Range, Endurance, and Optimal Speed Estimates for Multicopters

Leonard Bautersfeld and Davide Scaramuzza

Abstract—Multicopters are among the most versatile mobile robots. Their applications range from inspection and mapping tasks to providing vital reconnaissance in disaster zones and to package delivery. The range, endurance, and speed a multirotor vehicle can achieve while performing its task is a decisive factor not only for vehicle design and mission planning, but also for policy makers deciding on the rules and regulations for aerial robots. To the best of the authors’ knowledge, this work proposes the first approach to estimate the range, endurance, and optimal flight speed for a wide variety of multicopters. This advance is made possible by combining a state-of-the-art first-principles aerodynamic multicopter model based on blade-element-momentum theory with an electric-motor model and a graybox battery model. This model predicts the cell voltage with only 1.3% relative error (43.1 mV), even if the battery is subjected to non-constant discharge rates. Our approach is validated with real-world experiments on a test bench as well as with flights at speeds up to 65 km/h in one of the world’s largest motion-capture systems. We also present an accurate pen-and-paper algorithm to estimate the range, endurance and optimal speed of multicopters to help future researchers build drones with maximal range and endurance, ensuring that future multirotor vehicles are even more versatile.

Index Terms—Aerial Systems: Mechanics and Control, Motion and Path Planning, Optimization and Optimal Control

I. INTRODUCTION

In the recent years, autonomous aerial multirotor vehicles (also known as multicopters) have been adopted for a wide variety of tasks [1], [2], [3]. International, multi-million-dollar projects such as AgileFlight [4], Aerial-Core (autonomous power line inspection), DARPA FLA (fast lightweight autonomy) and AlphaPilot [5] (autonomous drone racing) each helped pushing the frontiers of research in their respective field. However, one problem common to all applications of multirotor vehicles is often not considered: their range and endurance is very limited compared to other mobile robots since they have a much higher energy consumption than ground vehicles or fixed-wing aircraft.

This paper proposes an approach to obtain accurate range, endurance, and optimal speed estimates for multicopters. Having access to this information (see Fig. 1) helps researchers and companies alike to optimize their mechanical design and mission planning towards meeting given specifications such as required flight times or operating radii. Knowledge of feasible flight distances and speeds also enables policy-makers to make informed decisions on the regulations for multicopter use. Lastly, understanding the tradeoffs between range, mass, speed, and agility is important when assessing the suitability of a multicopter for a new task.

Estimating the range and endurance of a multicopter requires an accurate model of the vehicle’s power consumption. This is particularly difficult because the instantaneous power draw is influenced by the airflow around the vehicle [6], by the rotor speeds of the individual motors, and by the particular motor-propeller combination [7]. Furthermore, a battery model that still accurately holds when the commonly used LiPo batteries (lithium-polymer) are discharged at very high rates is required.

Existing approaches for range and endurance estimates often focus on hover-endurance [8], [9], where the complex aerodynamic effects of multicopter flight can be neglected. Works concerned with estimating the maximum flight range use simplistic multicopter models for forward flight [10], [11], [12]. Such models neglect key aerodynamic effects experienced by all rotary wing aircraft: as the vehicle flies forward, the dynamic lift experienced by the propellers yields a reduction in the multicopter’s power consumption. Furthermore, linear rotor drag (induced drag) is not considered albeit significantly contributing to the overall drag [13].
The above mentioned works either assume that the battery is an ideal energy storage or use the Peukert model [14] to calculate the battery capacity. However, this model is only accurate for the low to medium discharge rates [15] typically encountered in ground vehicles or fixed-wing aircraft but not well-suited for the very high power demand of multicopters.

Contribution

To the best of the authors’ knowledge, this work presents the first approach to accurately determine range, endurance, and optimal flight speed estimates for general multicopters. This advance is made possible by combining a state-of-the-art first-principles aerodynamic multicopter model based on blade-element-momentum theory (BEM) [16] with both a graybox motor model and battery model, each identified from various motors and batteries. The battery model is highly accurate when compared with experimental data in both a constant discharge-rate and a variable discharge-rate setting, yielding an average RMSE of 43.1 mV per cell (1.3%). The BEM model is validated against real-world flight data at speeds up to 65 km h\(^{-1}\) recorded in a very large optical tracking volume [17]. It achieves an average thrust prediction error of 0.91 N and an mean power prediction error of 33 W (2.7% of peak power).

