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DTAM: Dense Tracking and Mapping in Real-Time
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Newcombe, Lovegrove, Davison, DTAM: Dense Tracking and Mapping in Real-Time, International Conference on Computer Vision (ICCV), 2011. PDF.

https://www.doc.ic.ac.uk/~ajd/Publications/newcombe_etal_iccv2011.pdf


Dense Reconstruction (or Multi-view stereo)

Problem definition:

• Input:  calibrated images from several viewpoints (i.e., 𝐾, 𝑅, 𝑇 are known for each camera, 
e.g., from SFM)

• Output:  3D object dense reconstruction (ideally of every pixel)
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Challenges

• Dense reconstruction requires establishing dense correspondences

• But not all pixels can be matched reliably: 
• flat regions, 

• edges, 

• viewpoint and 
illumination changes, 

• occlusions
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Idea: Take advantage of many small-baseline views where high-quality matching is possible



Dense reconstruction workflow
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Step 1: Local methods
• Estimate depth independently 

for each pixel

Step 2: Global methods
• Refine the depth map as a 

whole by enforcing 
smoothness. This process is 
called regularization

How do we compute correspondences for 
every pixel?



Solution: Aggregated Photometric Error

Set the first image as reference and estimate depth at each pixel by minimizing the Aggregated Photometric 
Error in all subsequent frames
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Solution: Aggregated Photometric Error
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Photometric error: 𝜌 𝐼𝑅 𝑢, 𝑣 − 𝐼𝑅+1 𝑢′(𝑑), 𝑣′(𝑑)

𝑑

This error term is computed between the reference image 
and each subsequent frame. The sum of these error terms is 

called Aggregated Photometric Error (see next slide)

𝐼𝑅
𝐼𝑅+1

𝑑



Solution: Aggregated Photometric Error
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This error term is computed between the reference image 
and each subsequent frame. The sum of these error terms is 

called Aggregated Photometric Error (see next slide)

𝐼𝑅

𝐼𝑅+1

𝐼𝑅+2

Photometric error: 𝜌 𝐼𝑅 𝑢, 𝑣 − 𝐼𝑅+2 𝑢′(𝑑), 𝑣′(𝑑)

𝑑

𝐼𝑅

𝑑



Solution: Aggregated Photometric Error
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This error term is computed between the reference image 
and each subsequent frame. The sum of these error terms is 

called Aggregated Photometric Error (see next slide)

𝐼𝑅+1

𝐼𝑅+2

𝐼𝑅+3

Photometric error: 𝜌 𝐼𝑅 𝑢, 𝑣 − 𝐼𝑅+3 𝑢′(𝑑), 𝑣′(𝑑)

𝐼𝑅

𝑑

𝑑



Disparity Space Image (DSI)

• For a given image point 𝑢, 𝑣 and for discrete depth hypotheses 𝑑, the Aggregated Photometric Error 
𝐶 𝑢, 𝑣, 𝑑 with respect to the reference image 𝐼𝑅 can be stored in a volumetric 3D grid called the Disparity 
Space Image (DSI), where each voxel has value:

where 𝑛 is the number of images considered and 𝐼𝑘 𝑢′, 𝑣′, 𝑑 is the patch of intensity values in the 𝑘-th
image centered on the pixel 𝑢′, 𝑣′ corresponding to the patch 𝐼𝑅(𝑢, 𝑣) in the reference image 𝐼𝑅 and 
depth hypothesis 𝑑; thus, formally:

where 𝑇𝑘,𝑅 is the relative pose between frames R and K

• 𝜌(∙) is the photometric error (SSD) (e.g. 𝐿1, 𝐿2, Tukey, or Huber norm)
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𝐶 𝑢, 𝑣, 𝑑 = 

𝑘=𝑅+1

𝑅+𝑛−1

𝜌 𝐼𝑅 𝑢, 𝑣 − 𝐼𝑘 𝑢′, 𝑣′, 𝑑

𝐼𝑘 𝑢′, 𝑣′, 𝑑 = 𝐼𝑘 𝜋 𝑇𝑘,𝑅 𝜋−1 𝑢, 𝑣 ∙ 𝑑



Depth estimation

The solution to the depth estimation problem is to find a function 𝒅(𝒖, 𝒗) (called depth map) in the DSI that 
minimizes the aggregated photometric error:
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𝑑𝑒𝑝𝑡ℎ 𝑚𝑎𝑝 =  𝑑 𝑢, 𝑣 =  𝑎𝑟𝑔 min
𝑑

𝐶(𝑢, 𝑣, 𝑑 𝑢, 𝑣 )

Depth map: each pixel intensity encodes 
the depth of that pixel. Dark = far, bright = close.



Influence of the patch appearance

• Aggregated photometric error for flat regions (a) and edges parallel to epipolar lines (c) show flat valleys 
(plus noise)

• For textured areas (e.g., corners (b) or blobs), the aggregated photometric error has one distinctive 
minimum

• Repetitive texture shows multiple minima

12



Disparity Space Image (DSI)

• Image resolution: 240 × 180 pixels

• Number of disparity (depth) levels: 100

• DSI: 
• size: 240 × 180 × 100 voxels; each voxel contains the Aggregated Photometric Error 𝐶(𝑢,𝑣,𝑑)

• white = high Aggregated Photometric Error

• blue = low Aggregated Photometric Error
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Non-uniform, projective grid,
centered on the reference frame 𝐼𝑅

Reference image



Disparity Space Image (DSI)

• Image resolution: 240 × 180 pixels

• Number of disparity (depth) levels: 100

• DSI: 
• size: 240 × 180 × 100 voxels; each voxel contains the Aggregated Photometric Error 𝐶(𝑢,𝑣,𝑑)

• white = high Aggregated Photometric Error

• blue = low Aggregated Photometric Error
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DSI Reference image



Influence of patch size

• Smaller window
+ More detail

• More noise

• Larger window
+ Smoother disparity maps

• Less detail
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𝑊 =  3 𝑊 =  20

Can we use a patch size of 1 × 1 pixels?



