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Abstract— Event cameras are bio-inspired vision sensors
that output pixel-level brightness changes instead of standard
intensity frames. These cameras do not suffer from motion
blur and have a very high dynamic range, which enables
them to provide reliable visual information during high speed
motions or in scenes characterized by high dynamic range.
However, event cameras output only little information when
the amount of motion is limited, such as in the case of almost
still motion. Conversely, standard cameras provide instant and
rich information about the environment most of the time (in
low-speed and good lighting scenarios), but they fail severely
in case of fast motions, or difficult lighting such as high
dynamic range or low light scenes. In this paper, we present the
first state estimation pipeline that leverages the complementary
advantages of these two sensors by fusing in a tightly-coupled
manner events, standard frames, and inertial measurements.
We show on the publicly available Event Camera Dataset
that our hybrid pipeline leads to an accuracy improvement of
130% over event-only pipelines, and 85% over standard-frames-
only visual-inertial systems, while still being computationally
tractable. Furthermore, we use our pipeline to demonstrate—
to the best of our knowledge—the first autonomous quadrotor
flight using an event camera for state estimation, unlocking
flight scenarios that were not reachable with traditional visual-
inertial odometry, such as low-light environments and high-
dynamic range scenes.

SUPPLEMENTARY MATERIAL

Video of the experiments: http://rpg.ifi.uzh.
ch/eventflight.html

I. INTRODUCTION

The task of estimating a sensor’s ego-motion has important
applications in various fields, such as augmented/virtual
reality or autonomous robot control. In recent years, great
progress has been achieved using visual and inertial infor-
mation ([1], [2], [3]). However, due to some well-known lim-
itations of traditional cameras (motion blur and low dynamic-
range), these Visual Inertial Odometry (VIO) pipelines still
struggle to cope with a number of situations, such as high-
speed motions or high-dynamic range scenarios.

Novel types of sensors, called event cameras, offer great
potential to overcome these issues. Unlike standard cameras,
which transmit intensity frames at a fixed framerate, event
cameras, such as the Dynamic Vision Sensor (DVS) [4], only
transmit changes of intensity. Specifically, they transmit per-
pixel intensity changes at the time they occur, in the form
of a set of asynchronous events, where each event carries
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Fig. 1. Our state estimation pipeline combines events, standard frames,
and inertial measurements to provide robust state estimation, and can
run onboard an autonomous quadrotor with limited computational power.
Bottom Left: Standard frame, Bottom Middle: Virtual event frame, Bottom
Right: Events only (blue: positive events, red: negative events).

the space-time coordinates of the brightness change, and its
sign.

Event cameras have numerous advantages over standard
cameras: a latency in the order of microseconds and a very
high dynamic range (140 dB compared to 60 dB of standard
cameras). Most importantly, since all the pixels capture light
independently, such sensors do not suffer from motion blur.

Event cameras transmit, in principle, all the information
needed to reconstruct a full video stream [5], [6], [7], and
one could argue that an event camera alone is sufficient
to perform state estimation. In fact, this has been shown
recently in [8] and [9]. However, to overcome the lack of
intensity information, these approaches need to reconstruct,
in parallel, a consistent representation of the environment
(a semi-dense depth map in [8] or a dense depth map
with intensity values in [9]), by combining—in one way
or another—information from a large number of events to
recover most gradients in the scene.

Conveniently, standard cameras provide direct access to
intensity values, but do not work in low-light conditions,
suffer from motion blur during fast motions (due to the
synchronous exposure on the whole sensor), and have a
limited dynamic range (60 dB), resulting in frequent over-
or under-exposed areas in the frame.



Observing this complementarity, in this paper we propose
a pipeline that leverages the advantages of both sensing
modalities in combination with an inertial measurement
unit (IMU) to yield a robust, yet accurate, state estimation
pipeline.

While there is a considerable body of literature investi-
gating the use of standard cameras with an IMU to perform
state estimation, as well as recent work using an event camera
with an IMU, combining all three sensing modalities is yet
an open problem. Additionally, in the core application that
we envision—flying autonomously a quadrotor with an event
camera—there is no specific literature, although attempts to
use an event camera for quadrotor flight can be traced to
a single paper [10], which is currently limited to vertical
landing maneuvers.