Based on the proposed method, we present a pen-and-paper algorithm to calculate the range, endurance, and optimal flight speed of a multicopter vehicle based on its propeller diameter, its battery capacity, its size, and its mass. This method has also been used to generate Fig. 1.

II. RELATED WORK

A general overview of the field of energetics in robotics flight is presented in [2]. Although the survey paper touches this work’s topic only briefly, it outlines some of the key problems encountered when estimating range, endurance, and optimal flight speed of multirotor aerial vehicles: accurately modeling the aerodynamics and the power source.

First, the work related to modeling the aerodynamic forces and torques acting on a multicopter is summarized. When modeling such aerodynamic wrenches, it is commonly assumed that each propeller produces a thrust force and an axial and torques acting on a pro-peller across a wide range of airspeeds [6], [21], [22], [23].

Next to the well-established first-principles models, a recent line of work on machine-learned multicopter models has emerged [24], [25], [26], [27]. Despite being accurate, they are not well suited for range, endurance, and speed estimation of general multicopters because they do not predict the power consumption and only apply to the exact vehicle they have been trained on.

The earliest work on battery modeling dates back to the late 19th century, when Peukert studied how the capacity of lead-acid batteries depends on the discharge current [14]. Due to its simplicity, the Peukert Model has since become the standard approach to model the effective capacity under load. It has also been shown to hold for LiPo batteries at medium discharge rates [15], [28]. Generalizations to medium discharge (around 1 C) rates exist as well [29], [15].

To overcome this limitation and mainly to directly model the cell voltage of a battery, a graybox battery model based on a Thevenin equivalent circuit can be used. Depending on the fidelity of the model, it includes one resistor combined with zero, one (one time constant, OTC) or two (two time constants, TTC) capacitive networks. A review of the common OTC and TTC models is presented in [30]. The OTC model is widely used because of its well-established accuracy [31]. A TTC model only shows improved precision in cases where the battery dynamics need to be accurately captured at very short timescales [32]. Much more elaborate battery models based on molecular dynamics simulations exist [33], [34] but are unsuited for the task at hand because of being highly specific to exactly one battery type.

Only very few studies try to estimate the range, endurance or optimal flight speed by combining a multicopter aerodynamics model with a battery model [2], [8], [9], [7], [11], [10], [12]. The first group of works focuses on the hover endurance of multirotor aerial vehicles. In [8] BEM theory is used to calculate the required power to hover and it is combined with a purely measured battery model. In [9] BEM is also employed but the focus lies on alternative power sources such as hydrogen cells. Albeit mainly focused on motor and propeller selection for UAV’s, [7] presents a hover endurance estimate. A quadratic model for the aerodynamics and a Peukert model for the battery are used. The second group of works additionally focuses on calculating the range and optimal flight speed. In [11] an ideal battery model is used together with a quadratic propeller model augmented with quadratic body drag. The approach neglects induced propeller drag, dynamic lift and assumes an ideal battery with no Peukert effect. A very similar approach is followed in [12], but induced propeller drag is additionally considered. Both works present results only in simulation. A more thorough approach is presented in [10]. They use a momentum-theory model to calculate the required power during forward flight and combine this model with a Peukert battery model. However, the dominant induced drag is neglected and no general range, endurance or flight speed estimates for other vehicles than the one studied are provided.

...
The approach taken in this work is inspired by the survey presented in [2] and influenced by [35] where range and endurance estimates for battery-powered fixed-wing aircraft are presented. We use a state-of-the-art BEM model [16] together with a body-drag model to calculate the power a multicopter requires to fly at a given speed. The battery dynamics are accounted for oblique inflow [36], [37] and even more complex effects like blade elasticity and the resulting blade flapping. An empirical model [22] to compute the induced velocity when the multicopter is in vortex-ring-state [6] is also implemented.

