
This paper has been accepted for publication and selected as an award candidate at the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, 2023. ©IEEE

Data-driven Feature Tracking for Event Cameras

Nico Messikommer* Carter Fang∗ Mathias Gehrig Davide Scaramuzza

Robotics and Perception Group, University of Zurich, Switzerland

Abstract

Because of their high temporal resolution, increased re-
silience to motion blur, and very sparse output, event cam-
eras have been shown to be ideal for low-latency and low-
bandwidth feature tracking, even in challenging scenarios.
Existing feature tracking methods for event cameras are
either handcrafted or derived from first principles but re-
quire extensive parameter tuning, are sensitive to noise,
and do not generalize to different scenarios due to unmod-
eled effects. To tackle these deficiencies, we introduce the
first data-driven feature tracker for event cameras, which
leverages low-latency events to track features detected in
a grayscale frame. We achieve robust performance via a
novel frame attention module, which shares information
across feature tracks. By directly transferring zero-shot
from synthetic to real data, our data-driven tracker outper-
forms existing approaches in relative feature age by up to
120 % while also achieving the lowest latency. This perfor-
mance gap is further increased to 130 % by adapting our
tracker to real data with a novel self-supervision strategy.

Multimedia Material A video is available at https:
//youtu.be/dtkXvNXcWRY and code at https://
github.com/uzh-rpg/deep_ev_tracker

1. Introduction

Despite many successful implementations in the real
world, existing feature trackers are still primarily con-
strained by the hardware performance of standard cameras.
To begin with, standard cameras suffer from a bandwidth-
latency trade-off, which noticeably limits their performance
under rapid movements: at low frame rates, they have
minimal bandwidth but at the expense of an increased la-
tency; furthermore, low frame rates lead to large appearance
changes between consecutive frames, significantly increas-
ing the difficulty of tracking features. At high frame rates,
the latency is reduced at the expense of an increased band-

*equal contribution.

Figure 1. Our method leverages the high-temporal resolution of
events to provide stable feature tracks in high-speed motion in
which standard frames suffer from motion blur. To achieve this,
we propose a novel frame attention module that combines the in-
formation across feature tracks.

width overhead and power consumption for downstream
systems. Another problem with standard cameras is mo-
tion blur, which is prominent in high-speed low-lit scenar-
ios, see Fig. 1. These issues are becoming more prominent
with the current commodification of AR/VR devices.

Event cameras have been shown to be an ideal comple-
ment to standard cameras to address the bandwidth-latency
trade-off [16, 17]. Event cameras are bio-inspired vision
sensors that asynchronously trigger information whenever
the brightness change at an individual pixel exceeds a pre-
defined threshold. Due to this unique working principle,
event cameras output sparse event streams with a temporal
resolution in the order of microseconds and feature a high-
dynamic range and low power consumption. Since events
are primarily triggered in correspondence of edges, event
cameras present minimal bandwidth. This makes them ideal

1

https://youtu.be/dtkXvNXcWRY
https://youtu.be/dtkXvNXcWRY
https://github.com/uzh-rpg/deep_ev_tracker
https://github.com/uzh-rpg/deep_ev_tracker

for overcoming the shortcomings of standard cameras.
Existing feature trackers for event cameras have shown

unprecedented results with respect to latency and tracking
robustness in high-speed and high-dynamic range scenar-
ios [4, 17]. Nonetheless, until now, event-based trackers
have been developed based on classical model assumptions,
which typically result in poor tracking performance in the
presence of noise. They either rely on iterative optimiza-
tion of motion parameters [17, 26, 49] or employ a simple
classification for possible translations of a feature [4], thus,
do not generalize to different scenarios due to unmodeled
effects. Moreover, they usually feature complex model pa-
rameters, requiring extensive manual hand-tuning to adapt
to different event cameras and new scenes.

To tackle these deficiencies, we propose the first data-
driven feature tracker for event cameras, which leverages
the high-temporal resolution of event cameras in combi-
nation with standard frames to maximize tracking perfor-
mance. Using a neural network, our method tracks features
by localizing a template patch from a grayscale image in
subsequent event patches. The network architecture fea-
tures a correlation volume for the assignment and employs
recurrent layers for long-term consistency. To increase the
tracking performance, we introduce a novel frame attention
module, which shares information across feature tracks in
one image. We first train on a synthetic optical flow dataset
and then finetune it with our novel self-supervision scheme
based on 3D point triangulation using camera poses.

Our tracker outperforms state-of-the-art baselines by up
to 5.5% and 130.2% on the Event Camera Dataset bench-
mark [33] and the recently published EDS dataset [22], re-
spectively. This performance is achieved without requir-
ing extensive manual hand-tuning of parameters. Moreover,
without optimizing the code for deployment, our method
achieves faster inference than existing methods. Finally, we
show how the combination of our method with the well-
established frame-based tracker KLT [30] leverages the best
of both worlds for high-speed scenarios. This combination
of standard and event cameras paves the path for the concept
of sparingly triggering frames based on the tracking quality,
which is a critical tool for future applications where runtime
and power consumption are essential.

2. Related Work
Frame-Based Feature Tracking While no prior works

have leveraged deep learning to track features from events,
data-driven methods were recently proposed for feature
tracking using standard frames. Among them is PIP [20],
which estimates the trajectories of queried feature locations
for an entire image sequence and thus can even track fea-
tures through occlusions by leveraging the trajectory be-
fore and after. Instead of processing the whole sequence,
DPVO [40] takes a sequence of images and simultaneously

estimates scene depth and camera pose on-the-fly. It does
so by randomly sampling patches from feature maps from
frames and adding them to a bipartite frame graph, which is
iteratively optimized by correlating feature descriptors from
patches observed at different camera poses. A related re-
search field to feature tracking is optical flow estimation,
i.e., dense pixel correspondence estimation between two
frames. There exist many optical flow methods [13], with
correlation-based networks [24, 39] being the state-of-the-
art. However, despite recent advancements, frame-based
feature trackers still suffer from the hardware limitation of
standard cameras. To tackle this disadvantage, we propose
a self-supervised tracker that unlocks the robustness charac-
teristics of event cameras for feature tracking and, by doing
so, outperforms state-of-the-art tracking methods.

Pose Supervision Leveraging camera poses was previ-
ously explored for training feature detection and matching
networks. Wang et al. [44] used pose data to supervise a net-
work for pixel-wise correspondence estimation where the
epipolar constraint between two frames is used to penalize
incorrect predictions. More recently, a correspondence re-
finement network called Patch2Pix [47] extends the epipo-
lar constraint supervision by using the Sampson distance in-
stead of the Euclidean Distance. Instead of only considering
two camera poses, our self-supervision strategy computes a
3D point using DLT [1] for each predicted track in multiple
frames, which makes our supervision signal more robust to
errors. Moreover, we supervise our network by computing
a 2D distance between the reprojected and predicted points
without the ambiguity of a distance to an epipolar line.

Event-Based Feature Tracking In recent years, mul-
tiple works have explored event-based feature tracking to
increase robustness in challenging conditions, such as fast
motion scenarios with large pixel displacement between
timesteps and HDR scenes with very bright and dark ar-
eas [17]. Early works [26, 34, 49] tracked features as point-
sets of events and used ICP [5] to estimate the motion be-
tween timesteps, which can also be combined with frame-
based trackers to improve performance [12]. Instead of
point sets, EKLT [17] estimates the parametric transform
between a template and a target patch of brightness incre-
ment images alongside the feature’s velocity. Other event-
based trackers align events along Bézier curves [37] or B-
splines [10] in space and time to obtain feature trajectories.

