Vision Algorithms for Mobile Robotics

Lecture 07
Multiple View Geometry 1

Davide Scaramuzza
http://rpg.ifi.uzh.ch

Lab Exercise 5 - Today

Stereo vision: rectification, epipolar matching, disparity, triangulation

3D point cloud

Disparity map (cold= far, hot=close)

Multiple View Geometry

Agarwal, Snavely, Simon, Seitz, Szeliski, Building Rome in a Day, International Conference on Computer Vision (ICCV), 2009. PDF, code, datasets Most influential paper of 2009

State of the art software: COLMAP:

Multiple View Geometry

3D reconstruction from multiple views:

- Assumptions: K, T and R are known.
- Goal: Recover the 3D structure from images

Structure From Motion:

- Assumptions: none (K, T, and R are unknown).
- Goal: Recover simultaneously 3D scene structure and camera poses (up to scale) from multiple images

$$
P_{i}=?
$$

2-View Geometry

Depth from stereo (i.e., stereo vision):

- Assumptions: K, T and R are known.
- Goal: Recover the 3D structure from two images

2-view Structure From Motion:

- Assumptions: none (K, T, and R are unknown).
- Goal: Recover simultaneously 3D scene structure and camera poses (up to scale) from two images

Today's outline

- Stereo Vision
- Epipolar Geometry

Depth from Stereo

Goal: recover the 3D structure by computing the intersection of corresponding rays

The Human Binocular System

- Stereopsys is the principle by which our brain allows us to perceive depth from the left and right images
- Images project on our retinas upside-down, but our brain makes us perceive them as straight. Radial distortion is also removed, and left and right images are aligned: this process is called rectification

Image from the right eye

The Human Binocular System

- Stereopsys is the principle by which our brain allows us to perceive depth from the left and right images
- Images project on our retinas upside-down, but our brain makes us perceive them as straight. Radial distortion is also removed, and left and right images are aligned: this process is called rectification

Make a simple test:

1. Fix an object
2. Open and close alternatively the left and right eyes.

- The horizontal displacement is called disparity
- The smaller the disparity, the farther the object

The Human Binocular System

- Stereopsys is the principle by which our brain allows us to perceive depth from the left and right images
- Images project on our retinas upside-down, but our brain makes us perceive them as straight. Radial distortion is also removed, and left and right images are aligned: this process is called rectification

Make a simple test:

1. Fix an object
2. Open and close alternatively the left and right eyes.

- The horizontal displacement is called disparity
- The smaller the disparity, the farther the object

The Human Binocular System

- Stereopsys is the principle by which our brain allows us to perceive depth from the left and right images
- Images project on our retinas upside-down, but our brain makes us perceive them as straight. Radial distortion is also removed, and left and right images are aligned: this process is called rectification
- What happens if you wear a pair of mirrors for a week?

An early experiment in "perceptual plasticity" was conducted by psychologist George Stratton in 1896. He used his inverted vision goggles over a period of 8 days and over time adapted to the point where he was able to function normally.

Stereo Vision

- Triangulation
- Simplified case
- General case
- Correspondence problem
- Stereo rectification

Intel RealSense D455 stereo camera: uses stereo and structured infrared light for depth estimation https://www.intelrealsense.com/stereo-depth/

Intel RealSense T265 stereo camera for visual-inertial odometry and SLAM: https://www.intelrealsense.com/tracking-camera-t265/

Stereo Vision

- Goal: find an expression of the 3D point coordinates as a function of the 2D image coordinates
- Assumptions:
- cameras are calibrated: both intrinsic and extrinsic parameters are known
- point correspondences are given

Stereo Vision

Simplified case
 (identical cameras and aligned)

Stereo Vision - Simplified Case

Both cameras are identical (i.e., same intrinsics) and are aligned to the x -axis

Baseline = distance between the optical
centers of the two cameras

Stereo Vision - Simplified Case

Both cameras are identical (i.e., same intrinsics) and are aligned to the x -axis

Baseline = distance between the optical centers of the two cameras

From Similar Triangles:

$$
\begin{aligned}
& \frac{f}{Z_{P}}=\frac{u_{l}}{X_{P}} \\
& \frac{f}{Z_{P}}=\frac{-u_{r}}{b-X_{P}}
\end{aligned}
$$

Disparity

horizontal distance of the projection of a 3D point on two image planes

1. What's the max disparity of a stereo camera?
2. What's the disparity of a point at infinity?

Choosing the Baseline

What's the optimal baseline?

