Vision Algorithms for Mobile Robotics

Lecture 08
Multiple View Geometry 2

Davide Scaramuzza
http://rpg.ifi.uzh.ch

Lab Exercise 6 - Today

Implement the 8-point algorithm

Estimated poses and 3D structure

2-View Geometry: recap

Depth from stereo (i.e., stereo vision):

- Assumptions: K, T and R are known.
- Goal: Recover the 3D structure from two images

2-view Structure From Motion:

Structure from Motion (SFM)

Problem formulation: Given a set of n point correspondences between two images, $\left\{p^{i}{ }_{1}=\left(u^{i}{ }_{1}, v^{i}{ }_{1}\right)\right.$, $\left.p_{2}^{i}=\left(u^{i}{ }_{2}, v^{i}{ }_{2}\right)\right\}$, where $i=1 \ldots n$, the goal is to simultaneously

- estimate the 3D points \boldsymbol{P}^{i},
- the camera relative-motion parameters ($\boldsymbol{R}, \boldsymbol{T}$),
- and the camera intrinsics $\boldsymbol{K}_{1}, \boldsymbol{K}_{2}$ that satisfy:

$$
\left\{\begin{array}{l}
\lambda_{1}^{i}\left[\begin{array}{c}
u^{i}{ }_{1} \\
v^{i}{ }_{1} \\
1
\end{array}\right]=K_{1}[I \mid 0] \cdot\left[\begin{array}{c}
X^{i}{ }_{w} \\
Y^{i}{ }_{w} \\
Z^{i}{ }_{w} \\
1
\end{array}\right] \\
\lambda_{2}{ }^{i}\left[\begin{array}{c}
u^{i}{ }_{2} \\
v^{i}{ }_{2} \\
1
\end{array}\right]=K_{2}[R \mid T] \cdot\left[\begin{array}{c}
X^{i}{ }_{w} \\
Y^{i}{ }_{w} \\
Z^{i}{ }_{w} \\
1
\end{array}\right]
\end{array}\right.
$$

Structure from Motion (SFM)

Two variants exist:

- Calibrated camera(s) $\Rightarrow K_{1}, K_{2}$ are known
- Uncalibrated camera(s) $\Rightarrow K_{1}, K_{2}$ are unknown

Structure from Motion (SFM)

- Let's study the case in which the cameras are calibrated
- For convenience, let's use normalized image coordinates \rightarrow
- Thus, we want to find $\boldsymbol{R}, \boldsymbol{T}, \boldsymbol{P}^{i}$ that satisfy:

$$
\left[\begin{array}{c}
\bar{u} \\
\bar{v} \\
1
\end{array}\right]=K^{-1}\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

$$
\left\{\begin{array}{l}
\lambda_{1}^{i}\left[\begin{array}{c}
\bar{u}^{i}{ }_{1} \\
\bar{v}_{1}^{i} \\
1
\end{array}\right]=[I \mid 0] \cdot\left[\begin{array}{c}
X^{i}{ }_{w} \\
Y^{i}{ }_{w} \\
Z^{i}{ }_{w} \\
1
\end{array}\right] \\
\lambda^{i}\left[\begin{array}{c}
\bar{u}^{i}{ }_{2} \\
\bar{v}^{i}{ }_{2} \\
1
\end{array}\right]=[R \mid T] \cdot\left[\begin{array}{c}
X^{i}{ }_{w} \\
Y^{i}{ }_{w} \\
Z^{i}{ }_{w} \\
1
\end{array}\right]
\end{array}\right.
$$

Scale Ambiguity

If we rescale the entire scene and camera views by a constant factor (i.e., similarity transformation), the projections (in pixels) of the scene points in both images remain exactly the same:

Similarity

Scale Ambiguity

- In Structure from Motion, it is therefore not possible to recover the absolute scale of the scene!
- What about stereo vision? Is it possible? Why?
- Thus, only 5 degrees of freedom are measurable:
- 3 parameters to describe the rotation
- 2 parameters for the translation up to a scale (we can only compute the direction of translation but not its length)