To exploit the inherent asynchronicity of event streams,
event-by-event trackers have also been proposed [2, 11].
One of them is HASTE [4], which reduces the space of
possible transformations to a fixed number of rotations and
translations. In HASTE, every new event leads to confi-
dence updates for the hypotheses and a state transition if
the confidence threshold is exceeded. Another work called
eCDT [23] first represents features as event clusters and
then incorporates incoming events into existing ones, result-

2

ing in updated centroids and, consequently, updated feature
locations. In a similar direction to feature tracking, sev-
eral event-based feature detectors [8, 31] were proposed,
of which some are performing feature tracking based on
proximity of detections in the image [3, 9]. Apart from
event-based feature tracking and detection, multiple works
tackle the problem of object tracking using event cam-
eras [7, 14, 27, 35, 45, 46].

The task of optical flow estimation using event cameras
gained popularity as well. Zhu et al. [49] estimates the op-
tical flow of features from events using ICP and an objec-
tive function based on expectation maximization to solve
for the parameters of an affine transform. More recently,
an adaptive block matching algorithm [29] was proposed to
estimate optical flow. Finally, recent data-driven methods
for event-based optical flow estimation [18,48] leverage ad-
vances in deep optical-flow estimation. Inspired by these
advances, our tracking network leverages a correlation layer
to update a feature’s location.

3. Method
Feature tracking algorithms aim to track a given point

in a reference frame in subsequent timesteps. They usu-
ally do this by extracting appearance information around
the feature location in the reference frame, which is then
matched and localized in subsequent ones. Following this
pipeline, we extract an image patch P0 in a grayscale frame
for the given feature location at timestep t0 and track the
feature using the asynchronous event stream. The event
stream Ej = {ei}

nj

i=1 between timesteps tj−1 and tj con-
sists of events ei, each encoding the pixel coordinate xi,
timestamp with microsecond-level resolution τi and polar-
ity pi ∈ {−1, 1} of the brightness change. We refer to [15]
for more information about the working principles of event
cameras.

Given the reference patch P0, our network predicts the
relative feature displacement ∆f̂j during tj−1 and tj using
the corresponding event stream Ej in the local neighbor-
hood of the feature location at the previous timestep tj−1.
The events inside the local window are converted to a dense
event representation Pj , specifically a maximal timestamp
version of SBT [43] where each pixel is assigned the times-
tamp of the most recent event. Once our network has local-
ized the reference patch P0 inside the current event patch
Pj , the feature track is updated, and a new event patch Pj+1

is extracted at the newly predicted feature location while
keeping the reference patch P0. This procedure can then
be iteratively repeated while accumulating the relative dis-
placements to construct one continuous feature track. The
overview of our method and our novel frame attention mod-
ule are visualized in Fig. 2

In Sec. 3.1, we explain how the feature network pro-
cesses each feature track independently. The resulting net-

work output is given as input to our frame attention module,
which combines information from all feature tracks in one
image, see Sec. 3.2. Finally, we introduce in in Sec. 3.3
our supervision scheme for data with ground truth and our
self-supervision strategy based on camera poses. For the
specific architectural details of each network, we refer to
the supplementary.

3.1. Feature Network

To localize the template patch P0 inside the current event
patch Pj , the feature network first encodes both patches
using separate encoders based on Feature Pyramid Net-
works [28]. The resulting outputs are per-pixel feature maps
for both patches that contain contextual information while
keeping the spatial information. To explicitly compute the
similarity measure between each pixel in the event patch
and the template patch, we construct a correlation map Cj

based on the bottleneck feature vector R0 of the template
patch encoder and the feature map of the event patch, as
visualized in Fig. 2. Together with the correlation map Cj ,
both feature maps are then given as input to a second feature
encoder in order to refine the correlation map. This feature
encoder consists of standard convolutions, and one ConvL-
STM block [38] with a temporal cell state Fj . The temporal
information is crucial to predicting consistent feature tracks
over time. Moreover, it enables the integration of the mo-
tion information provided by the events. The output of the
feature network is a single feature vector with spatial di-
mension 1×1. Up to now, each feature has been processed
independently from each other.

3.2. Frame Attention Module

To share information between features in the same im-
age, we introduce a novel frame attention module, which is
visualized in Fig. 2. Since points on a rigid body exhibit
correlated motion in the image plane, there is a substantial
benefit in sharing information between features across the
image. To achieve this, our frame attention module takes
the feature vectors of all patches at the current timestep tj
as input and computes the final displacement for each patch
based on a self-attention weighted fusion of all feature vec-
tors. Specifically, we maintain a state S for each feature
across time in order to leverage the displacement prediction
of the previous timesteps in the attention fusion. The tem-
poral information should facilitate the information-sharing
of features with similar motion in the past. This way, it is
possible to maintain vulnerable feature tracks in challeng-
ing situations by adaptively conditioning them on similar
feature tracks. Each input feature vector is individually first
fused with the current state Sj−1 using two linear layers
with Leaky ReLU activations (MLP). All of the resulting
fused features in an image are then used as key, query, and
value pairs for a multi-head attention layer (MHA) [42],

3

Figure 2. As shown in (a), our event tracker takes as input a reference patch P0 in a grayscale image I0 and an event patch Pj constructed
from an event stream Ej at timestep tj and predicts the relative feature displacement ∆f̂j. Each feature is individually processed by a
feature network, which uses a ConvLSTM layer with state F to process a correlation map Cj based on a template feature vector R0 and
the pixel-wise feature maps of the event patch. To share information across different feature tracks, our novel frame attention module (b)
fuses the processed feature vectors for all tracks in an image using self-attention and a temporal state S, which is used to compute the final
displacement ∆f̂j.

which performs self-attention over each feature in an im-
age. To facilitate the training, we introduce a skip connec-
tion around the multi-head attention for each feature, which
is adaptively weighted during the training by a Layerscale
layer [41] (LS). The resulting feature vectors are then used
in a simple gating layer to compute the updated state Sj

based on the previous state Sj−1 (GL), see Eq. (3).

Zk
j = MLP ([Fj , Sj−1]) (1)

Z̃k
j = MHA(Zk

j) (2)

Sj = GL([Sj−1, LS(Z̃
k
j)]) (3)

Finally, the updated state Sj is then processed by one linear
layer to predict the final displacement ∆f̂j.

3.3. Supervision

In general, the supervision of trackers, extractors, or even
flow networks is still an open research field since datasets
containing pixel-wise correspondences as ground truth are
rare. To make matters worse, there exist even fewer event-
based datasets containing accurate pixel correspondences.
To overcome this limitation, we train our network in the
first step on synthetic data from the Multiflow dataset [19],
which contains frames, synthetically generated events, and
ground truth pixel flow. However, since the noise is not
modeled, synthetic events differ significantly from events
recorded by a real event camera. Thus, in the second step,
we fine-tune our network using our novel pose supervision
loss to close the gap between synthetic and real events.

