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I. SYSTEM OVERVIEW

We leverage the OpenVINS [1] system open sourced by
our group, which was developed to fill a gap in the cur-
rent open sourced visual-inertial navigation systems (VINS).
OpenVINS focuses on providing the fundamentals for new
researchers and practitioners to allow for users with lit-
tle background in state estimation to learn and develop
new ideas within the VINS research area. We provide the
necessary documentation, tools, and theory for filter-based
visual-inertial state estimation. The key components of the
OpenVINS suite are as follows:

• ov core – Contains 2D image sparse visual feature
tracking; linear and Gauss-Newton feature triangulation
methods; and fundamental manifold math operations
and utilities.

• ov eval – Contains trajectory alignment; plotting utili-
ties for trajectory accuracy and consistency evaluation;
Monte-Carlo evaluation of different accuracy metrics;
and utility for recording ROS topics to file.

• ov msckf – Contains the extendable modular Extended
Kalman Filter (EKF)-based sliding window visual-
inertial estimator with on-manifold type system for
flexible state representation and its visual-inertial simu-
lator for arbitrary number of cameras and frequencies.
Features include: First-Estimates Jacobains (FEJ) [2]–
[4], IMU-camera time offset calibration [5], camera
intrinsics and extrinsic online calibration [6], standard
MSCKF [7], and 3D SLAM landmarks of different
representations.

At the core of the system is our on-manifold modular
Extended Kalman filter (EKF)-based sliding window visual-
inertial estimator. This estimates an inertial state containing
the current inertial measurement unit (IMU) position, veloc-
ity and biases, along with calibration parameters, stochas-
tic clones, and environmental temporal SLAM features.
Keyframing is not used and instead we have a fixed sliding
window size that always marginalize the oldest pose from
our state vector and bounds the computational complexity. To
both model the uncertainty of calibration values and handle
imperfect calibration we estimate the time offset between
the IMU and camera, along with the camera’s intrinsics and
extrinsic transform to the IMU. We additionally leverage
temporal SLAM features and handled their consistency is-
sues through First-Estimates Jacobains (FEJ) [2]–[4].
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Fig. 1: Example flamegraph on the Indoor Forward 5 dataset.
The computational spikes due to increase tracking cost
or sudden large number of feature updates can be seen.
These are handled by dropping subsequent frames to ensure
estimates to not fall behind from the most recent image.
Figure best seen in color.

II. DISCUSSION OF DIFFERENCES FROM
ORIGINAL SUBMISSION

In what follows we discuss the key changes made to the
filter which we found improved performance and overall
accuracy on the UZH-FPV drone racing dataset [8]. We note
that we use the new 2.0 release version of the codebase
at commit 10b33a8. We tuned the system and evaluated
different system configurations on a subset of the datasets
which provide groundtruth. The key observations and tuning
of OpenVINS is as follows:

• Increase the amount of MSCKF and SLAM features
tracked: As more features are tracked the accuracy of
the system increased but would eventually start decreas-
ing. We hypothesize that this was due to the increase of
filter update cost causing the system to process images
at a lower frequency. This directly impacts the feature
track quality due to the increase of feature disparity
between update images due to dropped frames.

• Use SLAM feature single-depth representation: To allow
for inclusion of larger amounts of SLAM features we
switched to a single depth representation for all SLAM
features estimated. This allowed for the estimation of
150 features vs the upper limit of 50 features if using a
global or anchored full 3D representation. The key ben-
efit of using the single depth, at the sacrifice of accuracy,
is the allowing for more then half of active features to be
SLAM. This also allowed for decreasing of the sliding
window size since most features are tracked as SLAM.
Details of the single-depth implementation can be found
on the OpenVINS website [1].

• Use monocular image processing: We additionally
found that the benefit of using binocular image sensors
to not be as large when including a sufficient amount



TABLE I: Evaluation time for the given datasets. We report
the per-frame timing statistics and its standard deviation.

Dataset Name Total Frame Time (sec) Deviation (sec)

indoor forward 11 0.0200 0.0096
indoor forward 12 0.0204 0.0101

indoor 45◦ 3 0.0211 0.0106
indoor 45◦ 16 0.0199 0.0107

outdoor forward 9 0.0206 0.0105
outdoor forward 10 0.0208 0.0104

of visual features. We found that in some datasets using
binocular image tracking the accuracy would increase,
while in others, monocular would performed better.
Thus we selected monocular to reduce the amount of
computation needed for image processing.

