the first event
stack by stacking the 600,000 events received just before the
mid-timestamp between the pair of images, and the second
event stack by aggregating the 600,000 events preceding the
second frame. Since ground truth poses are only given for
frames, we do not compute a loss for the mid-frame events.

We train RAMP-VO for 350,000 steps with sequences of
15 images and 30 event stacks each on a Quadro RTX 8000
GPU. The remaining hyperparameters are set as in DPVO
[1]. Full training takes around 8 days on our hardware.

Datasets. We use the Stereo DAVIS [35] dataset to compare
our method against the state-of-the-art. Data provided in [35]
was recorded indoors with a hand-held stereo DAVIS240C,
with poses provided by a motion caption system.

Moreover, since datasets acquired under challenging mo-
tion and lighting are scarce in the existing literature, we also
propose two additional benchmarks. These datasets feature
landing on the Moon’s surface, a scenario involving fast
motion, high-dynamic range, and untextured terrains.

Malapert landing. Malapert landing consists of 20 minutes
of data, divided into 2 sequences from a simulation of
the Malapert south Moon region. We use the planets and
satellites simulator PANGU 2 to generate realistic descent
trajectories, each 250 km long in altitude and 40 km in
translation, featuring partial or complete darkness. Ground
truth poses of the spacecraft’s center of mass are provided
at 5Hz, together with 640×480 synchronized RGB images.
We generate synthetic events using Vid2E [36] with default
settings.

2https://pangu.software/
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(a) Malapert dataset (b) Apollo dataset
Fig. 4. Preview, and qualitative trajectory comparison on Malapert dataset (a), and Apollo dataset (b). Note that while the Malapert sequence is measured
in kilometers, the Apollo sequence, recorded at a miniature scale of the Moon’s surface, is in centimeters.

Apollo Landing. Apollo landing is a real dataset consisting
of a total of 5 minutes of recording, split into 6 trajectories,
featuring both vertical and lateral descent trajectories on a
260× 260 cm scale replica of the Apollo 17 landing site.
Frames and events are recorded with a beam-splitter setup
featuring a 20Hz FLIR BFS-U3-12263c RGB camera and
a Prophesee Gen4 event camera, similar to the one used in
[4]. Poses are recorded with an OptiTrack motion capture
system. We downsample frames and events to a resolution
of 640×480 before processing.

Baselines. We evaluate the proposed RAMP-VO architecture
against several VO state-of-the-art methods making use of
images only (I), events only (E) as well as based on both
images and events (I+E). We follow the evaluation in [4]
and select ORB-SLAM2 [19] and DPVO [1] as image-only
baselines, while we use EDS [4] for comparison against
methods fusing images and events, being the only VO system
of this kind in the literature. Since we are the first to propose
an end-to-end learnable VO system for event cameras, we
also implement an event-only DPVO baseline, EDPVO, that
directly processes event stacks, as well as one that processes
images and events concatenated together, DPVO+events.

A. Effects of RAMP blocks

We start by analyzing the individual contribution of
RAMP-VO modules on the TartanAir [6] dataset. In this
section, we adopt the evaluation protocol in [1], which
analyzes the percentage of sequences from the TartanAir
test set below a given absolute trajectory error threshold,
producing plots like the one in Fig. 5. This is done to
discount the effect of individual diverging sequences, which
report abnormally high trajectory errors, and would skew
the average. We summarize the results by computing the the
area under the curve (AUC), and use it to compare between
ablations.

Results: From the compared methods, DPVO+events has
the lowest performance with an AUC of 0.56, followed
by the baseline with a RAM-Net-like encoder with 0.64.
Our single-scale RAMP-VO has an AUC of 0.71, a 11%
increase over the RAM-Net encoder, despite RAM-Net using

(a) Ablation Study (b) Low Framerate VO
Fig. 5. Comparisons of the ablated models on the full TartanAir test
set (a). We show here the importance of using a RAMP encoder as
in RAMP-VO over a sequential, single-scale encoder and feed-forward
encoder. The RAMP encoder is better at maintaining memory than the
RAM-Net-like encoder, as highlighted in low framerate VO experiments
(b) on the carwelding sequences of TartanAir

multiple scales. Transitioning to the multi-scale variant of
RAMP-VO, we achieve an AUC of 0.78, which improves
by 22% on the RAM-Net encoder. Finally, we analyze the
impact of using pose forecasting for initializing the camera
pose before performing bundle adjustment. Adding pose
forecasting improves the AUC to 0.84.

Timing Results: To further motivate the use of the
proposed Asynchronous and Massively Parallel encoders,
as opposed to the hierarchical and sequential RAM Net
encoders [29], we now assess their performance in terms of
processing speed. We time the two encoders on the ablation
test set by recording the time required to extract features Σ j
from a single frame (or event), averaged over the full dataset,
on a Quadro RTX 8000 GPU. RAM Net takes 370 ms on
average, while the proposed RAMP Net only takes 47 ms,
resulting in a 7.9× speedup. By processing features pixel-
wise, our encoder can indeed exploit much higher parallelism
than RAM Net.