Synthetic Supervision Synthetic data has the benefit
that it provides ground truth feature tracks. Thus, a loss
based on the L1 distance can be directly applied for each
prediction step j between the predicted and ground truth

relative displacement, see Fig. 3. It is possible that the pre-
dicted feature tracks diverge beyond the template patch such
that the next feature location is not in the current search.
Thus, if the difference between predicted and ground truth
displacement ||∆f̂j−∆fj||1 exceeds the patch radius r, we
do not add the L1 distances to the final loss to avoid in-
troducing noise in supervision. Our truncated loss Lrp is
formulated as follows.

errj =

{
||∆f̂j −∆fj||1 ||∆f̂j −∆fj||1 < r

0 else
(4)

Lrp =

∑
j 1(errj ̸=0)errj∑

j 1(errj ̸=0)
(5)

To reduce the gap between synthetic and real data, we
apply on-the-fly augmentation during training, which sig-
nificantly increases the motion distribution. To teach the
network geometrically robust representations, affine trans-
formations W are applied to the current event patch Pj to
obtain an augmented Patch Paug

j at each prediction step,
as formulated in Eq. (6). The augmentation parameters for
rotation, translation, and scale θ = (θr, θt, θs) are ran-
domly sampled from a uniform distribution at each predic-
tion step during training. Our tracker T then predicts a rela-
tive displacement ∆f̂augj−1 given the augmented patch Paug

j

and original template patch P0. The loss is then computed
between the predicted displacement ∆f̂augj−1 and the aug-
mented ground truth ∆faugj−1 , which is obtained by applying
the same affine transformation W .

Paug
j = W (Pj,θ) (6)

∆f̂augj−1 = T (P0,P
aug
j) (7)

∆f̂j−1 = W−1(∆f̂augj−1 ,θ) (8)

4

Figure 3. The L1 distance ℓj between the predicted ∆f̂j and the
ground truth displacement ∆fj is used as a truncated loss, which
is set to zero if the ground truth feature is outside of the current
event patch Pj , as shown for timestep tj+k.

The corrected displacement ∆f̂j−1 is then accumulated in
order to extract the next event patch Pj+1. Our augmenta-
tion strategy introduces dynamic trajectories and changes in
patch appearance during training that improve performance
on real data.

Pose Supervision To adapt the network to real events,
we introduce a novel pose supervision loss solely based on
ground truth poses of a calibrated camera. The ground truth
poses can easily be obtained for sparse timesteps tj using
structure-from-motion algorithms, e.g., COLMAP [36], or
by an external motion capture system. Since our supervi-
sion strategy relies on the triangulation of 3D points based
on poses, it can only be applied in static scenes.

In the first step of the fine-tuning, our network predicts
multiple feature tracks for one sequence. For each predicted
track i, we compute the corresponding 3D point Xi using
the direct linear transform [1]. Specifically, for each feature
location xj, we can write the projection equation assuming
a pinhole camera model using the camera pose, represented
as a rotation matrix Rtj and a translation vector Ttj , at
timestep tj , and the calibration matrix K, see Eq. (9). The
resulting projection matrix can be expressed as matrix Mj

consisting of column vectors mkT
j with k ∈ {1, 2, 3}.

xj = K[Rtj |Ttj]Xj = MjXj =

m1T
j

m2T
j

m3T
j

Xi (9)

Using the direct linear transform, we can reformulate
the projection equations as the homogenous linear system
in Eq. (10). By using SVD, we obtain the 3D point Xj ,
which minimizes the least square error of Eq. (10).ujm

3T
j −m2T

j

m1T
j − vjm

3T
j

...

 = AXi = 0 (10)

Once the 3D position of Xi is computed, we can find the
reprojected pixel point x̃j for each timestep tj using per-
spective projection Eq. (9). The final pose supervision loss

Figure 4. To adapt our tracker to real event data, our self-
supervised loss computes a triangulated point based on the pre-
dicted track, and the camera poses. The 3D point is then repro-
jected to each camera plane, and the L1-distance ℓj between re-
projected and predicted point is used as a supervision signal.

is then constructed based on the predicted feature x̂j and
the reprojected feature x̃j for each available camera pose at
timestep tj , as visualized in Fig. 4. As in the supervised
setting of Eq. (5), we use a truncated loss which excludes
the loss contribution if the reprojected feature is outside of
the event patch.

4. Experiments

Datasets We compare our proposed data-driven tracker
on the commonly used Event Camera dataset [33] (EC),
which includes APS frames (24 Hz) and events with a res-
olution of 240×180, recorded using a DAVIS240C cam-
era [6]. Additionally, the dataset provides ground truth
camera poses at a rate of 200 Hz from an external motion
capture system. Moreover, to evaluate the tracking per-
formance with a newer sensor setup, we test our method
on the newly published Event-aided Direct Sparse Odom-
etry dataset [22] (EDS). Compared to EC, the EDS dataset
contains higher resolution frames and events (640×480 pix-
els) captured with a beam splitter setup. Similar to the EC
dataset, it includes ground truth poses at a rate of 150 Hz
from an external motion capture system. Most scenes in
both datasets are static since the primary purpose of EDS
and EC is the evaluation of camera pose estimation. For the
specific finetuning and testing sequence selection, we refer
to the supplementary.

Evaluation To evaluate the different feature trackers, we
first extract features for each sequence with a Harris Cor-
ner detector [21]. Based on the initial feature set, each
tested tracker predicts the feature displacements according
to its specific update rate. Unfortunately, no ground truth
feature tracks are available for EDS and EC. To evaluate
the event-based feature trackers without ground truth, pre-
vious works used tracks predicted by the frame-based KLT
tracker as ground truth. Instead, to increase the accuracy of
KLT tracks, we use an evaluation scheme based on our pro-

5

posed pose supervision method. Specifically, the ground
truth tracks are obtained by triangulating KLT tracks us-
ing ground truth poses and reprojecting them afterward to
each of the selected target frames. The triangulation of KLT
tracks has the benefit that minor tracking errors of KLT are
filtered out, leading to geometrically consistent ground truth
tracks. To verify the proposed evaluation, we conducted
an experiment in simulation in which ground truth feature
tracks are available. In this simulated setup, we computed
the Pearson correlation between the KLT reprojected er-
ror and the ground truth feature tracks, which was 0.716.
This indicates a significant correlation between our pro-
posed evaluation technique and ground truth feature tracks
verifying the effectiveness of our evaluation technique.

Since each tested tracker has its update rate, we lin-
early interpolated all feature tracks to the ground truth pose
timesteps in order to compute the evaluation metric. Fur-
thermore, to effectively test the event-based tracking abili-
ties of the methods, we do not update the feature templates
during evaluation. In addition, we deactivate any terminal
criterion and report the time until the feature exceeds a cer-
tain distance to the ground truth, known as the feature age.
Instead of choosing one error threshold as done in previous
work [4], we evaluate the resulting tracks for multiple error
thresholds in a range from 1 to 31 pixels with a step size of
1 pixel. Thus, we do not report the endpoint error since we
test each trajectory with different error thresholds, which
effectively incorporates the distance error into the feature
age. As a first performance metric, we compute the tracked
feature age normalized by the ground truth track duration
in order to account for different trajectory lengths. How-
ever, since some feature tracks are lost immediately in the
beginning, we report the feature age of stable tracks, i.e.,
we discard feature tracks lost during the early phase of the
sequence for the feature age computations. The second er-
ror metric accounts for the lost tracks by taking the ratio
of stable tracks and ground truth tracks. This ratio is then
multiplied by the feature age, which gives us the expected
feature age as the second performance metric. This met-
ric combines the quality and the number of feature tracks
tracked by a method. For more information about the two
performance metrics, we refer to the supplementary

Training Schedule As mentioned in Sec. 3, we first
train our models supervised on the Multiflow [19] dataset
on 30000 feature tracks in a continual learning fashion with
a learning rate of 1× 10−4 using the ADAM optimizer [25]
to gradually adapt the network recurrence to longer trajec-
tory lengths. Starting initially from 4 unroll steps, we pro-
gressively increase the number of unroll steps to 16 and then
24 after 80000 and 120000 training steps, respectively. Af-
ter training on Multiflow, we finetune our model using our
novel supervision method for 700 optimization steps with a
reduced learning rate of 1 × 10−6 on specific training se-

quences of both datasets, which are not used for evaluation.