For a more in-depth treatment of the topic and details about the model used, the reader is referred to our previous work [16]. In this work it is also shown that the BEM model is very accurate in predicting the forces and torques acting on a multicopter. On a set of very aggressive test trajectories with speeds up to 65 km h\(^{-1}\), it achieves an RMS error when predicting the vehicle’s thrust of less than 0.91 N.

B. Hover Flight

The complexity of the BEM model is necessary to model the forces and torques acting on the multicopter throughout its entire performance envelope. However, when the multicopter is in hover, momentum theory alone can be used to calculate the induced velocity and mechanical power:

\[
v_{i,h} = \sqrt{\frac{T_h}{2\rho A_{\text{prop}}}} = \sqrt{\frac{mg}{2\rho\pi r^2_{\text{prop}}N_r}},
\]

where \(T_h\) is the thrust of each propeller required to hover, \(m\) is the mass of the multicopter and \(N_r\) its number of rotors with radius \(r_{\text{prop}}\). Based on this, the mechanical hover power of a multicopter can be calculated:

\[
P_h = \frac{N_rT_hv_{i,h}}{\eta_p} = \frac{(mg)^{3/2}}{\eta_p\sqrt{2\rho\pi r^2_{\text{prop}}}}.
\]

where \(\eta_p\) is the figure of merit (propeller efficiency). Typical propellers achieve a figure of merit between 0.5 [38] and 0.7 [39]. A value of \(\eta_p = 0.6\) is used subsequently. The geometric pitch of the propeller is not taken into account by momentum theory in (5). This is confirmed by experimental data indicating that the power to produce a given thrust at hover does not depend on the propeller pitch.

IV. Motor Model

The BEM model outlined above computes accurate axial torque predictions \(Q\) for the multicopter’s propellers. The motor model presented in this section is then used to calculate the power consumption of each motor \(P_{\text{mot}}\) as

\[
P_{\text{mot}}(t) = \frac{Q(t) \cdot \Omega(t)}{\eta_M(\Omega)}.
\]

It is assumed that the motor efficiency \(\eta_M\) is only a function of the rotational speed \(\Omega\).

A. Derivation of Efficiency Model

Existing work on brushless motors [2] and experimental data show that the motor efficiency depends on the motor speed. Based on physical insights, a more accurate model is developed.

The total power consumption is assumed to be the sum of a mechanical power and a electrical loss term \(P_{\text{loss}}\):

\[
P_{\text{mot}} = P_{\text{mech}} + P_{\text{loss}} = \Omega (Q + m_0) + P_{\text{loss}}
\]

where \(Q\) is the aerodynamic drag torque of the propeller and \(m_0\) is a sliding friction coefficient. A straightforward choice for \(P_{\text{loss}}\) would be to account for electric losses due to the internal resistance of the motor:

\[
P_{\text{loss}} = R_i I_{\text{mot}}^2 = R_i \left(\frac{P_{\text{mot}}}{U_{\text{mot}}}\right)^2 \approx R_i \left(\frac{c_d\Omega^2}{U_{\text{mot}}}\right)^2.
\]
B. Experimental Validation

To validate the model, 44 different motor-propeller combinations have been measured on a thrust-test stand. The recorded data contains motor speeds, generated thrust, aerodynamic drag torque, and power consumption. Fig. 2 exemplarily shows measured efficiencies along with the fitted models for six different motor-propeller pairings.

Motor-propeller pairings following the manufacturers’ recommendations (solid lines, circle marks) follow a very similar shape. They achieve 70-85% efficiency for a wide range of operating conditions. If the propeller is too small for the motor shape, they achieve 70-85% efficiency for a wide range of operating conditions. If the propeller is too large, efficiency decreases drastically at higher propeller speeds. If the propeller is too large, efficiency decreases at higher propeller speeds. If the propeller is too large, efficiency decreases at higher propeller speeds. If the propeller is too large, efficiency decreases at higher propeller speeds. If the propeller is too large, efficiency decreases at higher propeller speeds.