- Large baseline:
- Small depth error but...
- Minimum measurable depth increases
- Difficult search problem for close objects
- Small baseline:
- Large depth error but...
- Minimum measureable depth decreases
- Easier search problem for close objects

1. Can you compute the depth uncertainty as a function of the disparity?
2. Can you compute the depth uncertainty as a function of the distance?
3. How can we increase the accuracy of a stereo system?

Stereo Vision - General Case

- Two identical cameras do not exist in nature
- Aligning both cameras on a horizontal axis is very hard \rightarrow Impossible, why?

- In order to be able to use a stereo camera, we need the
- Extrinsic parameters (relative rotation and translation)
- Instrinsic parameters (focal length, principal point, lens distortion coefficients of each camera)
\Rightarrow Use a calibration method (Tsai's method (i.e., 3D object) or Zhang's method (2D grid), see Lectures 2, 3
\Rightarrow How do we compute the relative pose between the left and right cameras?

Triangulation

- Triangulation is the problem of determining the 3D position of a point given a set of corresponding image locations and known camera poses
- We want to intersect the two visual rays corresponding to p_{1} and p_{2}, but, because of feature uncertainty, calibration uncertainty, and numerical errors, they won't meet exactly, so we can only compute an approximation

Triangulation: Least Square Approximation

We construct the system of equations of the left and right cameras, and solve it:
Left camera (it's often assumed as the world frame)
$\lambda_{1}\left[\begin{array}{c}u_{1} \\ v_{1} \\ 1\end{array}\right]=K_{1}[I \mid 0] \cdot\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w} \\ 1\end{array}\right]$

Right camera
$\lambda_{2}\left[\begin{array}{c}u_{2} \\ v_{2} \\ 1\end{array}\right]=K_{2}[R \mid T] \cdot\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w} \\ 1\end{array}\right]$

Review: Cross Product (or Vector Product)

$$
\vec{a} \times \vec{b}=\vec{c}
$$

- Vector cross product takes two vectors and returns a third vector that is perpendicular to both inputs

$$
\begin{aligned}
& \vec{a} \cdot \vec{c}=0 \\
& \vec{b} \cdot \vec{c}=0
\end{aligned}
$$

- So here, \boldsymbol{c} is perpendicular to both \boldsymbol{a} and \boldsymbol{b}, which means the dot product $=0$
- Also, recall that the cross product of two parallel vectors is the 0 vector
- The vector cross product can also be expressed as the product of a skew-symmetric matrix and a vector

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\mathbf{a}_{x}\right] \mathbf{b}
$$

Triangulation: Least Square Approximation

Left camera

$\lambda_{1}\left[\begin{array}{c}u_{1} \\ v_{1} \\ 1\end{array}\right]=K_{1}[I \mid 0] \cdot\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w} \\ 1\end{array}\right] \Rightarrow \lambda_{1} p_{1}=M_{1} \cdot P \quad \Rightarrow p_{1} \times \lambda_{1} p_{1}=p_{1} \times M_{1} \cdot P \quad \Rightarrow 0=p_{1} \times M_{1} \cdot P$
Right camera
$\lambda_{2}\left[\begin{array}{c}u_{2} \\ v_{2} \\ 1\end{array}\right]=K_{2}[R \mid T] \cdot\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w} \\ 1\end{array}\right] \Rightarrow \lambda_{2} p_{2}=M_{2} \cdot P \quad \Rightarrow p_{2} \times \lambda_{2} p_{2}=p_{2} \times M_{2} \cdot P \quad \Rightarrow 0=p_{2} \times M_{2} \cdot P$

Triangulation: Least Square Approximation

Left camera

$$
\Rightarrow 0=p_{1} \times M_{1} \cdot P \quad \Rightarrow\left[p_{1 \times}\right] \cdot M_{1} \cdot P=0
$$

Recall:

Right camera

$$
\left[\mathbf{a}_{\times}\right]=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]
$$

$\Rightarrow 0=p_{2} \times M_{2} \cdot P \quad \Rightarrow\left[p_{2 \times}\right] \cdot M_{2} \cdot P=0$

Triangulation: Least Square Approximation

Left camera

$$
\Rightarrow 0=p_{1} \times M_{1} \cdot P \quad \Rightarrow\left[p_{1 \times}\right] \cdot M_{1} \cdot P=0
$$