Structure From Motion (SFM)

- How many knowns and unknowns?
- $4 n$ knowns:
- n correspondences; each one $\left(u^{i}{ }_{1}, v^{i}{ }_{1}\right)$ and $\left(u^{i}{ }_{2}, v^{i}{ }_{2}\right), i=1 \ldots n$
- $5+3 n$ unknowns
- 5 for the motion up to a scale (3 for rotation, 2 for translation)
- $3 n=$ number of coordinates of the n 3D points
- Does a solution exist?
- If and only if the number of independent equations \geq number of unknowns $\Rightarrow 4 n \geq 5+3 n=n \geq 5$
- First attempt to identify the solutions by Kruppa in 1913 (see historical note on slide 16).
E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspektiven mit Innerer Orientierung, Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw. Kl., Abt. Ila., 1913. - English Translation plus original paper by Guillermo Gallego, Arxiv, 2017 ("To determine a 3D object from two perspective views with known inner orientation")

Structure From Motion (SFM)

- Can we solve the estimation of relative motion (R, T) independently of the estimation of the 3D points? Yes! The next couple of slides prove that this is possible.
- Once (R, T) are known, the 3D points can be triangulated using the triangulation algorithm from Lecture 7 (i.e., least square approximation plus reprojection error minimization)

The Epipolar Constraint: Recap from Lecture 07

- The camera centers C_{1}, C_{2} and one image point p_{1} (or p_{2}) determine the so called epipolar plane
- The intersections of the epipolar plane with the two image planes are called epipolar lines
- Corresponding points must therefore lie along the epipolar lines: this constraint is called epipolar constraint
- An alternative way to formulate the epipolar constraint is to notice that two corresponding image vectors plus the baseline must be coplanar

Epipolar Geometry

$\overline{p_{1}}, \overline{p_{2}}, T$ are coplanar:

$$
\left.\bar{p}_{2}^{T} \cdot n=0 \Rightarrow \quad \bar{p}_{2}^{T} \cdot\left(T \times \bar{p}_{1}^{\prime}\right)\right)=0 \quad \Rightarrow \bar{p}_{2}^{T}\left(T \times\left(R \bar{p}_{1}\right)\right)=0 \quad \Rightarrow \bar{p}_{2}^{T}\left[T_{\times}\right] R \bar{p}_{1}=0 \quad \Rightarrow \bar{p}_{2}^{T} E \bar{p}_{1}=0
$$

$$
\mathrm{E}=\left[T_{\times}\right] R \quad \text { essential matrix }
$$

Epipolar Geometry

$$
\bar{p}_{1}=\left[\begin{array}{c}
\bar{u}_{1} \\
\bar{v}_{1} \\
1
\end{array}\right] \bar{p}_{2}=\left[\begin{array}{c}
\bar{u}_{2} \\
\bar{v}_{2} \\
1
\end{array}\right] \text { Normalized image coordinates }
$$

$$
\begin{array}{ll}
\bar{p}_{2}^{T} E \bar{p}_{1}=0 & \text { Epipolar constraint or Longuet-Higgins equation (1981) } \\
\mathrm{E}=\left[T_{\star}\right] R & \text { Essential matrix }
\end{array}
$$

R and T can be computed from E recalling that: $\mathrm{E}=\left[T_{\times}\right] R \quad$ (see slide 21)

NB: Because the skew-symmetric matrix has rank 2 and the rotation is orthonormal, the Essential matrix has also rank 2

Example: Essential Matrix of a Camera Translating along x

$$
\mathrm{E}=\left[\mathrm{T}_{\times}\right] \mathrm{R}
$$

$\left[\mathrm{T}_{\times}\right]=\left[\begin{array}{ccc}0 & -t_{z} & t_{y} \\ t_{z} & 0 & -t_{x} \\ -t_{y} & t_{x} & 0\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & b \\ 0 & -b & 0\end{array}\right]$

$$
\mathrm{T}=\left[\begin{array}{c}
-b \\
0 \\
0
\end{array}\right]
$$

Essential matrix: $\quad E=\left[\mathrm{T}_{\times}\right] R=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & b \\ 0 & -b & 0\end{array}\right]$
$R=I_{3 \times 3}$