Because all recommended motor-propeller combinations achieve 80-85% motor efficiency near maximum power and around 75% at typical operating conditions, a constant motor efficiency of $\eta_M = 0.75$ is used, unless otherwise indicated. Only when highly accurate range and endurance estimates are required, the full motor model is used. In such cases, a thrust test stand is needed to identify the motor coefficients for the given motor-propeller pairing. Because the BEM model takes the full flow-state around the propeller into account measurements obtained on a static thrust test-stand transfer well to dynamic flights.

Fig. 2. Efficiency of six different motor-propeller combinations plotted over the entire operating range of each motor. The lines represent the fitted motor model. Solid lines (circle marks) represent a motor-propeller combination recommended by the manufacturer, whereas the dashed lines (star marks) show mismatched pairings.

The last step assumes that the dominant mechanical drag torque is due to the propeller and can be approximated as $T = c_d \Omega^3$, where c_d is the drag coefficient of the propeller. Under the assumption that the motor torque is constant, T and Ω can be combined. Together with (6), this yields a motor model of the form

$$\eta_M(\Omega) = \frac{c_d \Omega^3}{m_0 \Omega + m_1 \Omega^3 + m_2 \Omega^5} \quad (9)$$

where the coefficients c_d, m_0, m_1, m_2 of the lumped parameter model depend on the motor-propeller combination.

V. Battery Model

This section explains the battery model developed in this work. Having an accurate model is a key component for precise range and endurance estimates. After all, the battery capacity is the limiting factor of the flight time.

Two types of battery models could be used: Peukert models (battery capacity models) calculate the effective capacity of the battery when it is discharged at a fixed, given rate. Battery voltage models on the other hand estimate the terminal voltage of the LiPo battery given its state-of-charge (SoC) and the momentary power consumption. This work relies on the latter type of model, because it is more flexible as it can also be used in cases where the multicopter has non-constant power demand (e.g., battery-aware path planning for complex missions).

A. Model Structure

Battery voltage models leverage Thevenin equivalent circuits to predict the battery voltage. Fig. 3 shows the equivalent circuit diagram for the used OTC (one time constant) battery model. The voltage of the voltage source U_0 corresponds to the open-circuit voltage of the LiPo battery. When a possibly time-varying load is connected to the circuit and a current $I_{load}(t)$ flows, the voltage $U_{bat}(t)$ at the output terminals can be calculated as

$$\dot{U}_{cap}(t) = -\frac{U_{cap}(t)}{R_1 \cdot C_1} + \frac{I_{load}(t)}{C_1}, \quad (10)$$

$$U_{bat}(t) = U_0(t) - U_{cap}(t) - R_0(t) I_{load}(t), \quad (11)$$

where $R_0(t)$, R_1, C_1 are defined as shown in Fig 3.

When the load is a multicopter, only the power demand of the motors can be computed. Replacing the unknown $I_{load}(t)$ in (11) with $P_{cell}(t)/U_{bat}(t)$ yields a quadratic equation in U_{bat}. Solving for the battery voltage gives the final result (the dependence on t has been omitted for improved readability):

$$U_{bat} = \frac{1}{2} \left(U_0 - U_{cap} - \sqrt{(U_0 - U_{cap})^2 - 4 R_0 P_{cell}} \right), \quad (12)$$

To avoid coupling (10) and (11) the term $I_{load}(t)$ in (10) is approximated by $k P_{cell}$ for some constant k. Finally, (10) is reformulated as a lumped parameter model with time-constant τ_{RC} to yield:

$$\dot{U}_{cap}(t) = \frac{k P_{cell} - U_{cap}(t)}{\tau_{RC}}, \quad (13)$$

Commercial LiPo batteries are available in different configurations. For example, a ‘4S’ battery consists of 4 LiPo cells in series and a ‘6S2P’ battery is made of 6 $N_S = 6$ networks of which $N_P = 2$ are connected in parallel. Furthermore, the batteries come with different capacities C_{bat}.