Right camera

- We get a homogeneous system of equations
- \boldsymbol{P} can be determined using SVD, as we already did when we talked about DLT (see Lecture 03)
$\Rightarrow 0=p_{2} \times M_{2} \cdot P \quad \Rightarrow\left[p_{2 \times}\right] \cdot M_{2} \cdot P=0$

Geometric interpretation of Least Square Approximation

\boldsymbol{P} is computed as the midpoint of the shortest segment connecting the two lines

Triangulation: Nonlinear Refinement

- Initialize P using the least-square approximation; then refine P by minimizing the sum of left and right squared reprojection errors (for the definition of reprojection error refer to Lecture 3):

$$
P=\operatorname{argmin}_{P}\left\|p_{1}-\pi\left(P, K_{1}, I, 0\right)\right\|^{2}+\left\|p_{2}-\pi\left(P, K_{2}, R, T\right)\right\|^{2}
$$

- Can be minimized using Levenberg-Marquardt (more robust than Gauss-Newton to local minima)

Stereo Vision

- Triangulation
- Simplified case
- General case
- Correspondence problem
- Stereo rectification

Correspondence Problem

Given a point, p_{L}, on left image, how do we find its correspondence, p_{R}, on the right image?

Left image

Right image

Correspondence Search

Block Matching: compare each candidate patch from the left image with all possible candidate patches from the right image

Correspondence Search

Use one of these: (Z)NCC, (Z)SSD, (Z)SAD, or Census Transform plus Hamming distance

Correspondence Problem

- This 2D exhaustive search is computationally very expensive! How many comparisons?
- Can we make the correspondence search 1D?
- Potential matches for \boldsymbol{p} must lie on the corresponding epipolar line \boldsymbol{l}^{\prime}
- The epipolar line is the projection of a back-projected ray $\pi^{-1}(p)$ onto the other camera image
- The epipole is the projection of the optical center on the other camera image
- A stereo camera has two epipoles

The Epipolar Constraint

- The camera centers C_{l}, C_{r} and the image point p determine the so called epipolar plane
- The intersections of the epipolar plane with the two image planes are called epipolar lines
- Corresponding points must therefore lie along the epipolar lines: this constraint is called epipolar constraint
- The epipolar constraint reduces correspondence problem to 1D search along the epipolar line

1D Correspondence Search via Epipolar Constraint

Thanks to the epipolar constraint, corresponding points can be searched for along epipolar lines: \rightarrow computational cost reduced to 1 dimension!

Left image

Right image

Example: Converging Cameras

- Remember: all the epipolar lines intersect at the epipole (NB. The epipole can also be outside the image)
- As the position of the 3D point P changes, the epipolar lines rotate about the baseline

Left image

Right image

Example: Identical and Horizontally-Aligned Cameras

Right image

Example: Forward Motion (parallel to the optical axis)

- Epipole has the same coordinates in both images
- Points move along lines radiating from the epipole: "Focus of expansion"

Left image

Right image

Stereo Vision

- Triangulation
- Simplified case
- General case
- Correspondence problem
- Stereo rectification

Stereo Rectification

- Even in commercial stereo cameras the left and right images are never perfectly aligned
- In practice, it is convenient if image scanlines are the epipolar lines because then the correspondence search can be made very efficient (only search the point along the same scanlines)

Stereo Rectification

- Even in commercial stereo cameras the left and right images are never perfectly aligned
- In practice, it is convenient if image scanlines are the epipolar lines because then the correspondence search can be made very efficient (only search the point along the same scanlines)
- Stereo rectification warps the left and right images into new "rectified" images such that the epipolar lines coincide with the scanlines

Left
Right

Rectified stereo pair: scanlines coincide with epipolar lines

Stereo Rectification

- Warps original image planes onto coplanar planes parallel to the baseline
- It works by computing two homographies, one for each image
- As a result, the new epipolar lines coincide the scanlines of the left and right image are aligned

Stereo Rectification

- The idea behind rectification is to define two new Perspective Projection Matrices (PPMs) obtained by rotating the old ones around their optical centers until the image planes become parallel to each other.
- This ensures that epipoles are at infinity, hence epipolar lines are parallel.
- To have horizontal epipolar lines, the baseline must be parallel to the new \mathbf{X} axis of both cameras.
- In addition, to have a proper rectification, corresponding points must have the same vertical coordinate. This is obtained by requiring that the new cameras have the same intrinsic parameters.
- Note that, being the focal length the same, the new image planes are coplanar too