In this work, we propose—to the best of our knowledge—
the first state estimation pipeline that fuses all three sensors,
and we build on top of it to propose the first quadrotor
system that can advantageously exploit this hybrid sensor
combination to fly in difficult scenarios, using only onboard
sensing and computing (Fig. 1).

Contributions

A frontal comparison with state-of-the-art, commercial
visual-inertial pipelines (like for example the ones used for
the Snapdragon flight [11] or Google Tango [12]) is not our
goal in this work. Indeed, such solutions typically use one
or more high quality cameras with a much higher resolution
than the sensor we used, and are carefully engineered to work
well in the most common consumer situations. Instead, in this
work, we focus on difficult scenarios, and show, for the first
time, that (i) it is possible to run state estimation with an
event camera onboard a computationally limited platform,
and (ii) we show that it can unlock, in a set of difficult
scenarios, the possibility for autonomous flight where even
commercial systems would struggle.

Specifically, our contributions in this paper are three-fold:

• We introduce the first state estimation pipeline that
fuses events, standard frames, and inertial measurements
to provide robust and accurate state estimation. While
our pipeline is based on [13], we extend it to include
standard frames as an additional sensing modality, and
propose several improvements to make it usable for real-
time applications, with a focus on mobile robots.

• We evaluate quantitatively the proposed approach and
show that using standard frames as an additional modal-
ity improves the accuracy of state estimation while
keeping the computational load tractable.

• We show that our method can be applied for state esti-
mation onboard an autonomous quadrotor, and demon-
strate in a set of experiments that the proposed system
is able to fly reliably in challenging situations, such as
low-light scenes or fast motions.

Our work aims at highlighting the potential that event
cameras have for robust state estimation, and we hope that
our results will inspire other researchers and industries to

push this work forward, towards the wide adoption of event
cameras on mobile robots.

The rest of the paper is organized as follows: section II
reviews related literature on event-based ego-motion estima-
tion methods, particularly those involving event cameras. In
section III, we present our hybrid state estimation pipeline
that fuses events, standard frames and inertial measurements
in a tightly-coupled fashion, and evaluate it quantitatively on
the publicly available Event Camera Dataset [14]. Section IV
describes how the proposed approached can be used to fly
a quadrotor autonomously, and demonstrate in a limited set
of real-life experiments that it unlocks challenging scenarios
difficult to address with traditional sensing IV-B. Finally, we
draw conclusions in section V.

II. RELATED WORK

Using visual and inertial sensors for state estimation has
been extensively studied over the past decades. While the
vast majority of these works use standard cameras together
with an IMU, a recent parallel thread of research that uses
event cameras in place of standard cameras has recently
flourished.

a) Visual-inertial Odometry with Standard Cameras:
The related work on visual-inertial odometry (VIO) can be
roughly segmented into three different classes, depending on
the number of camera poses that are used for the estima-
tion. While full smoothers (or batch nonlinear least-squares
algorithms) estimate the complete history of poses, fixed-lag
smoothers (or sliding window estimators) consider a window
of the latest poses, and filtering approaches only estimate the
latest state. Both fixed-lag smoothers and filters marginalize
older states and absorb the corresponding information in a
Gaussian prior. More specifically:
• Filtering algorithms enable efficient estimation by re-

stricting the inference process to the latest state of the
system. A example approach of a filter-based visual-
inertial odometry system is [15].

• Fixed-lag smoothers estimate the states that fall within a
given time window, while marginalizing out older states,
as for example, [2].

• Full smoothing methods estimate the entire history of
the states (camera trajectory and 3D landmarks), by
solving a large nonlinear optimization problem. A recent
approach in this category was proposed by [3].

b) Visual-inertial Odometry with Event Cameras: Since
the introduction of the first commercial event camera in 2008
[4], event cameras have been considered for state estimation
by many different authors. While early works focused on
addressing restricted and easier instances of the problem,
like rotational motion estimation ([5], [16], [17], [18]), or
Simultaneous Localization and Mapping (SLAM) in planar
scenes only [19], it has been shown recently that 6-DOF pose
estimation using only an event camera is possible ([8], [9]).

In parallel, other authors have explored the use of com-
plementary sensing modalities, such as a depth sensor [20],
or a standard camera ([21], [22]). However, (i) none of these



image-based pipelines make use of inertial measurements,
and (ii) both of them use the intensity of the frames as a
template, to which they align the events. Therefore, these
approaches work only when the standard frames are of
good quality (sharp and correctly exposed); they will fail
in those particular cases where the event camera has an
advantage over a standard camera (high-speed motions, and
HDR scenes).