The goal is to develop a widely applicable range and endurance model for multicopters and hence the battery model...
must also be applicable to the myriad of available battery configurations. The development of the unified model is enabled by the normalization of the power \(P_{\text{cell}} \) and consumed energy \(E_{\text{cell}} \) to a single cell of the battery pack:

\[
P_{\text{cell}}(t) = \frac{P_{\text{mot}}(t)}{N_{\text{cell}} \cdot C_{\text{cell}}}, \quad E_{\text{cell}}(t) = \int_0^t P_{\text{cell}}(\tau) \, d\tau, \quad (14)
\]

with \(P_{\text{mot}}(t) \) the instantaneous power consumption of the multirotor, \(N_{\text{cell}} = N_{\text{P}} \cdot N_{\text{P}} \) the total number of cells of the battery and \(C_{\text{cell}} = C_{\text{bat}} / N_{\text{P}} \) the capacity per battery cell. With this, the average power consumption \(\bar{P}_{\text{cell}}(t) \) of the whole flight can be written as

\[
\bar{P}_{\text{cell}}(t) = \frac{1}{t} \int_0^t P_{\text{cell}}(\tau) \, d\tau = \frac{E_{\text{cell}}(t)}{t}.
\]

Based on physical insights, the open-circuit voltage \(U_0 \) can only be a function of the state of charge (SoC), or equivalently, the amount of energy \(E \) already consumed since the battery was fully charged. By minimizing the RMSE on held-out validation data, a third order polynomial \([40] \) for the open-circuit voltage of the battery is identified:

\[
U_0(E_{\text{cell}}) = a_0 + a_1 E_{\text{cell}} + a_2 E^2_{\text{cell}} + a_3 E^3_{\text{cell}}. \quad (15)
\]

The internal resistance of a LiPo battery strongly depends on the temperature. Unfortunately, this information is typically not available. The experiments show that the average power consumption is a good proxy since batteries heat up quickly when the power demand is high. Furthermore, the experiments show a strong dependency on the capacity of the cell. Thus, the following model is used:

\[
R_0(\bar{P}_{\text{cell}}, C_{\text{cell}}) = \max(b_0 + b_1 \bar{P}_{\text{cell}} + b_2 C_{\text{cell}}, R_{\text{min}}). \quad (16)
\]

B. Parameter Identification

To identify all parameters of the battery model, 10 different batteries ranging from ‘4S1P 1.55Ah’ to ‘6S4P 5.2Ah’ are tested with different, step-wise constant discharge profiles. In total, about 5000 s of battery discharge data is recorded. The discharge rates range from 5 C to 70 C.

The model parameters are identified using a two-step approach: first, the model parameters in \([16] \) are estimated from the steps in power consumption, as proposed by \([42] \). Subsequently, all other parameters (\(a_{[0-3]}, k, \tau_{\text{RC}} \)) are estimated simultaneously by numerically minimizing the RMSE between the model predictions and the real-world data from the battery tests. All model parameter estimates are summarized in Tab. I.

The identified battery model is very accurate and achieves a relative error as low as 1.3 % (43.1 mV) RMSE across all real-world experiments with highly varying power demand. In a constant-power discharge setting, the proposed model can be compared to capacity battery models. The left plot in Fig. 4 utilizes the proposed model to show how the battery voltages decreases over time. The effective capacity can be calculated by integrating the power up to the time where the battery is discharged to a cell voltage of 3.5 V. The right plot shows that the effective capacity of the battery changes as a function of the power draw. Results obtained with the original Peukert model \([14] \), a state-of-the-art generalized Peukert model \([13] \), and the proposed model are compared with experimental data obtained in a constant discharge power setting. The Peukert capacity model and generalized Peukert capacity model achieve a RMSE of 0.82 Wh and 0.53 Wh, respectively. The proposed battery voltage model—only implicitly containing information about the battery capacity—nearly reaches the accuracy of the state-of-the-art capacity model (RMSE 0.58 Wh). Because of its applicability to general, non-constant power flight profiles, the proposed battery voltage model is used subsequently. Only for the special case of straight, constant velocity flights a Peukert model could be used.