4.1. Benchmark Results

Baselines We compare our method against the current
state-of-the-art method EKLT [17], which extracts a tem-
plate patch from a grayscale image for each feature and
tracks the feature with events, similar to our tracker. As
another tracker relying on grayscale template patches, we
also run the ICP [26] tracker used for event-based visual
odometry. In addition, we evaluate against the pure event-
based trackers HASTE [4] and EM-ICP [49]. For EKLT,
HASTE, and EM-ICP, we adopted the publicly available
code to run the experiments. The implementation of ICP
was taken from a related work [12]. The hyper-parameters
of all methods were tuned for the specific datasets, which
required multiple hours to achieve optimal performance.

EC Results On the commonly used event-based track-
ing benchmark, EC, our proposed data-driven method out-
performs the other baselines in terms of non-zero feature
age and expected feature age, see Tab. 1. The second best
approach is EKLT, which tracked the features for a dura-
tion similar to our proposed method as represented by the
non-zero feature age metric in Tab. 1. However, our method
was able to track more features from the initial feature set
as reported by the expected feature age. The higher ra-
tio of successfully tracked features and the longer feature
age makes our method better suited for downstream tasks
such as pose estimation [36]. The top row of Fig. 5 shows
that our method produces a higher number of smooth fea-
ture tracks compared to the closest baselines EKLT and
HASTE. As expected, a performance gap exists between
pure event-based methods (HASTE, EM-ICP) and methods
using grayscale images as templates (Ours, EKLT). This
confirms the benefit of leveraging grayscale images to ex-
tract template patches, which are subsequently tracked by
events.

EDS Results Similar to the performance on the EC
dataset, our proposed method outperforms all of the exist-
ing trackers on the EDS dataset with an even larger mar-
gin in terms of both non-zero feature age and expected fea-
ture age as reported in Tab. 1. The significant performance
boost confirms the capability of our data-driven methods to
deal with high-resolution data in various 3D scenes with
different lighting conditions and noise patterns. Since a
beam splitter setup was used to record the data for the EDS
dataset, there are misalignment artifacts between events and
images, as well as low-light noise in the events due to the
reduction of the incoming light. Additionally, the EDS in-
cludes faster camera motions leading to an overall lower
tracking performance of all methods compared to the EC
dataset. Nevertheless, our learned method is able to deal
with these different noise sources and still predict smooth
feature tracks for a large number of features, as shown in

6

Table 1. The performance of the evaluated trackers on the EDS and EC dataset are reported in terms of ”Feature Age (FA)” of the stable
tracks and the ”Expected FA”, which is the multiplication of the feature age by the ratio of the number of stable tracks over the number of
initial features.

EDS EC

Method Feature Age (FA) ↑ Expected FA ↑ Feature Age (FA) ↑ Expected FA ↑
ICP [26] 0.060 0.040 0.256 0.245
EM-ICP [49] 0.161 0.120 0.337 0.334
HASTE [4] 0.096 0.063 0.442 0.427
EKLT [17] 0.325 0.205 0.811 0.775
Ours (zero-shot) 0.549 0.451 0.795 0.787
Ours (fine-tuned) 0.576 0.472 0.825 0.818

Figure 5. Qualitative tracking predictions (blue) and ground truth
tracks (green) for the EC dataset (top) and EDS dataset (middle /
bottom). Our method predicts more accurate tracks for a higher
number of initial features.

the middle and bottom row of Fig. 5. For more qualitative
examples, we refer to the supplementary. Finally, in addi-
tion to the performance gain, our method does not require
hours of manual fine-tuning for transferring the tracker from
small resolution to high resolution event cameras with dif-
ferent contrast threshold settings.

Runtime Comparison To employ a feature tracker in
real-world applications, it is crucial to provide feature dis-
placement updates with low latency. Therefore, we report
the runtime of the different evaluated methods in terms of
the real time factor, i.e., compute time divided by the time of
the received data, versus tracking performance in Fig. 6. It
should be noted that most of the evaluated trackers were not
implemented for run time efficiency and thus are coded in
different programming languages, which makes a fair com-
parison hard. Moreover, we tuned all the methods with a
focus on the tracking performance, which explains the high
runtime of EKLT since we significantly increased the num-
ber of optimization iterations. Nevertheless, the runtime
comparison of the different methods still provides a rough
picture of the inference speed of each method. In the case
of HASTE, we additionally report the runtime for an ideal
HASTE implementation, named HASTE* in Fig. 6. The

Figure 6. The two plots show the tracking performance in terms
of expected feature age in relation to the real-time factor, which is
the ratio of compute time over track time. Thus, the top left corner
represents the goal. Additionally to the existing implementation of
HASTE, we also report the ideal HASTE*, which assumes perfect
parallelization for processing all feature tracks.

ideal HASTE* assumes perfect parallelization of the cur-
rent code framework of HASTE, which tracks each feature
sequentially. Even without optimizing the code for deploy-
ment, our method achieves close to real-time performance
on EC and is the fastest method on EDS while having a
significantly higher tracking performance. On EDS, our
method takes 17ms to process, on average, 19.7 patches in
parallel, while it takes 13ms for 14.2 patches on EC using
an Nvidia Quadro RTX 8000 GPU. The fast inference of
our method can be explained by the batch-wise processing
and the highly parallelized framework for deep learning ar-
chitectures. This shows the potential of our method for real-
world applications constrained by latency requirements.

4.2. Combination of Events and Frames

In a step to combine the contextual information of
grayscale images and the high-latency information from
events, we extended our event-based tracker using the pop-
ular KLT tracker for frames. Specifically, we use our event
tracker to track features during the blind time between two
frames and use the displacement prediction of our tracker
as an initial guess for the KLT tracker once a new frame ar-
rives. This has the benefit of effectively mitigating the neg-

7

Figure 7. The tracking performance of KLT and our tracker com-
bined with KLT (Ours+KLT) in relation to pixel motion per frame.
In combination, our event-based tracker can successfully help KLT
predict larger displacement while KLT can refine the predictions
of our tracker.

ative effects of large baselines between two frames caused
by high-speed motion. Additionally, the combination with
our event tracker provides feature positions for the time in
between two frames, significantly increasing the frequency
of feature position updates. On the other side, the KLT
tracker can correct the feature position once reliable frame
information is available. As used for the ground truth cre-
ation based on the camera poses, we use a KLT tracker
with three hierarchical scales to cope with larger motion.
We compare the combination of our method and the KLT
tracker (ours+KLT) against the pure KLT tracker for dif-
ferent pixel motions between frames, as reported in Fig. 7
The different pixel motions are achieved by skipping frames
in a sequence of the EC dataset, which corresponds to in-
creasing the pixel motion between two frames. As can be
seen in Fig. 7, the combination of ours and KLT performs
comparably to a pure KLT tracker for small pixel displace-
ment between frames. However, with increasing pixel mo-
tion, the initial guess provided by our method helps the KLT
tracker to track features over a longer time duration than a
KLT tracker alone. In addition, our event-based tracker
can provide robust feature tracks during periods of high-
speed motion in which the frames suffer from motion blur.
This can be qualitatively observed in Fig. 1, which shows
smooth features tracks predicted by our event-based tracker
on a motion blurred frame due to high-speed motion. This
high-rotational motion sequence was recorded by us with a
beam splitter setup.