Epipolar constraint: \bar{p}_{2}^{T} E $\bar{p}_{1}=0 \rightarrow\left[\begin{array}{lll}\bar{u}_{2} & \bar{v}_{2} & 1\end{array}\right]\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & b \\ 0 & -b & 0\end{array}\right]\left[\begin{array}{c}\bar{u}_{1} \\ \bar{v}_{1} \\ 1\end{array}\right]=0 \rightarrow-b \bar{v}_{1}+\bar{v}_{2} b=0 \rightarrow \bar{v}_{2}=\bar{v}_{1}$

How to compute the Essential Matrix?

- If we don't know (R, T) can we estimate E from two images?
- Yes, given at least 5 correspondences

Image 1

Image 2

Historical Note

- Kruppa showed in 1913 that 5 image correspondences is the minimal case and that there can be at up to 11 solutions
- However, in 1988, Demazure showed that there are actually at most 10 distinct solutions.
- In 1996, Philipp proposed an iterative algorithm to find these solutions.
- In 2004, Nister proposed the first efficient and non iterative solution. It uses Groebner basis decomposition.
- The first popular solution uses 8 points and is called the 8-point algorithm or Longuet-Higgins algorithm (1981). Because of its ease of implementation, it is still used today (e.g., NASA rovers).
[1] E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspektiven mit Innerer Orientierung, Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw. KI., Abt. IIa., 1913. English Translation plus original paper by Guillermo Gallego, Arxiv, 2017
[2] H. Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, Nature, 1981, PDF.
[3] D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, PAMI, 2004, PDF

The 8-point algorithm

- Each pair of point correspondences $\quad \overline{\boldsymbol{p}}_{1}=\left(\bar{u}_{1}, \bar{v}_{1}, 1\right)^{T}, \quad \overline{\boldsymbol{p}}_{2}=\left(\bar{u}_{2}, \bar{v}_{2}, 1\right)^{T}$ provides a linear equation:

$$
\begin{gathered}
\bar{p}_{2}^{T} E \bar{p}_{1}=0 \\
E=\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right] \\
\bar{u}_{2} \bar{u}_{1} e_{11}+\bar{u}_{2} \bar{v}_{1} e_{12}+\bar{u}_{2} e_{13}+\bar{v}_{2} \bar{u}_{1} e_{21}+\bar{v}_{2} \bar{v}_{1} e_{22}+\bar{v}_{2} e_{23}+\bar{u}_{1} e_{31}+\bar{v}_{1} e_{32}+e_{33}=0
\end{gathered}
$$

NB: The 8-point algorithm assumes that the entries of E are all independent (which is not true since, for the calibrated case, they depend on 5 parameters (R and T)) The 5-point algorithm uses the epipolar constraint considering the dependencies among all entries.

The 8-point algorithm

- For n points, we can write

The 8-point algorithm

$\mathrm{Q} \cdot \overline{\mathrm{E}}=0$

Minimal solution

- $Q_{(n \times 9)}$ should have rank 8 to have a unique (up to a scale) non-trivial solution \bar{E}
- Each point correspondence provides 1 independent equation
- Thus, 8 point correspondences are needed

Over-determined solution

- $n>8$ points
- A solution is to minimize $\|Q \bar{E}\|^{2}$ subject to the constraint $\|\bar{E}\|^{2}=1$. The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix $Q^{T} Q$ (because it is the unit vector x that minimizes $\left.\|Q x\|^{2}=x^{T} Q^{T} Q x\right)$.
- It can be solved through Singular Value Decomposition (SVD). Matlab instructions:

```
[U,S,V] = svd(Q);
Ev = V(:,9);
E = reshape(Ev,3,3)';
```


