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Vision Algorithms for Mobile Robotics

Lecture 12b
Dense 3D Reconstruction

Davide Scaramuzza
http://rpg.ifi.uzh.ch



http://rpg.ifi.uzh.ch/

DTAM: Dense Tracking and Mapping in Real-Time

Live incremental reconstruction of a large scene

Texture mapped model Inverse depth solution

Newcombe, Lovegrove, Davison, DTAM: Dense Tracking and Mapping in Real-Time, International Conference on Computer Vision (ICCV), 2011. PDF.


https://www.doc.ic.ac.uk/~ajd/Publications/newcombe_etal_iccv2011.pdf

Dense Reconstruction (or Multi-view stereo)

Problem definition:

* Input: calibrated images from several viewpoints (i.e., K, R, T are known for each camera,
e.g., from SFM)

* Output: 3D object dense reconstruction (ideally of every pixel)




Challenges

* Dense reconstruction requires establishing dense correspondences

e But not all pixels can be matched reliably:
 flat regions,
e edges,

* viewpoint and
illumination changes,

e occlusions

|dea: Take advantage of many small-baseline views where high-quality matching is possible
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Dense reconstruction workflow

Step 1: Local methods =

e Estimate depth independently
for each pixel

How do we compute correspondences for
every pixel?

Step 2: Global methods

* Refine the depth map as a
whole by enforcing
smoothness. This process is
called regularization




Solution: Aggregated Photometric Error

Set the first image as reference and estimate depth at each pixel by minimizing the Aggregated Photometric
Error in all subsequent frames



Solution: Aggregated Photometric Error

Photometric error: p(Ig(w, v) — Ig;1 (W' (d), v'(d)))

This error term is computed between the reference image
and each subsequent frame. The sum of these error terms is
, called Aggregated Photometric Error (see next slide)
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Solution: Aggregated Photometric Error

IR+2

Photometric error: p(Ig(w, v) — Iz, (W' (d), v'(d)))

I'his error term is computed between the reference image
and each subsequent frame. The sum of these error terms is
, called Aggregated Photometric Error (see next slide)
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IR+3

Solution: Aggregated Photomg
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Photometric error: p(Ig(w, v) — I3 (W' (d), v'(d)))

- Ihis error term is computed between the reference image
and each subsequent frame. The sum of these error terms is
, called Aggregated Photometric Error (see next slide)




Disparity Space Image (DSI)

* For a given image point (u, v) and for discrete depth hypotheses d, the Aggregated Photometric Error
C (u, v, d) with respect to the reference image I can be stored in a volumetric 3D grid called the Disparity
Space Image (DSI), where each voxel has value:

R+n—-1

Clu,v,d) = z p(IR(u,v)—Ik(u’,v’,d))

k=R+1

where n is the number of images considered and I, (u’, v', d) is the patch of intensity values in the k-th
image centered on the pixel (#/, v") corresponding to the patch Iy (u, v) in the reference image I and
depth hypothesis d; thus, formally:

L, v',d) =1 (n (Tk,R(n_l(u, V) - d)))

where Ty r is the relative pose between frames R and K

* p(+) is the photometric error (SSD) (e.g. Ly, L,, Tukey, or Huber norm)



Depth estimation

The solution to the depth estimation problem is to find a function d(u, v) (called depth map) in the DSI that
minimizes the aggregated photometric error:

depth map = d(u,v) = arg mdin C(u,v,d(u,v))

Depth map: each pixel intensity encodes
the depth of that pixel. Dark = far, bright = close.
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Influence of the patch appearance

» Aggregated photometric error for flat regions (a) and edges parallel to epipolar lines (c) show flat valleys

(plus noise)
* For textured areas (e.g., corners (b) or blobs), the aggregated photometric error has one distinctive

minimum
* Repetitive texture shows multiple minima

Clc,d)

Cla,d)
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Disparity Space Image (DSI)

* Image resolution: 240 X 180 pixels
* Number of disparity (depth) levels: 100

* DSI:
» size: 240 x 180 X 100 voxels; each voxel contains the Aggregated Photometric Error C(u,v,d)
* white = high Aggregated Photometric Error
* blue = low Aggregated Photometric Error

Reference image

Non-uniform, projective grid,
centered on the reference frame I
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Disparity Space Image (DSI)

* Image resolution: 240 X 180 pixels
* Number of disparity (depth) levels: 100

* DSI:
* size: 240 x 180 X 100 voxels; each voxel contains the Aggregated Photometric Error C(u,v,d)
* white = high Aggregated Photometric Error
* blue = low Aggregated Photometric Error

DSI Reference image

14



Influence of patch size

e Smaller window
+ More detail
* More noise

e Larger window
+ Smoother disparity maps
e Less detail

Can we use a patch size of 1 X 1 pixels?
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Regularization