Using an event camera and an IMU has only been ex-
plored very recently. [23] showed how to fuse events and
inertial measurements into a continuous time framework,
but their approach is not suited for real-time usage because
of the expensive optimization required to update the spline
parameters upon receiving every event. [24] proposed to
track a set of features in the event stream using an iterative
Expectation-Maximization scheme that jointly refines each
feature’s appearance and optical flow, and then fuse these
tracks using an Extended Kalman Filter to yield an event-
based visual-inertial odometry pipeline. Unfortunately, due
to the expensive nature of their feature tracker, the authors
of [24] reported that their pipeline cannot run in real-time in
most scenarios.

In [13], we proposed an accurate event-based visual
inertial odometry pipeline that can run in real-time, even
on computationally limited platforms, such as smartphone
processors. The key of this approach was to estimate the
optical flow generated by the camera’s rigid body motion
by exploiting the current camera pose, scene structure, and
inertial measurements. We then efficiently generated virtual,
motion-compensated event frames using the computed flow,
and further tracked visual features across multiple frames.
Those feature tracks were finally fused with inertial infor-
mation using keyframe-based nonlinear optimization, in the
style of [2] and [3]. While our proposed state estimation
approach is strongly inspired by this work (i.e., [13]), we
extend it by allowing it to additionally work with frames
from a standard camera, and propose several changes to the
pipeline to adapt it to run onboard a flying robot.

c) Quadrotor Control with an Event Camera: Although
the research on robot control with event cameras is still in its
infancy, previous work has demonstrated possible interesting
applications. [25] mounted a DVS sensor on a rotor and
showed that it can be used to track the 6-DOF motion of a
quadrotor performing a high speed flip maneuver, although
the tracker only worked for an artificial scene containing
a known black square painted over a white wall. Also, the
state estimation was performed offline, and therefore not used
for closed-loop control of the quadrotor. More recently, [10]
showed closed-loop take-off and landing of a quadrotor using
an event camera. Their system, however, relied on computing
optical flow and assumed the flow field to be divergent, thus
it cannot be used for general 6-DOF control of a quadrotor,
unlike our approach.

III. HYBRID STATE ESTIMATION PIPELINE

Our proposed state estimation pipeline is largely based on
[13]. However, while [13] used only an event camera com-

bined with an IMU, we propose to allow for an additional
sensing modality: a standard camera, providing intensity
frames at a fixed framerate. For this reason, we focus below
on describing the differences between our approach and [13]
in order to also consider standard frames. Finally, we evaluate
the improved pipeline on the Event Camera Dataset [14]
and show evidence that incorporating standard frames in the
pipeline leads to an accuracy boost of 130% over a pipeline
that uses only events plus IMU, and 85% over a pipeline that
uses only standard frames plus IMU.

A. Overview

[13] can be briefly summarized as follows. The main idea
is to synthesize virtual frames (event frames) from spatio-
temporal windows of events, and then perform feature de-
tection and tracking using classical computer vision methods,
namely the FAST corner detector [26] and the Lucas-Kanade
tracker [27]. Feature tracks are used to triangulate the 3D
locations of the corresponding landmarks whenever it can be
done reliably. Finally, the camera trajectory and the positions
of the 3D landmarks are periodically refined by minimizing
a cost function involving visual terms (reprojection error)
and inertial terms, thus effectively fusing visual and inertial
information.

In this paper, we propose to not only maintain feature
tracks from virtual event frames, but to also maintain, in
parallel, feature tracks from standard frames as well. We then
feed the feature tracks coming from these two heterogeneous
sources (virtual event frames and standard frames) to the
optimization module, thus effectively refining the camera
poses using the events, the standard frames, and the IMU.

1) Coordinate Frame Notation: A point P represented
in a coordinate frame A is written as position vector ArP .
A transformation between frames is represented by a ho-
mogeneous matrix TAB that transforms points from frame
B to frame A. Its rotational part is expressed as a rotation
matrix RAB ∈ SO (3). Our algorithm uses a hybrid sensor
composed of an event camera, a standard camera, and an
IMU rigidly mounted together. The sensor body is repre-
sented relative to an inertial world frame W . Inside it, we
distinguish the event camera frame C0, the standard camera
frame C1 and the IMU-sensor frame S. To obtain TSC0

and TSC1 , an extrinsic calibration of the {event camera +
standard camera + IMU system} must be performed.