Degenerate Configurations

- The solution of the 8 -point algorithm is degenerate when the 3D points are coplanar.
- Conversely, the 5-point algorithm works also for coplanar points

8-point algorithm: Matlab code

A few lines of code. In today's exercise you will learn how to implement it

```
function E = calibrated_eightpoint( p1, p2)
p1 = p1'; % 3xN vector; each column = [u;v;1]
p2 = p2'; % 3xN vector; each column = [u;v;1]
Q = [p1(:,1).*p2(:,1)
    p1(:,2).*p2(:,1)
    p1(:,3).*p2(:,1) , ...
    p1(:,1).*p2(:,2)
    p1(:,2).*p2(:,2)
    p1(:,3).*p2(:,2)
    p1(:,1).*p2(:,3)
    p1(:,2).*p2(:,3)
    p1(:,3).*p2(:,3) ] ;
[U,S,V] = svd(Q);
Eh = V(:,9);
E = reshape(Eh,3,3)';
```


Extract R and T from E

- Singular Value Decomposition: $E=U S V^{T}$

Won't be asked at the exam

- Because of noise, E may not have rank 2, so we must enforce this as a constraint
- Enforcing rank-2 constraint: set the smallest singular value of S to 0 :

$$
\begin{gathered}
S=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right] \\
\hat{T}=U\left[\begin{array}{ccc}
0 & \mp 1 & 0 \\
\pm 1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] S U^{T} \\
R=U\left[\begin{array}{ccc}
0 & \mp 1 & 0 \\
\pm 1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] V^{T}
\end{gathered}
$$

4 possible solutions of R and T

There exists only one solution where points are in front of both cameras (cheirality constraint)

Structure from Motion (SFM)

Two variants exist:

- Calibrated camera(s) $\Rightarrow K_{1}, K_{2}$ are known
- Uses the Essential matrix
- Uncalibrated camera(s) $\Rightarrow K_{1}, K_{2}$ are unknown
- Uses the Fundamental matrix

The Fundamental Matrix

So far, we have assumed to know the camera intrinsic parameters and we have used normalized image coordinates to get the epipolar constraint for calibrated cameras:

$$
\begin{gathered}
{\left[\begin{array}{c}
\bar{u}_{1}^{i} \\
\bar{v}_{1}^{i} \\
1
\end{array}\right]=\mathrm{K}_{1}^{-1}\left[\begin{array}{c}
u_{1}^{i} \\
v_{1}^{i} \\
1
\end{array}\right]\left[\begin{array}{c}
\bar{u}_{2}^{i} \\
\bar{v}_{2}^{i} \\
1
\end{array}\right]=\mathrm{K}_{2}^{-1}\left[\begin{array}{c}
u_{2}^{i} \\
v_{2}^{i} \\
1
\end{array}\right]} \\
\overline{\mathrm{p}}_{2}^{T} \mathrm{E} \overline{\mathrm{p}}_{1}=0 \\
{\left[\begin{array}{c}
\bar{u}_{2}^{i} \\
\bar{v}_{2}^{i} \\
1
\end{array}\right] \mathrm{E}\left[\begin{array}{c}
\bar{u}_{1}^{i} \\
\bar{v}_{1}^{i} \\
1
\end{array}\right]=0}
\end{gathered}
$$

The Fundamental Matrix

So far, we have assumed to know the camera intrinsic parameters and we have used normalized image coordinates to get the epipolar constraint for calibrated cameras:

$$
\begin{gathered}
{\left[\begin{array}{c}
\bar{u}_{1}^{i} \\
\bar{v}_{1}^{i} \\
1
\end{array}\right]=\mathrm{K}_{1}^{-1}\left[\begin{array}{c}
u_{1}^{i} \\
v_{1}^{i} \\
1
\end{array}\right]\left[\begin{array}{c}
\bar{u}_{2}^{i} \\
\bar{v}_{2}^{i} \\
1
\end{array}\right]=\mathrm{K}_{2}{ }^{-1}\left[\begin{array}{c}
u_{2}^{i} \\
v_{2}^{i} \\
1
\end{array}\right]} \\
\overline{\mathrm{p}}_{2}^{T} \mathrm{E} \overline{\mathrm{p}}_{1}=0
\end{gathered}
$$