VI. VALIDATION: REAL-WORLD EXPERIMENTS

This section presents the validation of the proposed approach to range, endurance, and optimal flight speed estimation by comparing its predictions with real-world experiments.

To collect the flight data needed for validation, experiments inside a flying arena are conducted. It is equipped with a motion capture system (tracking volume: \(25 \, \text{m} \times 25 \, \text{m} \times 8 \, \text{m} \)) used for state estimation and control. The experimental platform is a custom built quadrotor based on a 6 inch frame. It weighs 752 g and is equipped with 2400 KV HobbyWing XRotor 2306 motors and 5.1 inch Azure 5148 propellers. Batteries of type 1.8 Ah 4S 120 C are used.

A. Power Consumption & Optimal Speed

In the first set of experiments, the multicopter simulator is used to fly a circle-trajectory (\(r = 5 \, \text{m} \)) in simulation and all parameters (e.g. axial propeller torque, motor speeds) are recorded. This information is used by the detailed motor efficiency model \([9] \) to calculate the power demand of the whole multicopter. Then the same trajectory is also flown in the real world and the power consumption is logged aboard the vehicle. The parameters of the simulation are not tuned using the real-world flight data as they are identified purely from static thrust test-stand measurements as discussed above.

Table I: Numerical values for the battery model coefficients.

<table>
<thead>
<tr>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 V</td>
<td>-0.1102178</td>
<td>0.0103368</td>
<td>-4.3778e-4</td>
</tr>
<tr>
<td>(R_{\text{min}})</td>
<td>(b_0)</td>
<td>(b_1)</td>
<td>(b_2)</td>
</tr>
<tr>
<td>4.5 mΩ</td>
<td>0.0015778</td>
<td>-7.7608e-5</td>
<td>0.0069498</td>
</tr>
<tr>
<td>(\tau_{\text{RC}})</td>
<td>(k)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 s</td>
<td>0.00014846</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 4](image-url)
VII. RANGE, ENDURANCE AND OPTIMAL SPEED

The models presented and validated in the last sections, are of limited use if a simple range, endurance or optimal speed estimate is required. To use the approach presented so far one would for example need to implement a multicopter simulator. This section presents a more accessible approach, by limiting the task to range, endurance, and optimal flight speed estimation for straight-line flight. The full-fledged simulation is used to simulate dozens of different multicopters and based on the simulation results, a simple empirical model is developed.

A. Power Consumption

The decisive factor limiting the range and endurance is the power consumption of the multicopter. At hover, the power demand can be calculated from momentum-theory using Eq. (5). The simulation results suggest that a constant ratio between the hover power P_h and the power consumption at the operating points maximizing the endurance P_e or range P_r may be a sufficient approximation. We find that

$$\frac{P_r}{P_h} = 1.092 \pm [0.0361], \quad \frac{P_e}{P_h} = 0.914 \pm [0.0323] \quad (17)$$

where the number given in brackets denotes the standard deviation. Note that $P_e/P_h < 1$ means that flying forward at slow speeds reduces the power consumption compared to hovering and hence increases the endurance. This is a known phenomenon [2] and can be explained using dynamic lift: the required propeller speed reduces because the propeller generates more lift. The power consumption of the flight controller and potentially the onboard computer is neglected as it is typically negligible compared to the power consumption of the motors. For example, an NVIDIA Jetson TX2 consumes $<10\, \text{W}$ while the research platform needs $130\, \text{W}$ to hover.

B. Optimal Speed

Simulation experiments show that the optimal flight speed for maximal range v_r or maximal endurance v_e depend mostly on the induced velocity at hover and the surface area A of the multicopter. To simplify the analysis, the normalized quantities $\hat{v}_e = v_e/v_{i,h}$ and $\hat{v}_r = v_r/v_{i,h}$ are introduced. Based on the numerous conducted simulation experiments, a step-wise model selection procedure is carried out and it has been found that a linear model of the form

$$\hat{v}_{e,r}^{-1} = c_{0,r,e} + c_{1,r,e}v_{i,h} + c_{2,r,e}A \quad (18)$$

fits well, with a coefficient of determination $R^2 = 0.97$ and $R^2 = 0.966$ for the endurance and range estimates, respectively. Equation (18) therefore allows one to directly calculate the optimal flight speeds for maximal endurance and maximal range. The numeric values for the fitted coefficients are given in Table IV.