2) Spatio-temporal Windows of Events: We synchronize
the spatio-temporal windows of events on the timestamps of
the standard frames. Upon reception of each standard frame
at time tk, a new spatio-temporal window of events Wk is
created (Fig. 2). The kth window is defined as the set of
events Wk =

{
ej(tk)−N+1, ..., ej(tk)

}
, where j(tk) is the

index of the first event whose timestamp tj < tk, and N is
the window size parameter. Note that the duration of each
window is inversely proportional to the event rate.

3) Synthesis of Motion-Compensated Event Frames: As
in [13], we then collapse every spatio-temporal window of
events to a synthetic event frame Ik by drawing each event
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Fig. 2. Upon receiving a new frame from the standard camera at time tk , we
select a spatio-temporal window of events Wk , containing a fixed number
of events (N = 4 in this example). Note that the temporal size of each
window is automatically adapted to the event rate. Blue dots correspond to
events, and the dashed green lines correspond to the times at which standard
frames are received. The bounds of the spatio-temporal windows of events
considered are marked in red.

on the image plane, after correcting for the motion of each
event according to its individual timestamp.

Let Ik(x) =
∑

ei∈Wk
δ(x− x′i), where x′i is the corrected

event position, obtained by transferring event ei to the
reference camera frame Ck:

x′i = π0(Ttk,ti(Z(xi)π
−1
0 (xi))), (1)

where xi is the pixel location of event ei, π0 (.) the event
camera projection model, obtained from prior intrinsic cal-
ibration, and Ttl,tm the incremental transformation between
the camera poses at times tl and tm, obtained through
integration of the inertial measurements (we refer the reader
to [13] for details), and Z(xi) the scene depth at time ti
and pixel xi, which is approximated from the sparse set of
3D landmarks currently available. The quality of the motion
compensation depends on the quality of the 3D landmarks
available, therefore the quality of the event frames improves
when also using the landmarks from the standard frames.

The number of events N in each spatio-temporal window
is a parameter that needs to be adjusted depending on the
amount of texture in the scene. As an example, for the
quadrotor experiments presented in section IV, we used
N = 20 000 events per frame.

4) Feature Tracking: We use the FAST corner detector to
extract features [26], both on the virtual event frames, and
the standard camera frames. Those features are then tracked
independently across standard frames and event frames using
the KLT tracker [27] (see Fig. 1). This yields two sets
of independent features tracks

{
z0,j,k

}
,
{
z1,j,k

}
(where

j is the feature track index, and k is the frame index).
For each sensor, each feature is treated as a candidate
feature, and tracked over multiple frames. Once a feature can
be triangulated reliably, the corresponding 3D landmark is
triangulated through linear triangulation [28], and converted
to a persistent feature which will be further tracked across the
next frames. We re-detect features on each sensor as soon
as the number of tracked features falls below a threshold.
We used the same detection and tracking parameters for
the motion-compensated event frames and for the standard
frames. The FAST threshold we used was 50. We used a
a pyramidal implementation of KLT with 2 pyramid levels,
and a patch size of 24× 24 pixels. Additionally, we used a
bucketing grid (where each grid cell has size 32×32 pixels)
to ensure that features are evenly distributed in each sensor’s
image plane.

5) Visual-inertial Fusion through Nonlinear Optimization:
The visual-inertial localization and mapping problem is
formulated as the joint optimization of a cost function
that contains three terms: two weighted reprojection errors
corresponding respectively to the observations from the event
camera and the standard camera, plus an inertial error
term es:

J =

1∑
i=0

K∑
k=1

∑
j∈J (i,k)

ei,j,k
T
Wi,j,k

r ei,j,k +

K−1∑
k=1

eks
T
Wk

se
k
s

where i denotes the sensor index, k denotes the frame index,
and j denotes the landmark index. The set J (i, k) contains
the indices of landmarks maintained in the kth frame by
sensor i. Additionally, W i,j,k

r is the information matrix of
the landmark measurement li,j , and W k

s that of the kth IMU
error. The reprojection error is:

ei,j,kr = zi,j,k − πi
(
Tk

CiST
k
SW li,j

)
where zi,j,k is the measured image coordinate of the jth

landmark on the ith sensor at the kth frame. We use standard
IMU kinematics and biases model (see [3] for example) to
predict the current state based on the previous state. Then,
the IMU error terms are computed as the difference between
the prediction based on the previous state and the actual
state. For orientation, a simple multiplicative minimal error
is used. For details, we refer the reader to [2].