4.3. Ablations

To test the specific contribution of each introduced net-
work block, we perform several ablation experiments based
on the reference model, which represents our model without
the frame attention module, see Tab. 2. As verified by the

Table 2. Ablation experiments on the EDS and EC dataset.
Expected FA ↑

Method EDS EC
Reference Model 0.383 0.787

w/o correlation 0.341 0.684
w/o recurrence 0.301 0.606
w/o augmentation 0.178 0.599

Ref + Frame Attention 0.451 0.787
w pose supervision 0.471 0.818
w/o state 0.385 0.791

performance drop (w/o augmentation), the augmentations
during the training on synthetic data significantly boost the
zero-shot transfer from synthetic to real-world data. Fur-
thermore, the recurrence in the feature encoder leads to
longer feature age (w/recurrence), which is also achieved on
a smaller scale by introducing the correlation map (w/o cor-
relation). While there is no improvement on the EC dataset,
our proposed frame attention module significantly improves
the performance on the challenging sequences of EDS. This
performance increase confirms the benefit of sharing infor-
mation between similar feature tracks for challenging sce-
narios. By adapting our network based on the frame at-
tention module (Ref+Frame Attention) to real data using
our self-supervision scheme, we achieve the highest track-
ing performance. Finally, the frame attention module relies
on state variables (w/o state) to fully exploit the potential of
sharing information across features in a frame. For more ab-
lations regarding the input representation and specific aug-
mentation parameters, we refer to the supplementary.

5. Conclusion
We presented the first data-driven feature tracker for

event cameras, which leverages low-latency events to track
features detected in a grayscale frame. With our novel frame
attention module, which fuses information across feature
tracks, our tracker outperforms state-of-art methods on two
datasets while being faster in terms of inference time. Fur-
thermore, our proposed method does not require intensive
manual parameter tuning and can be adapted to new event
cameras with our self-supervision strategy. Finally, we can
combine our event-based tracker with a KLT tracker to pre-
dict stable tracks in challenging scenarios. This combina-
tion of standard and event cameras paves the path for the
concept of sparingly triggering frames based on the track-
ing quality, which is a critical tool for future applications
where runtime and power consumption are essential.

6. Acknowledgment
The authors want to thank Javier Hidalgo-Carrió for the

support of the EDS dataset. This work was supported by
the Swiss National Science Foundation through the Na-
tional Centre of Competence in Research (NCCR) Robotics
(grant number 51NF40 185543), and the European Re-

8

search Council (ERC) under grant agreement No. 864042
(AGILEFLIGHT).

Supplementary: Data-driven Feature
Tracking for Event Cameras
7. Future Work & Limitations

Since the EC and EDS datasets were recorded to bench-
mark pose estimation algorithms, they only contain static
scenes. Thus, we did not evaluate how our method, and
especially our frame attention module performs in scenes
with dynamic objects. Nevertheless, we believe that our
frame attention module can be useful for other trackers us-
ing event or standard cameras. Finally, our method relies
on the quality of the feature detection in grayscale images,
which can suffer in challenging scenarios. However, our
self-supervision strategy opens up the possibility of also
fine-tuning feature detectors for event cameras to increase
the robustness of feature detection.

8. Dataset Split
We use five sequences from the Event Camera

dataset [33] (EC) and four sequences from the Event-aided
Direct Sparse Odometry dataset [22] (EDS) as test se-
quences. For fine-tuning, our pose supervision strategy is
performed on five sequences from the EC and one sequence
from the EDS dataset since EDS does not contain many se-
quences with ground truth pose in well-lit conditions. The
overview of the test and fine-tuning sequences is shown
in Tab. 3.

Table 3. Test and fine-tuning sequences for the EC and EDS
dataset.

Dataset Sequence Name Frames

Te
st

EC

Shapes Translation 8-88
Shapes Rotation 165-245
Shapes 6DOF 485-485
Boxes Translation 330-410
Boxes Rotation 198-278

EDS

Peanuts Light 160-386
Rocket Earth Light 338-438
Ziggy In The Arena 1350-1650
Peanuts Running 2360-2460

Fi
ne

-T
un

in
g

EC

boxes hdr all
calibration all
poster 6dof all
poster rotation all
poster translation all

EDS all characters all

9. Multiflow Dataset
To qualitatively show the gap between the simulated

and the real data, we visualize in Fig. 8 some examples
from the Multiflow dataset [19], including the ground truth
tracks corresponding to the extracted Harris features [21].
This sim-to-real gap can be reduced with our augmentation
strategies on the Multiflow dataset and with our proposed
fine-tuning strategy on real data, see Sec. 3.3.

10. Network Architecture Details
Tab. 4 shows the architectural details of our proposed

network, which consists of a feature network and our pro-
posed frame attention module. In the first step, two patch
encoders inside the feature network process the event and
the grayscale patches, which have a patch size of 31 pixels.
After the correlation and the concatenation of the feature
maps from both patch networks, a joint encoder refines the
correlation map and introduces temporal information shar-
ing through a ConvLSTM layer. Finally, the frame attention
module processes each feature in one frame using shared
linear layers and one global multi-head attention over all
features in a frame. We refer to Fig. 2 in the main paper for
the network overview.

11. Quantitative Results & Tracking Metrics
As done in previous works [4, 17], we directly compare

feature tracking metrics for a feature tracking methodology
instead of computing pose errors using a pose estimation
module. While pose estimation is one application, it re-
quires the tuning of many hyperparameters specifically for
the tracker. Thus, it complicates evaluation and produces
biased results.

As tracking metrics, we report for each test sequence
from the EC and EDS dataset the expected feature age
in Tab. 5, the feature age in Tab. 6, the inlier ratio in Tab. 7
and the normalized tracking error in Tab. 8. For the normal-
ized tracking error, we terminate the track if the distance to
the ground truth exceeds 5 pixels, as done in [4]. However,
it is not obvious how to compute this metric if the tracking
error is higher than 5 pixels directly after the initialization,
as it occurred for the baseline methods in Tab. 8. Further-
more, this metric does not consider the duration of the pre-
dicted tracks, e.g., one feature can be tracked for a short
time duration with a small tracking error, which would lead
to a small normalized tracking error. In contrast, a feature
tracked for a long time horizon but with a higher distance
to the ground truth will be assigned a higher tracking error.
This example shows that the normalized tracking error on
its own is not necessarily a good metric to evaluate stable
and long feature tracks. Thus, we decided to report the ex-
pected feature age as a metric since it considers the tracking
duration and the number of tracked features. Moreover, the

9

Figure 8. Samples from the Multiflow dataset including the ground truth tracks corresponding to extracted Harris features.

expected feature age is computed over a range of termina-
tion thresholds with respect to the ground truth, which ef-
fectively eliminates this hyperparameter for the metric com-
putation. Specifically, the expected feature age represents
the multiplication of the normalized feature age with the
fraction of successfully predicted tracks over the number
of given feature locations, defined as inlier ratio. A fea-
ture is defined to be tracked successfully if the predicted
feature location at the second timestep after initialization
is in the termination threshold to the ground truth location.
The normalized feature age is computed for the successfully
tracked features based on the division of the time duration
until the predicted feature exceeds the termination threshold
to the ground truth location by the duration of the ground
truth tracks. Because of the range of termination thresholds
and the consideration of the number of successfully tracked
features, the expected feature age represents an expressive
and objective metric for reporting the tracking performance.
Compared to [31], we evaluate the tracking performance
and thus use the same features for each method. Further-
more, our evaluation focuses on the introduced Expected
Feature Age to account for the impact of outliers, which is
typically ignored.