C. Wind

To account for situations where a constant head or tailwind is present, a wind correction factor $k_{w,v}$ for the optimal range velocity v_r is introduced. Similarly, a wind correction factor $k_{w,e}$ for the corresponding power consumption is needed. For strong tailwinds the vehicle is carried primarily by the wind
and hence the optimal range velocity approaches the one for the optimal endurance. For strong headwinds, forward flight becomes increasingly power-intensive and it is best to fly only slightly faster than the oncoming headwind. Based on those preliminary considerations, a simple model is fitted based on the BEM experiments.

\[k_{w,w} = \frac{v_{r,w}}{v_r} = \ln(1 + c_{0,w}(v_{w}/v_r - c_{1,w})) + c_{2,w} \]

(19)

\[k_{w,P} = \frac{P_r}{P_r} = \exp(c_{0,P} v_{w}/v_r - c_{1,P}) + c_{2,P} \]

(20)

where \(v_{r,w}, P_r\) are the wind-corrected optimal range speed and power consumption. The wind velocity \(v_w\) is measured relative to the drone, e.g. \(v_w < 0\) for tailwinds. The numeric values for the coefficients are given in Table II.

D. Battery Model

From (4), (5), (17), and (18) the power consumption and the speed that lead to maximum range and endurance are known. To complete the modeling, only the decrease in effective battery capacity needs to be accounted for. Instead of using the full model, the relative capacity \(\kappa\) can be approximated as a third-order polynomial function of the normalized power consumption \(P_{\text{cell}}\) defined in (14):

\[\kappa = C_{\text{eff}}/C = d_0 + d_1 P_{\text{cell}} + d_2 P_{\text{cell}}^2 + d_3 P_{\text{cell}}^3 \]

(21)

The values for the coefficients are summarized in Table II.

E. Algorithm and Example

The full algorithm to calculate the range, endurance, and optimal speed for multicopters is summarized below. This algorithm has been applied to six different commercially available drones. The specifications of the vehicles and the results are summarized in Table III. The calculated performances closely match the manufacturers’ specifications. As an example, let us consider the DJI Mavic 3 Quadcopter.

1) Calculate the induced velocity at hover using (4) and the power consumption at hover using (5). For the DJI drone, we get

\[v_{i,h} = 4.51 \text{ m s}^{-1}, \quad P_h = 73.5 \text{ W}. \]

2) Based on the hover power, the power consumption at the operating points for optimal endurance and optimal range can be calculated using (17). If wind is considered, additionally use (20). We get

\[P_e = 67.2 \text{ W}, \quad P_r = 80.2 \text{ W}. \]

3) The motor model (6) with \(\eta_M = 0.75\) is used to get the electric power demand

\[P_{\text{mot},e} = 89.5 \text{ W}, \quad P_{\text{mot},r} = 107.0 \text{ W}. \]

4) From this, the normalized per cell power consumption can be calculated using (14). We get

\[P_{\text{cell},e} = 4.48 \text{ A h W}^{-1}, \quad P_{\text{cell},r} = 5.35 \text{ A h W}^{-1}. \]

5) Now the simplified battery model (21) can be employed to calculate the effective battery capacity. For the considered example, the values are

\[C_{\text{eff},e} = 4.89 \text{ A h}, \quad C_{\text{eff},r} = 4.88 \text{ A h}. \]

6) From this, the maximum endurance \(t_e\) and of the vehicle is readily obtained

\[t_e = C_{\text{eff},e} \cdot 3.7 \text{ V} \cdot N_S \cdot 3600 \text{ s} / P_{\text{mot},e}. \]

The flight time \(t_e\) at the maximum range operating point is calculated similarly. We get

\[t_e = 2909 \text{ s}, \quad t_r = 2429 \text{ s}. \]