The optimization is carried out not on all the frames
observed but on a bounded set of frames composed of M
keyframes (we use the same keyframe selection criterion as
[13]), and a sliding window containing the last K frames.
In between frames, the prediction for the sensor state is
propagated using the IMU measurements. We employ the
Google Ceres [29] optimizer to carry out the optimization.

6) Additional Implementation Details:
a) Initialization: We assume that the sensor remains

static during the initialization phase of the pipeline, during
one or two seconds. We collect a set of inertial measurements
and use them to estimate the initial attitude (pitch and roll)
of the sensor, as well as to initialize the gyroscope and
accelerometer biases.

b) No-Motion Prior for Almost-Still Motions: When
the sensor is still, no events are generated (except noise
events). To handle this case in our pipeline, we add a strong
zero velocity prior to the optimization problem whenever the
event rate falls below a threshold, thus forcing the sensor to
be still. We used a threshold in the order of 103 events/s in
our experiments, and measured the event rate using windows
of 20 ms.

B. Evaluation

We evaluate the proposed pipeline quantitatively on the
Event Camera Dataset [14], which features various scenes
with ground truth tracking information. In particular, it
contains extremely fast motions and scenes with very high
dynamic range, recorded with the DAVIS [30] sensor.



Sequence Proposed (events and frames + IMU) Events + IMU only Frames + IMU only
Mean
Position
Error (%)

Mean
Yaw
Error
(deg/m)

Mean
Position
Error (%)

Mean
Yaw
Error
(deg/m)

Mean
Position
Error (%)

Mean
Yaw
Error
(deg/m)

boxes 6dof 0.20 0.04 0.30 0.06 0.20 0.07
boxes translation 0.17 0.02 0.49 0.06 0.11 0.03
dynamic 6dof 0.07 0.07 0.15 0.04 0.23 0.07
dynamic translation 0.05 0.08 0.17 0.08 0.19 0.13
hdr boxes 0.20 0.03 0.36 0.09 0.42 0.16
hdr poster 0.16 0.04 0.26 0.04 0.15 0.07
poster 6dof 0.16 0.07 0.17 0.09 0.35 0.12
poster translation 0.05 0.04 0.07 0.03 0.11 0.06
shapes 6dof 0.04 0.03 0.23 0.05 0.08 0.04
shapes translation 0.14 0.05 0.23 0.04 0.16 0.11

TABLE I
ACCURACY OF THE PROPOSED APPROACH USING FRAMES AND EVENTS,

AGAINST USING ONLY EVENTS AND ONLY FRAMES.

Sequence Proposed (events and frames + IMU) State-of-the-art (events + IMU only) [13]
Mean
Position
Error (%)

Mean
Yaw
Error
(deg/m)

Mean
Position
Error (%)

Mean
Yaw
Error
(deg/m)

boxes 6dof 0.20 0.04 0.25 0.13
boxes translation 0.17 0.02 0.20 0.09
dynamic 6dof 0.07 0.07 0.22 0.28
dynamic translation 0.05 0.08 0.11 0.03
hdr boxes 0.20 0.03 0.32 0.19
hdr poster 0.16 0.04 0.18 0.18
poster 6dof 0.16 0.07 0.24 0.16
poster translation 0.05 0.04 0.22 0.08
shapes 6dof 0.04 0.03 0.20 0.15
shapes translation 0.14 0.05 0.28 0.13

TABLE II
ACCURACY OF THE PROPOSED APPROACH USING FRAMES AND EVENTS,

AGAINST [13] (WHICH ONLY USES EVENTS).

The DAVIS sensor embeds a 240 × 180 pixels event
camera with a 1kHz IMU and also delivers standard frames
at 24Hz. Events, standard frames, and IMU measurements
are synchronized on hardware. We found that there is a
constant time offset in the order of 2ms between the standard
frames and the IMU measurements, which we estimated
using Kalibr [31].