$$
\left[\begin{array}{c}
u_{2}^{i} \\
v_{2}^{i} \\
1
\end{array}\right]^{\mathrm{T}} \mathrm{~K}_{2}^{-\mathrm{T}} \mathrm{E} \quad \mathrm{~K}_{1}^{-1}\left[\begin{array}{c}
u_{1}^{i} \\
v_{1}^{i} \\
1
\end{array}\right]=0
$$

The Fundamental Matrix

So far, we have assumed to know the camera intrinsic parameters and we have used normalized image coordinates to get the epipolar constraint for calibrated cameras:

$$
\left[\begin{array}{c}
\bar{u}_{1}^{i} \\
\bar{v}_{1}^{i} \\
1
\end{array}\right]=\mathrm{K}_{1}^{-1}\left[\begin{array}{c}
u_{1}^{i} \\
v_{1}^{i} \\
1
\end{array}\right] \quad\left[\begin{array}{c}
\bar{u}_{2}^{i} \\
\bar{v}_{2}^{i} \\
1
\end{array}\right]=\mathrm{K}_{2}^{-1}\left[\begin{array}{c}
u_{2}^{i} \\
v_{2}^{i} \\
1
\end{array}\right]
$$

$$
\overline{\mathrm{p}}_{2}^{T} \mathrm{E} \overline{\mathrm{p}}_{1}=0
$$

\(\left[$$
\begin{array}{c}u_{2}^{i} \\
v_{2}^{i} \\
1\end{array}
$$\right]^{\mathrm{T}}\left[\begin{array}{c}u_{1}^{i}

v_{1}^{i}

1\end{array}\right]=0\)| Fundamental Matrix $F=\mathrm{K}_{2}^{-\mathrm{T}} \mathrm{E} \mathrm{K}_{1}^{-1}$ |
| :---: |
| Fun thing: check out the Fundamental Matrix song, |
| https://youtu.be/DgGV3I82NTk :-) |

The 8-point Algorithm for the Fundamental Matrix

- The same 8-point algorithm to compute the essential matrix from a set of normalized image coordinates can also be used to determine the Fundamental matrix:

$$
\left[\begin{array}{c}
u_{2}^{i} \\
v_{2}^{i} \\
1
\end{array}\right]^{\mathrm{T}} \mathrm{~F}\left[\begin{array}{c}
u_{1}^{i} \\
v_{1}^{i} \\
1
\end{array}\right]=0
$$

- However, now the key advantage is that we work directly in pixel coordinates

Problem with 8-point algorithm

$$
\left[\begin{array}{ccccccccc}
u_{2}{ }^{1} u_{1}{ }^{1} & u_{2}{ }^{1} v_{1}{ }^{1} & u_{2}{ }^{1} & v_{2}{ }^{1} u_{1}{ }^{1} & v_{2}{ }^{1} v_{1}{ }^{1} & v_{2}{ }^{1} & u_{1}{ }^{1} & v_{1}{ }^{1} & 1 \\
u_{2}{ }^{2} u_{1}{ }^{2} & u_{2}{ }^{2} v_{1}{ }^{2} & u_{2}{ }^{2} & v_{2}{ }^{2} u_{1}{ }^{2} & v_{2}{ }^{2} v_{1}{ }^{2} & v_{2}{ }^{2} & u_{1}{ }^{2} & v_{1}{ }^{2} & 1 \\
\vdots & \vdots \\
u_{2}{ }^{n} u_{1}{ }^{n} & u_{2}{ }^{n} v_{1}{ }^{n} & u_{2}{ }^{n} & v_{2}{ }^{n} u_{1}{ }^{n} & v_{2}{ }^{n} v_{1}{ }^{n} & v_{2}{ }^{n} & u_{1}{ }^{n} & v_{1}{ }^{n} & 1
\end{array}\right]\left[\begin{array}{c}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right]=0
$$