B. Low Framerate VO

By using events, our VO system can rely only on low fram-
erate images, and predict poses in the blind-time between
frames. To test this capability, we design an experiment
on the carwelding hard p003 and carwelding easy p007
sequences of the TartanAir test set, with images and event



TABLE I
AVERAGE ABSOLUTE TRAJECTORY ERROR ON THE MALAPERT AND

APOLLO DATASETS

Input Malapert [km] Apollo [cm]
cam-1 cam-2 rec-1 rec-3 rec-4

DPVO I 73,1 48,2 0,9 0,3 1,3
DPVO I+E 40,1 34,0 0,9 0,2 1,1

RAMP-VO SS (Ours) I+E 1,1 9,4 0,7 0,2 1,0
RAMP-VO (Ours) I+E 0,6 4,3 0,8 0,2 0,9

stacks arriving at 20 Hz, where we artificially reduce the
framerate of the images by subsampling them. We then
evaluate the trajectory error for DPVO+events, RAMP-VO,
and RAMP-VO with the RAM-Net-like encoder on 20 Hz
ground truth poses, and report the results in Fig. 5 (b).

As can be seen, compared to DPVO+events, the RAM-
Net-like and RAMP encoder achieve a lower absolute tra-
jectory error, especially at lower framerates. This is because
both methods propagate information asynchronously through
recurrency throughout the deadtime between two frames,
increasing the stability of the VO system. However, we see
that the RAMP encoder consistently outperforms the RAM-
Net-like encoder, demonstrating its superiority.

C. Results on Space Data

Next, we validate RAMP-VO on the low light and low
frame frames Malapert and Apollo landing datasets, where
we also demonstrate our model’s generalizability. We com-
pare both single- and multi-scale architectures against DPVO
and DPVO+events, and report the average absolute trajectory
error over 5 runs.

Results: In Table I, we start by analyzing the performance
on the challenging Malapert landing dataset. RAMP-VO is
able to recover accurate poses that deviate only 0.2% to 1.7%
from the ground truth poses, if we consider that trajectories
cover 250km in distance. DPVO, instead, can not capture a
valid trajectory leading to ATE errors of several kilometers,
equivalent to 20% to 30%. When events are added, DPVO
decreases the error by 45.14% to 29.46%, highlighting the
importance of events in dark regions. We report a qualitative
comparison on a Malapert sample in Figure 4

On the Apollo landing dataset, both RAMP-VO ver-
sions (multi- and single-scale, or SS) outperform image and
image+event DPVO baselines by up to 30.77% reaching
an error from 2% to 6% compared to the ground truth.
Contrary to Malapert, Apollo scenes feature clear frames and
events, which explains the lower performance improvement
given by the events. Similarly, single-scale and multi-scale
RAMP-VO achieve similar results on Apollo, differently
from Malapert where errors are around two times higher for
single-scale. This suggests that when information is scarce,
like in Malapert low-light environments, having the ability
to focus on both global and fine-grained details improves
robustness.

D. Comparison with State of the Art

We conclude by analyzing the performance of the pro-
posed RAMP-VO architecture against state-of-the-art meth-

TABLE II
AVERAGE ABSOLUTE TRAJECTORY ERROR (M) ON STEREO DAVIS

Input Bin Boxes Desk Monitor
ORB-SLAM2 [19] I 2.5 7.0 9.3 10.3

DPVO [1] I 3.6 6.7 7.0 11.5
DPVO [1] E 5.8 7.2 7.8 14.4
EDS [4] I+E 2.6 5.8 5.0 8.0

DPVO [1] I+E 4.2 5.3 4.9 6.2
RAMP-VO (Ours) I+E 3.1 5.1 3.1 4.2

ods on the Stereo DAVIS [35] dataset. Results are reported
in Table II. This benchmark represents a completely new
scenario compared to the TartanAir training setting, as Stereo
DAVIS features gray-scale frames, a lower 180×240 reso-
lution, and articulate motion different from the large and
straight movements of TartanAir. Similar to the Apollo land-
ing dataset, RAMP-VO is thus required to generalize from
simulated to real sensor data. We compare our architecture
following the benchmark in [4], processing each time a
100,000 event stacks at the same rate as frames.

Results: As showed in Table II, the proposed RAMP-
VO outperforms all other baselines, both image- and event-
based, with the exception of only one sequence where ORB-
SLAM2 [19] performs better. It does this while being trained
entirely on synthetic images and events. Notably, RAMP-
VO consistently surpasses the DPVO image-only baseline
and achieves better performance than EDS, which is thus far
the sole prior event- and frame-based VO. This performance
improvement holds true especially on challenging sequences.
Indeed, on sequences such as Desk and Monitor, RAMP-VO
outperformes EDGS by a factor of 2-3.

It is worth noting how effective processing and fusion
of event data is particularly important to achieve high per-
formance on this benchmark. Indeed, naive adaptations of
DPVO for event processing fall short, while specialized event
fusion techniques, like ours, can achieve better generalization
and transfer to real-world data.

V. CONCLUSION

In this work, we introduce RAMP-VO, an end-to-end
VO system tailored for challenging environments such as
those encountered during lunar descents. RAMP-VO ex-
ploits asynchronous and massively parallel encoders to ef-
ficiently and effectively fuse asynchronous event data into
synchronous frames, achieving a 7.9× speedup and 22%
improvement over state-of-the-art asynchronous encoders.
Moreover, by incorporating pose forecasting and events,
RAMP-VO reduces the trajectory error of both existing deep-
learning-based solutions by up to 52%, as well as model-
based VO methods fusing images and events by up to 20%.
Experiments show that RAMP-VO can transfer zero-shot
from training only performed on synthetic data, while still
outperforming the other baselines. This work represents a
new milestone in event data fusion for VO, and we believe
it can spark new interest in the use of event cameras and
learning-based approaches for robust navigation.
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