To evaluate the results, the estimated and ground truth
trajectories are aligned with a 6-DOF transformation in SE3,
using 5 seconds of the trajectory (starting at second 3 and
ending at second 8). Then, we compute the mean position
error (Euclidean distance) and the yaw error as percentages
of the total traveled distance. Due to the observability of
the gravity direction, the error in pitch and roll is constant
and comparable for each pipeline. Thus we omit them for
compactness.

Table I shows the results obtained when running the
pipeline in its proposed mode, using events and standard
frames. To further quantify the accuracy gained by using
events and frames (plus IMU), compared to using only events
or only frames (plus IMU), we ran our proposed pipeline
using the three different combinations, and report the results
in Table I. Additionally, in Fig. 3, we use the relative error
metrics proposed in [32], which evaluate the relative error
by averaging the drift over trajectories of different lengths.
Using jointly standard frames, events and IMU leads to an
average position accuracy improvement of 85 % compared to
using frames and IMU only, and 130 % against using events
and IMU only.

Table II provides a comparison between our approach and
the state-of-the-art [13]. To the best of our knowledge, we are

the first to report results on the Event Camera Dataset using
all three sensor modalities. It can be seen that our approach,
that uses frames and events, is better in terms of accuracy
on almost all the datasets.

IV. QUADROTOR FLIGHT WITH AN EVENT CAMERA

In order to show the potential of our hybrid, frame-
and-event–based pipeline in a real scenario, we ran our
approach onboard an autonomous quadrotor and used it to
fly autonomously in challenging conditions. We first start
by describing in detail the quadrotor platform we built
(hardware and software) in section IV-A before turning to
the specific in-flight experiments (section IV-B).

A. Aerial Platform

1) Platform: We built our quadrotor from selected off-the-
shelf components and custom 3D printed parts (Fig. 4(a)).
Our quadrotor relies on a DJI frame, with RCTimer motors
and AR drone propellers. The electronic parts of our quadro-
tor comprise a PX4FMU autopilot [33]. In addition, our
quadrotor is equipped with an Odroid XU4 computer, which
contains a 2.0 GHz quad-core processor running Ubuntu
14.04 and ROS [34]. Finally, a DAVIS 240C sensor, equipped
with a 70◦ field-of-view lens, is mounted on the front of the
quadrotor, looking downwards. The sensor is connected to
the Odroid computer via an USB 2.0 cable, and transmits
events, standard frames, and inertial measurements, which
we use to compute the state estimate on the Odroid using
our proposed pipeline. Since the available ROS driver for the
DAVIS did not come with an auto-exposure for the standard
camera, we implemented an auto-exposure algorithm and
made it available open-source for the community to use.1

It is based on a simple proportional controller that controls
the mean image intensity to a desired value (we used a value
of 70 in our experiments).

2) Control: To follow reference trajectories and stabilize
the quadrotor, we use the cascaded controllers presented
in [35]. The high-level controller running on the Odroid
includes a position controller and an attitude controller,
while the low-level controller on the PX4 contains a body
rate controller. The high-level controller takes a reference
trajectory as input and computes desired body rates that are
sent to the low-level controller. The low-level controller, in
turn, computes the desired rotor thrusts using a feedback
linearizing control scheme with the closed-loop dynamics of
a first-order system. Details of the controllers can be found
in [35].

B. Flight Experiments

We present two flight experiments that demonstrate that
our system is able to fly a quadrotor in two difficult condi-
tions: (i) flying indoors while switching on and off the light
(which is challenging because of the abrupt large change of
illumination caused by the switching of the light and the
very low light present in the room after the artificial light

1Available in the DAVIS ROS driver: https://github.com/uzh-
rpg/rpg dvs ros
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Fig. 3. Comparison of the proposed approach on three datasets from the Event Camera Dataset [14]. The graphs show the relative errors measured over
different segments of the trajectory as proposed in [32]. Additional plots for all the datasets are provided in the supplementary material.

(a) Quadrotor platform used for the
flight experiments.

(b) Preview of the room in which
we conducted the flight experi-
ments.

Fig. 4. Quadrotor platform used for the flight experiments, and preview
of the flying room.

was turned off), and (ii) while performing fast circles in a
low-lit room. In the former case, when the light is off, the
standard frames are completely black. In the latter, the speed
of the quadrotor induces severe motion blur on the standard
frames. In both cases, the events are left unaffected, and our
pipeline is able to successfully exploit them to provide robust
state estimation.