7) To calculate the maximum range, the optimal flight speed needs to be computed using (18). In case wind is considered, additionally use (19). We get

\[v_c = \frac{v_{i,h}}{v_r} = 7.75 \text{ m s}^{-1}, \quad v_r = \frac{v_{i,h}}{v_r} = 13.12 \text{ m s}^{-1}. \]

8) Finally, the maximum range \(r_x\) can be calculated as:

\[r_x = t_r v_r = 32.1 \text{ km}. \]

The endurance \(t_e = 48 \text{ min}\) calculated using the algorithm above matches the manufacturer’s specification (46 min) with an error less than 10%. The range estimate \(x_r = 48 \text{ km}\) also marginally exceeds the DJI specification (46 km). A possible reason is that the test flights conducted by DJI necessarily include a takeoff and landing phase which is neglected by the model or that a more conservative battery safety threshold is used by DJI.

VIII. Conclusion

This work presented a general and widely applicable approach to estimate the range, endurance, and optimal speed of multicopters. The method combines three models: a blade-element-momentum theory (BEM) based multicopter aerodynamics simulator, a motor model and a graybox battery model. The BEM model was validated with real-world flight data at speeds up to 65 km h\(^{-1}\) where it predicts the thrust force with only 0.91 N RMSE. To account for the losses inside the electric motor, a model based on measurements of 44 different motor-propeller combinations was developed. The modeling was complemented with a graybox battery model identified from nearly 2 h of measurement data gathered from 10 different battery configurations under different discharge profiles.

The combined model consisting of all three components was also verified through real-world experiments. The power consumption was calculated with an average accuracy of 2.5%. The battery voltage model achieves a remarkably low error of only 61 mV when compared to the experimental data.
TABLE III
A comparison of no-wind range and endurance estimates for various commercially available drones. The pen-and-paper algorithm gives very good estimates.

<table>
<thead>
<tr>
<th>Drone Model</th>
<th>Physical Parameters from Manufacturer</th>
<th>Endurance Specification</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mass Propeller LiPo Battery Area</td>
<td>Spec.</td>
<td>Ours</td>
</tr>
<tr>
<td>DJI Mavic 2</td>
<td>0.91 kg 4 × 11.0 cm 4S1P 3.9 A h 200 cm²</td>
<td>31 min</td>
<td>33 min</td>
</tr>
<tr>
<td>DJI Mavic 3</td>
<td>0.90 kg 4 × 11.9 cm 4S1P 5.0 A h 215 cm²</td>
<td>46 min</td>
<td>48 min</td>
</tr>
<tr>
<td>DJI Matrice 200</td>
<td>6.14 kg 4 × 21.6 cm 6S2P 15.3 A h 1700 cm²</td>
<td>24 min</td>
<td>23 min</td>
</tr>
<tr>
<td>DJI Matrice 600 Pro</td>
<td>15.5 kg 6 × 26.7 cm 6S6P 34.2 A h 1760 cm²</td>
<td>18 min</td>
<td>18 min</td>
</tr>
<tr>
<td>Parrot Anafi Pro</td>
<td>0.90 kg 4 × 5.7 cm 4S1P 6.8 A h 400 cm²</td>
<td>32 min</td>
<td>31 min</td>
</tr>
<tr>
<td>Skydio 2</td>
<td>0.78 kg 4 × 8.5 cm 3S1P 4.3 A h 268 cm²</td>
<td>23 min</td>
<td>26 min</td>
</tr>
</tbody>
</table>

In addition to the highly accurate model, a simplified pen-and-paper algorithm was developed based on experiments leveraging the complete simulation. It allows researchers, companies, and policy-makers alike to quickly and accurately estimate the characteristics of a given vehicle design. In the six examples presented, the estimated range, endurance and the optimal flight are almost always within 10% of the manufacturers’ specifications.

REFERENCES

[34] K. Aoyagi and M. Otani, “Molecular dynamics simulations of lithium ion battery anode interface in battery charging process,” ECS Meeting Abstracts, 2019.