12. Input Event Representation

Similar to previous works [17], our method requires spa-
tially and temporally aligned frames and events. This data
can be recorded by cameras outputting directly events and
images with one sensor (ATIS) or with beam splitter setups
using two cameras aligned through a mirror setup. To pro-
vide the events in a patch as input to our network, we first
convert them to a dense event representation. Specifically,
we use a maximal timestamp version of SBT [43], named
SBT-Max, which consists of five temporal bins for positive
and negative polarity leading to 10 channels. Because of

these design choices, the used event representation can be
considered a combination between TimeSurface [32] and
SBT [43]. In each temporal bin, we assign to each pixel
coordinate the relative timestamp of the most recent event
during the time interval of the temporal bin. For the EC
and EDS dataset, we convert events inside a 10 ms and 5 ms
window, respectively.

13. Additional Ablation Experiments

In addition to the ablation experiments reported in Tab. 2
in the main paper, we ablated the event input representation
as well as the augmentation parameters used during train-
ing. Due to time reasons, we performed the following ab-
lation experiments by training the reference model, which
does not include the frame attention module, for 70000
steps instead of 140000.

13.1. Input Representations

The input event representation to an event-based network
is an important consideration. Ideally, we aim to preserve as
much of the spatiotemporal information as possible while
minimizing the computational overhead of representation
generations. We train the reference network with different
representations: voxel grids [50], Stacking Based on Time
(SBT) [43], a non-normalized version of SBT (SBTNo
Norm) and a maximal timestamp version of SBT we call
SBT-Max where each pixel is assigned the timestamp of the
most recent event. The results are shown in Tab. 9. While
many event-based networks have demonstrated promising
results with voxel grids, their interpolation-based construc-
tion is computationally expensive. In contrast, SBT is a sim-
pler, synchronous event representation that is more efficient.
Each pixel simply accumulates or ”stacks” incoming events.
We find that SBT achieves competitive Expected FA com-
pared to voxel grids on nearly all sequences. However, the

10

Table 4. Network architecture. Each convolution layer is followed
by LeakyReLU and BatchNorm layers whereas the linear layers
are followed by LeakyReLu layers. For the upsampling layers
(Up), we use bilinear interpolation. The three numbers after each
convolution layer indicate the two kernel dimensions and the out-
put channel dimension. In the case of the linear layer, the single
number stands for the output channels.

Layer Spatial Size

Fe
at

ur
e

N
et

w
or

k
(2
×

Pa
tc

h
E

nc
od

er
s

+
Jo

in
tE

nc
od

er
)

2× Conv2D 1×1×32 31×31
2× Conv2D 5×5×64 23×23
2× Conv2D 5×5×128 15×15
2× Conv2D 3×3×256 5×5
2× Conv2D 1×1×384 1×1
2× Conv2D 1×1×384 1×1
Up + Conv2D 1×1×384 5×5
Conv2D 3×3×384 5×5
Up + Conv2D 1×1×384 15×15
Conv2D 3×3×384 15×15
Up + Conv2D 1×1×384 23×23
Conv2D 3×3×384 23×23
Up + Conv2D 1×1×384 31×31
Conv2D 3×3×384 31×31
2× Conv2D 3×3×384 31×31

Correlation Layer 31×31
2× Conv2D 3×3×128 31×31

2× Conv2D 3×3×64 15×15
2× Conv2D 3×3×128 7×7
ConvLSTM 3×3×128 7×7
2× Conv2D 3×3×256 3×3
Conv2D 3×3×256 1×1

Fr
am

e
A

tte
nt

io
n Linear 256 1×1

Linear 256 1×1
MultiHead Attention 1×1
LayerScale 256 1×1
Linear Gating 256 1×1
Linear 2 1×1

performance of SBT degrades significantly without normal-
izing based on the number of events in the frame. In con-
trast to normalizing by the number of events, SBT-Max is
normalized using the duration of the time window. In prac-
tice, the statistic-free normalization procedure of SBT-Max
means that events outside the neighborhoods of tracked fea-
tures can be ignored. Because of this deployment advantage
and the competitive performance despite its more simplistic
normalization, we select SBT-Max as event representation.

13.2. Augmentation Parameters

To validate the utility of our augmentation strategy, we
train the reference network with different augmentation pa-
rameters. In Tab. 10, we present the experimental results

for using rotations (R) of up to ±30◦, scaling (S) of up to
±10%, and translations (T) of up to ±5px. The default
training settings use rotations of up to ±15◦, scaling of up
to ±10%, and translations of up to ±3px. Without augmen-
tation, we observe significant degradation on both datasets.
The benefit of additional translation augmentation is incon-
clusive, given the degradation on EC and improvement on
EDS. Lastly, with increased rotation augmentation, we ob-
serve that the performance improves on average for both
datasets.

11

Table 5. The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Expected Feature Age.

Expected FA ↑
Sequence ICP [26] EM-ICP [49] HASTE [4] EKLT [17] Ours
Shapes Translation 0.306 0.402 0.564 0.740 0.856
Shapes Rotation 0.339 0.320 0.582 0.806 0.793
Shapes 6DOF 0.129 0.242 0.043 0.696 0.882
Boxes Translation 0.261 0.354 0.368 0.644 0.869
Boxes Rotation 0.188 0.349 0.447 0.865 0.691
EC Avg 0.245 0.334 0.427 0.775 0.818
Peanuts Light 0.044 0.077 0.076 0.260 0.420
Rocket Earth Light 0.045 0.158 0.085 0.175 0.291
Ziggy In The Arena 0.039 0.149 0.057 0.231 0.746
Peanuts Running 0.028 0.095 0.033 0.153 0.428
EDS Avg 0.040 0.120 0.063 0.205 0.472

Table 6. The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Feature Age FA.

Feature Age (FA) ↑
Sequence ICP [26] EM-ICP [49] HASTE [4] EKLT [17] Ours
Shapes Translation 0.307 0.403 0.589 0.839 0.861
Shapes Rotation 0.341 0.320 0.613 0.833 0.797
Shapes 6DOF 0.169 0.248 0.133 0.817 0.899
Boxes Translation 0.268 0.355 0.382 0.682 0.872
Boxes Rotation 0.191 0.356 0.492 0.883 0.695
EC Avg 0.256 0.337 0.442 0.811 0.825
Peanuts Light 0.050 0.084 0.086 0.284 0.447
Rocket Earth Light 0.103 0.298 0.162 0.425 0.648
Ziggy In The Arena 0.043 0.153 0.082 0.419 0.748
Peanuts Running 0.043 0.108 0.054 0.171 0.460
EDS Avg 0.060 0.161 0.096 0.325 0.576

Table 7. The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Inlier Ratio.