Problem with 8-point algorithm

- Poor numerical conditioning, which makes results very sensitive to noise
- Can be fixed by rescaling the data: Normalized 8-point algorithm
$\left[\begin{array}{l}f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33}\end{array}\right]=0$

Orders of magnitude difference
between column of data matrix
\rightarrow least-squares yields poor results

Normalized 8-point algorithm (1/3)

- This can be fixed using a normalized 8-point algorithm [Hartley, 1997], which estimates the Fundamental matrix on a set of Normalized correspondences (with better numerical properties) and then unnormalizes the result to obtain the fundamental matrix for the given (unnormalized) correspondences
- Idea: Transform image coordinates so that they are in the range $\sim[-1,1] \times[-1,1]$
- One way is to apply the following rescaling and shift

Normalized 8-point algorithm (3/3)

The Normalized 8-point algorithm can be summarized in three steps:

1. Normalize the point correspondences: $\widehat{p_{1}}=B_{1} p_{1}, \widehat{p_{2}}=B_{2} p_{2}$
2. Estimate normalized \hat{F} with 8-point algorithm using normalized coordinates $\widehat{p_{1}}, \widehat{p_{2}}$
3. Compute unnormalized F from \hat{F} :

Normalized 8-point algorithm (2/3)

- In the original 1997 paper, Hartley proposed to rescale the two point sets such that the centroid of each set is 0 and the mean standard deviation $\sqrt{2}$ (equivalent to having the points distributed around a circle passing through the four corners of the $[-1,1] \times[-1,1]$ square).
- This can be done for every point as follows: $\widehat{p^{i}}=\frac{\sqrt{2}}{\sigma}\left(p^{i}-\mu\right)$
where $\mu=\left(\mu_{x}, \mu_{y}\right)=\frac{1}{N} \sum_{i=1}^{n} p^{i}$ is the centroid and $\sigma=\sqrt{\frac{1}{N} \sum_{i=1}^{n}\left\|p^{i}-\mu\right\|^{2}}$ is the mean standard deviation of the point set
- This transformation can be expressed in matrix form using homogeneous coordinates:

$$
\widehat{p^{i}}=\left[\begin{array}{ccc}
\frac{\sqrt{2}}{\sigma} & 0 & -\frac{\sqrt{2}}{\sigma} \mu_{x} \\
0 & \frac{\sqrt{2}}{\sigma} & -\frac{\sqrt{2}}{\sigma} \mu_{y} \\
0 & 0 & 1
\end{array}\right] p^{i}
$$

Can R, T, K_{1}, K_{2} be extracted from F?

- In general no: infinite solutions exist
- However, if the coordinates of the principal points of each camera are known and the two cameras have the same focal length f in pixels, then R, T, f can determined uniquely

Comparison between Normalized and non-normalized algorithm

	8-point	Normalized 8-point	Nonlinear refinement
Avg. Ep. Line Distance	2.33 pixels	0.92 pixel	0.86 pixel

Error Measures

- The quality of the estimated Essential or Fundamental matrix can be measured using different error metrics:
- Algebraic error
- Directional Error
- Epipolar Line Distance
- Reprojection Error

- When is the error 0?