Regularization

To penalize wrong reconstruction due to image noise and ambiguous texture, we add a smoothing term 
(called regularization term) to the optimization: 
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𝑑 𝑢, 𝑣 = 𝑎𝑟𝑔 min
𝑑

𝐶(𝑢, 𝑣, 𝑑 𝑢, 𝑣 )     (local methods)

subject to
Piecewise smooth    (global methods)

First reconstruction via local methods



Regularization

To penalize wrong reconstruction due to image noise and ambiguous texture, we add a smoothing term 
(called regularization term) to the optimization: 
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After applying global methods

𝑑 𝑢, 𝑣 = 𝑎𝑟𝑔 min
𝑑

𝐶(𝑢, 𝑣, 𝑑 𝑢, 𝑣 )     (local methods)

subject to
Piecewise smooth    (global methods)



Regularization

• Formulated in terms of energy minimization

• The objective is to find a surface 𝑑(𝑢, 𝑣) that minimizes a global energy functional:

𝐸 𝑑 = 𝐸𝑑 𝑑 + λ𝐸𝑠(𝑑)

𝐸𝑑 𝑑 = 𝐶(𝑢, 𝑣, 𝑑 𝑢, 𝑣 )

𝐸𝑠 𝑑 = σ(𝑢,𝑣)
𝜕𝑑

𝜕𝑢

2
+

𝜕𝑑

𝜕𝑣

2

where λ controls the tradeoff between data and regularization. What happens as λ increases?

18

Data term Regularization term (i.e., smoothing)

Data term:

Regularization term:



Regularized depth maps

The regularization term 𝐸𝑠(𝑑) basically fills the holes: it smooths the depth map by softing
discontinuities
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Final depth image for increasing λ
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Final depth image for increasing λ



Regularized depth maps

The regularization term 𝐸𝑠(𝑑) basically fills the holes: it smooths the depth map by softing
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Final depth image for increasing λ



Regularized depth maps

The regularization term 𝐸𝑠(𝑑) basically fills the holes: it smooths the depth map by softing
discontinuities
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Final depth image for increasing λ

How can we deal with depth discontinuities 
between separate objects?



Probabilistic Monocular Dense Reconstruction

• Estimate depth uncertainty

• Regularize only 3D points with low depth uncertainty (does not fill holes if present, 
which is good for robotic applications)
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Pizzoli, Forster, Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, 
IEEE International Conference on Robotics and Automation (ICRA), 2014. PDF. Video. Code.

http://rpg.ifi.uzh.ch/docs/ICRA14_Pizzoli.pdf
http://youtu.be/QTKd5UWCG0Q
https://github.com/uzh-rpg/rpg_open_remode


What about large motions?

• When the distance between the current frame and the reference frame gets too large (e.g., > 10% of the 
average scene depth), then the Aggregated Photometric Error starts to diverge due to the large view point 
changes

• Solution: create a new reference frame (keyframe) and start a new depth map computation
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What about dynamic objects?

Simultaneous Reconstruction of non-rigid scenes and 6-DOF camera pose tracking using an RGBD camera
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Newcombe, Fox, Seitz, DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-Time, 
International Conference on Computer Vision and Pattern Recognition (CVPR) 2015, Best Paper Award. PDF.

https://rse-lab.cs.washington.edu/papers/dynamic-fusion-cvpr-2015.pdf


GPU: Graphics Processing Unit

• A CPU is optimized for serial processing (i.e., only a few instructions can be executed during the same clock 
cycle)

• GPU performs calculations in parallel on thousands of cores (i.e., thousands of instructions can be executed 
during the same clock cycle)
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ALU: Arithmetic Logic Unit



GPU: Graphics Processing Unit
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https://www.youtube.com/watch?v=-P28LKWTzrI

https://www.youtube.com/watch?v=-P28LKWTzrI


GPU for 3D Dense Reconstruction

• Image processing
• Filtering & Feature extraction (i.e., convolutions)

• Warping (e.g., epipolar rectification, homography)

• Multiple-view geometry
• Search for dense correspondences

• Pixel-wise operations (SAD, SSD, NCC)

• Matrix and vector operations (epipolar geometry)

• Aggregated Photometric Error for multi-view stereo

• Global optimization
• Variational methods (i.e., regularization (smoothing))

• Parallel, in-place operations for gradient / divergence computation

• Deep learning
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Things to remember

• Aggregated Photometric Error

• Disparity Space Image

• Effects of regularization

• Handling discontinuities and large motions

• GPU
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Readings

• Chapter: 12.7 of Szeliski’s book, 2nd edition
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Understanding Check

Are you able to answer the following questions?

• Are you able to describe the multi-view stereo working principle? (aggregated photometric error)

• What are the differences in the behavior of the aggregated photometric error for corners, flat regions, and edges?

• What is the disparity space image (DSI) and how is it built in practice?

• How do we extract the depth from the DSI?

• How do we enforce smoothness (regularization)?

• What happens if we increase lambda (the regularization term)? What if lambda is 0? And if lambda is too big?

• How do we handle depth discontinuities and large motions?

• What are the advantages of GPUs?
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