Inlier Ratio ↑
Sequence ICP [26] EM-ICP [49] HASTE [4] EKLT [17] Ours
Shapes Translation 0.986 0.916 0.957 0.882 0.962
Shapes Rotation 0.962 0.955 0.950 0.968 0.950
Shapes 6DOF 0.696 0.755 0.325 0.852 0.946
Boxes Translation 0.937 0.937 0.963 0.945 0.980
Boxes Rotation 0.946 0.798 0.908 0.980 0.949
EC Avg 0.905 0.872 0.820 0.925 0.957
Peanuts Light 0.740 0.868 0.815 0.780 0.802
Rocket Earth Light 0.369 0.401 0.293 0.375 0.374
Ziggy In The Arena 0.421 0.884 0.609 0.469 0.927
Peanuts Running 0.502 0.578 0.531 0.700 0.750
EDS Avg 0.508 0.683 0.562 0.581 0.713

12

Table 8. The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Track Normalized Error.

Track Normalized Error ↓
Sequence ICP [26] EM-ICP [49] HASTE [4] EKLT [17] Ours
Shapes Translation 1.943 3.941 2.628 1.104 1.153
Shapes Rotation 1.870 2.614 2.536 1.723 1.981
Shapes 6DOF - - - 1.833 1.702
Boxes Translation 2.289 2.613 2.109 1.227 1.166
Boxes Rotation 2.571 3.855 3.383 1.375 1.836
EC Avg 2.168 3.256 2.664 1.452 1.568
Peanuts Light 3.185 2.323 2.432 3.560 3.957
Rocket Earth Light - 4.062 - 2.405 3.599
Ziggy In The Arena - 3.407 2.672 - 2.673
Peanuts Running - - - 3.812 3.444
EDS Avg 3.185 3.264 2.552 3.259 3.418

Table 9. The performance of the reference model when trained with different input event representations.

Expected FA ↑

Sequence SBT-Max SBT No
Norm SBT [43] Voxel

Grids [50]
Shapes Translation 0.780 0.160 0.887 0.802
Shapes Rotation 0.747 0.057 0.823 0.799
Shapes 6DOF 0.881 0.006 0.882 0.882
Boxes Translation 0.849 0.160 0.831 0.769
Boxes Rotation 0.614 0.057 0.677 0.638
EC Avg 0.774 0.088 0.820 0.778
Peanuts Light 0.388 0.020 0.373 0.372
Rocket Earth Light 0.271 0.009 0.284 0.282
Ziggy In The Arena 0.686 0.040 0.708 0.694
Peanuts Running 0.059 0.024 0.073 0.150
EDS Avg 0.351 0.023 0.359 0.374

Table 10. The performance of the reference model when trained with different augmentation parameters.

Expected FA ↑
Sequence R15 S10 T3 R30 T5 No Aug
Shapes Translation 0.691 0.861 0.720 0.723
Shapes Rotation 0.726 0.766 0.697 0.617
Shapes 6DOF 0.883 0.882 0.876 0.499
Boxes Translation 0.809 0.791 0.743 0.501
Boxes Rotation 0.616 0.703 0.448 0.337
EC Avg 0.745 0.801 0.697 0.535
Peanuts Light 0.361 0.384 0.337 0.311
Rocket Earth Light 0.284 0.275 0.274 0.094
Ziggy In The Arena 0.658 0.699 0.669 0.166
Peanuts Running 0.080 0.098 0.156 0.028
EDS Avg 0.346 0.364 0.359 0.150

13

References
[1] Yousset I Abdel-Aziz, Hauck Michael Karara, and Michael

Hauck. Direct linear transformation from comparator co-
ordinates into object space coordinates in close-range pho-
togrammetry. Photogrammetric engineering & remote sens-
ing, 81(2):103–107, 2015. 2, 5

[2] Ignacio Alzugaray and Margarita Chli. ACE: An efficient
asynchronous corner tracker for event cameras. In 3D Vision
(3DV), pages 653–661, 2018. 2

[3] Ignacio Alzugaray and Margarita Chli. Asynchronous corner
detection and tracking for event cameras in real time. IEEE
Robot. Autom. Lett., 3(4):3177–3184, Oct. 2018. 3

[4] Ignacio Alzugaray and Margarita Chli. HASTE: multi-
Hypothesis Asynchronous Speeded-up Tracking of Events.
British Machine Vision Conference (BMVC). London, UK:
Springer, page 744, 2020. 2, 6, 7, 9, 12, 13

[5] P.J. Besl and N.D. McKay. A method for registration of 3d
shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):39–
256, 1992. 2

[6] Christian Brandli, Raphael Berner, Minhao Yang, Shih-Chii
Liu, and Tobi Delbruck. A 240x180 130dB 3µs latency
global shutter spatiotemporal vision sensor. IEEE J. Solid-
State Circuits, 49(10):2333–2341, 2014. 5

[7] Haosheng Chen, Qiangqiang Wu, Yanjie Liang, Xinbo Gao,
and Hanzi Wang. Asynchronous tracking-by-detection on
adaptive time surfaces for event-based object tracking. In
Proceedings of the 27th ACM International Conference on
Multimedia, page 473–481, New York, NY, USA, 2019. As-
sociation for Computing Machinery. 3

[8] Philippe Chiberre, Etienne Perot, Amos Sironi, and Vin-
cent Lepetit. Detecting stable keypoints from events through
image gradient prediction. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1387–1394, 2021. 3

[9] Philippe Chiberre, Etienne Perot, Amos Sironi, and Vincent
Lepetit. Long-lived accurate keypoints in event streams.
arXiv e-prints, abs/2209.10385, 2022. 3

[10] Jason Chui, Simone Klenk, and Daniel Cremers. Event-
based feature tracking in continuous time with sliding win-
dow optimization. ArXiv, abs/2107.04536, 2021. 2

[11] Laurent Dardelet, Ryad Benosman, and Sio-Hoi Ieng. An
Event-by-Event Feature Detection and Tracking Invariant to
Motion Direction and Velocity. arXiv e-prints, 11 2021. 2

[12] Yan Dong and Tao Zhang. Standard and event cameras fu-
sion for feature tracking. In Association for Computing Ma-
chinery, page 55–60, 2021. 2, 6

[13] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Häusser, Caner Hazirbas, Vladimir Golkov, Patrick van der
Smagt, Daniel Cremers, and Thomas Brox. FlowNet: Learn-
ing Optical Flow with Convolutional Networks. In 2015
IEEE International Conference on Computer Vision (ICCV),
pages 2758–2766, 2015. 2

[14] Zaid El Shair and Samir A Rawashdeh. High-temporal-
resolution object detection and tracking using images and
events. Journal of Imaging, 8(8):210, 2022. 3

[15] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara
Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,

Andrew Davison, Jörg Conradt, Kostas Daniilidis, and Da-
vide Scaramuzza. Event-based vision: A survey. IEEE
Trans. Pattern Anal. Mach. Intell., 2020. 3

[16] Guillermo Gallego, Jon E. A. Lund, Elias Mueggler, Henri
Rebecq, Tobi Delbruck, and Davide Scaramuzza. Event-
based, 6-DOF camera tracking from photometric depth
maps. IEEE Trans. Pattern Anal. Mach. Intell., 40(10):2402–
2412, Oct. 2018. 1

[17] Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Da-
vide Scaramuzza. EKLT: Asynchronous Photometric Fea-
ture Tracking Using Events and Frames. Int. J. Comput. Vis.,
128(3):601–618, 2020. 1, 2, 6, 7, 9, 10, 12, 13