These two experiments are best appreciated when seen in
video; therefore, we strongly encourage the reader to watch
the video attached to this work.2

1) Switching the light off and on, in flight: In this ex-
periment, we pushed our pipeline to the limit by outright
switching the room light off while autonomously flying in
circles. The only remaining light was residual light coming
from the windows (very little light, but still enough for
the event camera to work). The standard frames become
completely black when the light goes off (top frame in
Fig. 5(a)), making them useless for state estimation. By
contrast, the events still carry enough information (albeit
noisier) to allow reasonable feature tracks (bottom frame
Fig. 5(a)). Switching the light off effectively forces the
pipeline to rely only on events and inertial measurements.
Note that the abrupt illumination change caused by switching
the lights on and off makes almost every pixel fire events.
Although we do not explicitly handle this particular case,
in practice we observed no substantial decrease in accuracy

2http://rpg.ifi.uzh.ch/eventflight.html

when this occurs as features are quickly re-initialized.
The trajectory flown by the quadrotor is shown in Fig. 6.

2) Fast Circles in a Low-lit Room: In this experiment,
the quadrotor autonomously flies a circular trajectory with
increasing speed in a closed room with little light (Fig. 1);
we carried this experiment during the night and set a low
lighting in the room. The circular trajectory commanded to
the quadrotor is parametrized by its radius and the desired
angular velocity. We set the angular velocity to 1.4 rad/s
on a circle of 1.2 m radius, corresponding to a top linear
velocity of 1.68 m/s. The circle height was 1.0 m. At this
speed and height, the optical flow generated on the image
plane amounts to approximately 340 pixels/s.

While the speed remains moderate at the beginning of
the trajectory (below 1.2 m/s), standard frames do not suffer
from motion blur and our pipeline indeed tracks features
in both the standard frames and the event frames (cf. top
and bottom frames in Fig. 5(b), respectively). Nevertheless,
as soon as the speed increases, the standard frames start
to suffer from severe motion blur, as shown in the top
frame of Fig. 5(c), and the number of features tracked in
the standard frames significantly decreases. Conversely, the
events allow synthesizing motion-free virtual event frames,
which, in turn, allow keeping reliable feature tracks (bottom
frame in Fig. 5(c)).

In Fig. 7, both the desired and estimated trajectories are
shown for comparison. Interestingly, the right side of the
trajectory is slightly noisier than the left side. This turns
out to match well with the light configuration in the room:
the left side of the room was indeed more illuminated than
the right side (visible in Fig. 1). This is coherent with
the quantitative experiments presented in section III-B: the
increase of the quality of the standard frames on the room
side with more light correlates directly to an increase of
accuracy of the pipeline.

V. CONCLUSIONS

We introduced the first hybrid pipeline that fuses events,
standard frames, and inertial measurements to yield robust
and accurate state estimation. We also reported results using
these three sensing modalities on the Event Camera Dataset
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Fig. 5. Example feature tracks in various conditions, on the standard frames (top row) and the virtual event frames (bottom row). Every column corresponds
to the same timestamp, a frame from the top row has a corresponding event frame on the bottom row. The green solid dots are persistent features, and the
blue dots correspond to candidate features. The tracks are shown as colored lines.

(a) Top view. (b) Perspective view.

Fig. 6. Experiment 1: switching the light off and on. The trajectory
estimated by our pipeline is the green line. The commanded trajectory is
the superimposed black dashed line.

(a) Top view. (b) Perspective view.

Fig. 7. Experiment 2: Fast circles in a low-lit room. The trajectory
estimated by our pipeline is the green line. The commanded trajectory is
the superimposed black dashed line.

[14] and demonstrated an accuracy boost of 130 % compared
to using only events plus IMU, and a boost of 85 % com-
pared to using only standard frames plus IMU. Furthermore,
we successfully integrated the proposed pipeline for state
estimation onboard a computationally-constrained quadrotor
and used it to realize, to the best of our knowledge, the
first closed-loop flight of a quadrotor using an event camera.
Finally, in a set of specific experiments, we showed that our

hybrid pipeline is able to leverage the properties of the event
camera to provide robust tracking when flying fast circles and
flying in a low-lit room, both of which challenge standard
frame-based sensors.
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