To penalize wrong reconstruction due to image noise and ambiguous texture, we add a smoothing term
(called regularization term) to the optimization:

d(u,v) = arg mdin C(u,v,d(u,v)) (local methods)

subject to
Piecewise smooth (global methods)

First reconstruction via local methods
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Regularization

To penalize wrong reconstruction due to image noise and ambiguous texture, we add a smoothing term
(called regularization term) to the optimization:

d(u,v) = arg mdin C(u,v,d(u,v)) (local methods)

subject to
Piecewise smooth (global methods)

After applying global methods
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Regularization

* Formulated in terms of energy minimization

* The objective is to find a surface d(u, v) that minimizes a global energy functional:

E(d) = Eq(d) +AEs(d)

\ ] |\ )
| |

Data term  Regularization term (i.e., smoothing)

Data term: E;(d) =C(u,v,d(u,v))
ad\% [9ad\>
Regularization term:  Es(d) = Z(u,v) (ﬁ) +(5)

where A controls the tradeoff between data and regularization. What happens as A increases?



Regularized depth maps

The regularization term E;(d) basically fills the holes: it smooths the depth map by softing
discontinuities

Final depth image for increasing A
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Regularized depth maps

The regularization term E;(d) basically fills the holes: it smooths the depth map by softing
discontinuities

Final depth image for increasing A
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Regularized depth maps

The regularization term E;(d) basically fills the holes: it smooths the depth map by softing
discontinuities

Final depth image for increasing A
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Regularized depth maps

The regularization term E;(d) basically fills the holes: it smooths the depth map by softing
discontinuities

How can we deal with depth discontinuities
between separate objects?

Final depth image for increasing A
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Probabilistic Monocular Dense Reconstruction

* Estimate depth uncertainty

* Regularize only 3D points with low depth uncertainty (does not fill holes if present,
which is good for robotic applications)

_ Probabilistic Depth-Map

Real-time camera pose estimation

Pizzoli, Forster, Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time,
IEEE International Conference on Robotics and Automation (ICRA), 2014. PDF. Video. Code. 23



http://rpg.ifi.uzh.ch/docs/ICRA14_Pizzoli.pdf
http://youtu.be/QTKd5UWCG0Q
https://github.com/uzh-rpg/rpg_open_remode

What about large motions?

 When the distance between the current frame and the reference frame gets too large (e.g., > 10% of the
average scene depth), then the Aggregated Photometric Error starts to diverge due to the large view point
changes

 Solution: create a new reference frame (keyframe) and start a new depth map computation

depth map 1 depth map 2 Concatenation of two depth maps

N
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What about dynamic objects?

Simultaneous Reconstruction of non-rigid scenes and 6-DOF camera pose tracking using an RGBD camera

odel Output

Canonical Model Reconstruction Warped Model

Newcombe, Fox, Seitz, DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-Time,
International Conference on Computer Vision and Pattern Recognition (CVPR) 2015, Best Paper Award. PDF.
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https://rse-lab.cs.washington.edu/papers/dynamic-fusion-cvpr-2015.pdf

GPU: Graphics Processing Unit

* A CPU is optimized for serial processing (i.e., only a few instructions can be executed during the same clock
cycle)

* GPU performs calculations in parallel on thousands of cores (i.e., thousands of instructions can be executed
during the same clock cycle)

CPU GPU

ALU: Arithmetic Logic Unit
26



GPU: Graphics Processing Unit
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https://www.youtube.com/watch?v=-P28LKWTzr|
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https://www.youtube.com/watch?v=-P28LKWTzrI

GPU for 3D Dense Reconstruction

Image processing
 Filtering & Feature extraction (i.e., convolutions)
* Warping (e.g., epipolar rectification, homography)
Multiple-view geometry
» Search for dense correspondences
* Pixel-wise operations (SAD, SSD, NCC)

» Matrix and vector operations (epipolar geometry)
» Aggregated Photometric Error for multi-view stereo

Global optimization
* Variational methods (i.e., regularization (smoothing))
 Parallel, in-place operations for gradient / divergence computation

Deep learning



Things to remember

* Aggregated Photometric Error

* Disparity Space Image

* Effects of regularization

* Handling discontinuities and large motions
* GPU



Readings

* Chapter: 12.7 of Szeliski’s book, 2"? edition



Understanding Check

Are you able to answer the following questions?

* Are you able to describe the multi-view stereo working principle? (aggregated photometric error)

 What are the differences in the behavior of the aggregated photometric error for corners, flat regions, and edges?
* What is the disparity space image (DSI) and how is it built in practice?

* How do we extract the depth from the DSI?

* How do we enforce smoothness (regularization)?

* What happens if we increase lambda (the regularization term)? What if lambda is 0? And if lambda is too big?
 How do we handle depth discontinuities and large motions?

* What are the advantages of GPUs?
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