[18] Mathias Gehrig, Mario Millhaeusler, Daniel Gehrig, and Da-
vide Scaramuzza. E-RAFT: Dense Optical Flow from Event
Cameras. In 2021 International Conference on 3D Vision
(3DV), pages 197–206, Piscataway, NJ, 2021. IEEE. 3

[19] Mathias Gehrig, Manasi Muglikar, and Davide Scaramuzza.
Dense Continuous-Time Optical Flow from Events and
Frames, 2022. 4, 6, 9

[20] Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki.
Particle Video Revisited: Tracking Through Occlusions Us-
ing Point Trajectories. In ECCV, 2022. 2

[21] Chris Harris and Mike Stephens. A combined corner and
edge detector. In Proc. Fourth Alvey Vision Conf., volume 15,
pages 147–151, 1988. 5, 9

[22] Javier Hidalgo-Carrió, Guillermo Gallego, and Davide
Scaramuzza. Event-aided Direct Sparse odometry. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 2, 5, 9

[23] Sumin Hu, Yeeun Kim, Hyungtae Lim, Alex Lee, and Hyun
Myung. eCDT: Event Clustering for Simultaneous Feature
Detection and Tracking. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022.
2

[24] E Ilg, N Mayer, T Saikia, M Keuper, A Dosovitskiy, and T
Brox. FlowNet 2.0: Evolution of Optical Flow Estimation
with Deep Networks. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 7 2017. 2

[25] Diederik P. Kingma and Jimmy L. Ba. Adam: A method for
stochastic optimization. Int. Conf. Learn. Representations
(ICLR), 2015. 6

[26] Beat Kueng, Elias Mueggler, Guillermo Gallego, and Da-
vide Scaramuzza. Low-latency visual odometry using event-
based feature tracks. In IEEE/RSJ Int. Conf. Intell. Robot.
Syst. (IROS), pages 16–23, 2016. 2, 6, 7, 12, 13

[27] Hongmin Li and L.P. Shi. Robust event-based object tracking
combining correlation filter and cnn representation. Fron-
tiers in Neurorobotics, 13:82, 10 2019. 3

[28] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature Pyramid
Networks for Object Detection. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
936–944, 2017. 3

[29] Min Liu and Tobi Delbruck. EDFLOW: Event Driven Op-
tical Flow Camera With Keypoint Detection and Adaptive
Block Matching. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 32(9):5776–5789, 2022. 3

14

[30] Bruce D Lucas and Takeo Kanade. An iterative image regis-
tration technique with an application to stereo vision. In Int.
Joint Conf. Artificial Intell. (IJCAI), pages 674–679, 1981. 2

[31] Jacques Manderscheid, Amos Sironi, Nicolas Bourdis, Da-
vide Migliore, and Vincent Lepetit. Speed invariant time
surface for learning to detect corner points with event-
based cameras. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2019. 3, 10

[32] Elias Mueggler, Chiara Bartolozzi, and Davide Scaramuzza.
Fast event-based corner detection. In British Mach. Vis. Conf.
(BMVC), 2017. 10

[33] Elias Mueggler, Henri Rebecq, Guillermo Gallego, Tobi Del-
bruck, and Davide Scaramuzza. The event-camera dataset
and simulator: Event-based data for pose estimation, visual
odometry, and SLAM. Int. J. Robot. Research, 36(2):142–
149, 2017. 2, 5, 9

[34] Zhenjiang Ni, Aude Bolopion, Joël Agnus, Ryad Benosman,
and Stéphane Régnier. Asynchronous event-based visual
shape tracking for stable haptic feedback in microrobotics.
IEEE Transactions on Robotics, 2012. 2

[35] Bharath Ramesh, Shihao Zhang, Zhi Wei Lee, Zhi Gao, Gar-
rick Orchard, and Cheng Xiang. Long-term object tracking
with a moving event camera. In British Mach. Vis. Conf.
(BMVC), 2018. 3

[36] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-Motion Revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 5, 6

[37] Hochang Seok and Jongwoo Lim. Robust feature tracking in
dvs event stream using bezier mapping. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), March 2020. 2

[38] Xingjian SHI, Zhourong Chen, Hao Wang, Dit-Yan Yeung,
Wai-kin Wong, and Wang-chun WOO. Convolutional LSTM
Network: A Machine Learning Approach for Precipitation
Nowcasting. In C Cortes, N Lawrence, D Lee, M Sugiyama,
and R Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc., 2015.
3

[39] Zachary Teed and Jia Deng. RAFT: Recurrent All-Pairs
Field Transforms for Optical Flow. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, ed-
itors, Computer Vision – ECCV 2020 - 16th European Con-
ference, 2020, Proceedings, Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), pages 402–
419, Germany, 2020. Springer Science and Business Media
Deutschland GmbH. 2

[40] Zachary Teed, Lahav Lipson, and Jia Deng. Deep Patch Vi-
sual Odometry. arXiv preprint arXiv:2208.04726, 2022. 2

[41] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 32–42,
October 2021. 4

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,

U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017. 3

[43] Lin Wang, Yo-Sung Ho, Kuk-Jin Yoon, and others. Event-
based high dynamic range image and very high frame rate
video generation using conditional generative adversarial
networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10081–
10090, 2019. 3, 10, 13

[44] Qianqian Wang, Xiaowei Zhou, Bharath Hariharan, and
Noah Snavely. Learning Feature Descriptors Using Cam-
era Pose Supervision. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm, editors, Computer
Vision – ECCV 2020, pages 757–774, Cham, 2020. Springer
International Publishing. 2

[45] Jiqing Zhang, Bo Dong, Haiwei Zhang, Jianchuan Ding, Fe-
lix Heide, Baocai Yin, and Xin Yang. Spiking transform-
ers for event-based single object tracking. In Proceedings of
the IEEE/CVF conference on Computer Vision and Pattern
Recognition, 2022. 3

[46] J. Zhang, X. Yang, Y. Fu, X. Wei, B. Yin, and B. Dong. Ob-
ject tracking by jointly exploiting frame and event domain. In
2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 13023–13032, Los Alamitos, CA, USA,
oct 2021. IEEE Computer Society. 3

[47] Qunjie Zhou, Torsten Sattler, and Laura Leal-Taixe.
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences.
In CVPR, 2021. 2

[48] Alex Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas
Daniilidis. EV-FlowNet: Self-Supervised Optical Flow
Estimation for Event-based Cameras. In Proceedings of
Robotics: Science and Systems, Pittsburgh, Pennsylvania, 6
2018. 3

[49] Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis.
Event-based feature tracking with probabilistic data associa-
tion. In IEEE Int. Conf. Robot. Autom. (ICRA), pages 4465–
4470, 2017. 2, 3, 6, 7, 12, 13

[50] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and
Kostas Daniilidis. Unsupervised Event-Based Learning of
Optical Flow, Depth, and Egomotion. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 989–997, 2019. 10, 13

15

	. Introduction
	. Related Work
	. Method
	. Feature Network
	. Frame Attention Module
	. Supervision

	. Experiments
	. Benchmark Results
	. Combination of Events and Frames
	. Ablations

	. Conclusion
	. Acknowledgment
	. Future Work & Limitations
	. Dataset Split
	. Multiflow Dataset
	. Network Architecture Details
	. Quantitative Results & Tracking Metrics
	. Input Event Representation
	. Additional Ablation Experiments
	. Input Representations
	. Augmentation Parameters