• Publish poses in the IMU clock frame: The OpenVINS
system originally [9] published the IMU pose with the
timestamp corresponding to the image measurement
timestamp. This was technically incorrect since we
estimate the state in the IMU clock frame of reference as
compared to the camera clock frame. Thus we publish
It = Ctimg+

CtI timestamp which uses the current best
estimate of the time-offset between the camera-IMU
sensor pair. This can cause issues with the groundtruth
alignment, but since the groundtruth is at high frequency
calculating the error in respect to the closest groundtruth
pose should be sufficient.

III. EVALUATION HARDWARE
The OpenVINS system was evaluated on an Intel(R)

Xeon(R) CPU E3-1505M v6 @ 3.00GHz Lenovo P51 laptop
with 15GB of DDR4 memory and a 1TB Samsung SSD 850
EVO. OpenVINS has very minimal multi-threaded optimiza-
tion and is limited to just the feature tracking frontend. To
process our monocular images we do not have any multi-
threading except for extracting features in the grid pattern
and OpenCV’s [10] internal vectorization in its optical flow
method. The rosbags are played back in realtime from disk
and topics are subscribed to by the estimator. In cases where
frames take more then 0.033 seconds to process, the next
frame will be dropped due to having a ROS subscriber queue
size of one. This ensures that while in the few cases where
the estimator “spikes” past the realtime threshold, the next
frame is the always the most recent. An example of these
spikes can be seen in Figure 1. In lieu of processing the
bags in serial we have reported the average time per frame
in Table I for each dataset. It is very clear that on average
we are able to process at far above the realtime frequency
of 0.033 seconds.

IV. ALGORITHM PARAMETERS
All launch parameters are kept the same for all datasets.

The system self-initializes after detecting a change in the
acceleration from being picked up at the beginning of each
dataset. Table II, shows the key parameters used by the
OpenVINS algorithm. The time offset between the IMU
and cameras was calibrated online along with the camera
intrinsics and extrinsic transformations.

TABLE II: Key parameters used for all datasets.

Parameter Name Value

sliding window size 8
max features 300

max SLAM features 150
max feat in SLAM update 40

max feat in MSCKF update 40
fast threshold 10
fast grid x/y 10/8

min feat. pixel distance 5
raw pixel noise 1.0

acc. white noise 2.0000e-2
acc. random walk 3.0000e-3
gyro. white noise 1.6968e-03

gyro. random walk 1.9393e-05

REFERENCES

[1] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins:
A research platform for visual-inertial estimation,” in Proc. of the
IEEE International Conference on Robotics and Automation, Paris,
France, 2020. [Online]. Available: https://github.com/rpng/open vins

[2] G. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Analysis and
improvement of the consistency of extended Kalman filter-based
SLAM,” in Proc. of the IEEE International Conference on Robotics
and Automation, Pasadena, CA, May 19-23 2008, pp. 473–479.

[3] ——, “A first-estimates Jacobian EKF for improving SLAM consis-
tency,” in Proc. of the 11th International Symposium on Experimental
Robotics, Athens, Greece, July 14–17, 2008.

[4] ——, “Observability-based rules for designing consistent EKF SLAM
estimators,” International Journal of Robotics Research, vol. 29, no. 5,
pp. 502–528, Apr. 2010.

[5] M. Li and A. I. Mourikis, “Online temporal calibration for Camera-
IMU systems: Theory and algorithms,” International Journal of
Robotics Research, vol. 33, no. 7, pp. 947–964, June 2014.

[6] M. Li, H. Yu, X. Zheng, and A. I. Mourikis, “High-fidelity sensor
modeling and self-calibration in vision-aided inertial navigation,” in
IEEE International Conference on Robotics and Automation (ICRA),
May 2014, pp. 409–416.

[7] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Rome, Italy,
Apr. 10–14, 2007, pp. 3565–3572.

[8] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scara-
muzza, “Are we ready for autonomous drone racing? the uzhfpv drone
racing dataset,” in IEEE International Conference on Robotics and
Automation (ICRA), 2019.

[9] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins
performance evaluation on 2019 fpv drone racing vio dataset,”
Tech. Rep., 2019. [Online]. Available: http://rpg.ifi.uzh.ch/uzh-fpv/
IROS2019/reports/Geneva-Delaware.pdf

[10] OpenCV Developers Team, “Open source computer vision (OpenCV)
library,” Available: http://opencv.org.

https://github.com/rpng/open_vins
http://rpg.ifi.uzh.ch/uzh-fpv/IROS2019/reports/Geneva-Delaware.pdf
http://rpg.ifi.uzh.ch/uzh-fpv/IROS2019/reports/Geneva-Delaware.pdf
http://opencv.org

	SYSTEM OVERVIEW
	DISCUSSION OF DIFFERENCES FROM ORIGINAL SUBMISSION
	EVALUATION HARDWARE
	ALGORITHM PARAMETERS
	References