- These errors will be exactly 0 only if \boldsymbol{E} (or \boldsymbol{F}) is computed from just 8 points (because in this case a non-overdetermined solution exists).
- For more than 8 points, it will only be 0 if there is no noise or outliers in the data (if there is image noise or outliers then it the system becomes overdetermined)

Algebraic Error

- It follows directly from the 8-point algorithm, which seeks to minimize the algebraic error:

$$
e r r=\|Q E\|^{2}=\sum_{i=1}^{N}\left(\bar{p}_{2}^{i} \boldsymbol{E}^{\mathrm{T}} \bar{p}_{1}^{i}\right)^{2}
$$

- From the proof of the epipolar constraint and using the definition of dot product, it can be observed that:

$$
\begin{aligned}
& \left\|\overline{\boldsymbol{p}}_{2}^{\top} \boldsymbol{E} \overline{\boldsymbol{p}}_{1}\right\|=\left\|\overline{\boldsymbol{p}}_{2}^{\top} \cdot\left(\boldsymbol{E} \overline{\boldsymbol{p}}_{1}\right)\right\|=\left\|\overline{\boldsymbol{p}}_{2}\right\|\left\|\boldsymbol{E} \overline{\boldsymbol{p}}_{1}\right\| \cos (\theta) \\
& =\left\|\overline{\boldsymbol{p}}_{2}\right\|\left\|\left[\mathrm{T}_{\times}\right] R \overline{\boldsymbol{p}}_{1}\right\| \cos (\theta)
\end{aligned}
$$

- We can see that this product depends on the angle θ between $\overline{\boldsymbol{p}}_{2}$ and the normal $\boldsymbol{n}=\boldsymbol{E} \boldsymbol{p}_{1}$ to the epipolar plane. It is nonzero when $\overline{\boldsymbol{p}}_{1}, \overline{\boldsymbol{p}}_{2}$, and \boldsymbol{T} are not coplanar
- What is the drawback of this error measure?

Directional Error

- Sum of squared cosines of the angle from the epipolar plane: err $=\sum_{i=1}^{N}\left(\cos \left(\theta_{i}\right)\right)^{2}$
- It is obtained by normalizing the algebraic error:

$$
\cos (\theta)=\frac{\overline{\boldsymbol{p}}_{2}^{\top} \boldsymbol{E} \overline{\boldsymbol{p}}_{1}}{\left\|\boldsymbol{p}_{2}\right\|\left\|\boldsymbol{E} \boldsymbol{p}_{1}\right\|}
$$

Epipolar Line Distance

- Sum of Squared Epipolar-Line-to-point Distances: \quad err $=\sum_{i=1}^{N}\left(d\left(p_{1}^{i}, l_{1}^{i}\right)\right)^{2}+\left(d\left(p_{2}^{i}, l_{2}^{i}\right)\right)^{2}$
- Cheaper than reprojection error because does not require point triangulation

Reprojection Error

- Sum of the Squared Reprojection Errors: $\operatorname{err}=\sum_{i=1}^{N}\left\|p_{1}^{i}-\pi\left(P^{i}, K_{1}, I, 0\right)\right\|^{2}+\left\|p_{2}^{i}-\pi\left(P^{i}, K_{2}, R, T\right)\right\|^{2}$
- More expensive than the previous three errors because it requires to first triangulate the 3D points!
- However, it is the most popular because more accurate. The reason is that the error is computed directly with the respect the raw input data, which are the image points

Things to remember

- SFM from 2 view
- Calibrated and uncalibrated case
- Proof of Epipolar Constraint
- 8-point algorithm and algebraic error
- Normalized 8-point algorithm
- Algebraic, directional, Epipolar line distance, Reprojection error

Readings

- CH. 11.3 of Szeliski book, $2^{\text {nd }}$ edition
- Ch. 14.2 of Corke book

Understanding Check

Are you able to answer the following questions?

- What's the minimum number of correspondences required for calibrated SFM and why?
- Are you able to derive the epipolar constraint?
- Are you able to define the essential matrix?
- Are you able to derive the 8-point algorithm?
- How many rotation-translation combinations can the essential matrix be decomposed into?
- Are you able to provide a geometrical interpretation of the epipolar constraint?
- Are you able to describe the relation between the essential and the fundamental matrix?
- Why is it important to normalize the point coordinates in the 8-point algorithm?
- Describe one or more possible ways to achieve this normalization.
- Are you able to describe the normalized 8-point algorithm?
- Are you able to provide quality metrics and their interpretation for the essential and fundamental matrix estimation?