Stereo Rectification (1/5)

In Lecture 02, we have seen that the Perspective Equation for a point P_{w} in the world frame is defined by this equation, where $R=R_{c w}$ and $T=T_{c w}$ transform points from the World frame to the Camera frame.

$$
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=K\left(R\left[\begin{array}{l}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]+T\right)
$$

Stereo Rectification (1/5)

- For Stereo Vision, however, it is more common to use $\boldsymbol{R} \equiv \boldsymbol{R}_{\boldsymbol{w} \boldsymbol{c}}$ and $\boldsymbol{T} \equiv \boldsymbol{T}_{\boldsymbol{w} \boldsymbol{c}}$, where now \boldsymbol{R}, and \boldsymbol{T} transform points from the Camera frame to the World frame. This is more convenient because $\boldsymbol{T} \equiv \boldsymbol{C}$ directly represents the world coordinates of the camera center. The projection equation can be re-written as:

$$
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=K R^{-1}\left(\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-T\right) \quad \rightarrow \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=K R^{-1}\left(\left[\begin{array}{l}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-C\right)
$$

Stereo Rectification (2/5)

We can now write the Perspective Equation for the Left and Right cameras. For generality, we assume that Left and Right cameras have different intrinsic parameter matrices, K_{L}, K_{R} :

Left camera

Right camera

$$
\lambda_{L}\left[\begin{array}{c}
u_{L} \\
v_{L} \\
1
\end{array}\right]=K_{L} R_{L}^{-1}\left(\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-C_{L}\right)
$$

$$
\lambda_{R}\left[\begin{array}{c}
u_{R} \\
v_{R} \\
1
\end{array}\right]=K_{R} R_{R}{ }^{-1}\left(\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-C_{R}\right)
$$

Stereo Rectification (3/5)

The goal of stereo rectification is to warp the left and right camera images such that their image planes are coplanar (i.e., same $\widehat{\boldsymbol{R}}$) and their intrinsic parameters are identical (i.e., same $\widehat{\boldsymbol{K}}$)

$$
\begin{array}{rlr}
\lambda_{L}\left[\begin{array}{c}
u_{L} \\
v_{L} \\
1
\end{array}\right] & =K_{L} R_{L}{ }^{-1}\left(\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-C_{L}\right) \quad \text { Old Left camera } & \lambda_{R}\left[\begin{array}{c}
u_{R} \\
v_{R} \\
1
\end{array}\right]=K_{R} R_{R}{ }^{-1}\left(\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-C_{R}\right) \text { Old Right camera } \\
\rightarrow \hat{\lambda}_{L}\left[\begin{array}{c}
\hat{L}_{L_{1}} \\
\hat{v}_{2} \\
1
\end{array}\right] & =\widehat{\boldsymbol{R}} \widehat{\mathbf{R}}^{-1}\left(\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-C_{L}\right) \quad \text { New Left camera } & \rightarrow \hat{\lambda}_{R}\left[\begin{array}{c}
\hat{u}_{R} \\
\hat{v}_{R} \\
1
\end{array}\right]=\widehat{\boldsymbol{K}} \widehat{\mathbf{R}}^{-1}\left(\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w}
\end{array}\right]-C_{R}\right) \quad \text { New Right camera }
\end{array}
$$

$$
\left[\widehat{R}_{L} \mid C_{L}\right]
$$

$$
\left[\widehat{R}_{R} \mid C_{R}\right]
$$

Stereo Rectification (4/5)

By solving with respect to (X_{w}, Y_{w}, Z_{w}) for each camera, we can compute the Homography that needs to be applied to rectify each camera image:

$$
\hat{\lambda}_{L}\left[\begin{array}{c}
\hat{u}_{L} \\
\hat{v}_{L} \\
1
\end{array}\right]=\underbrace{\lambda_{L} \widehat{\boldsymbol{K}} \widehat{\boldsymbol{R}}^{-1} R_{L} K_{L}^{-1}}_{\substack{\text { Homography of } \\
\text { Left Camera }}}\left[\begin{array}{c}
u_{L} \\
v_{L} \\
1
\end{array}\right] \quad \hat{\lambda}_{R}\left[\begin{array}{c}
\hat{u}_{R} \\
\hat{v}_{R} \\
1
\end{array}\right]=\underbrace{\lambda_{R} \widehat{\boldsymbol{K}} \widehat{\boldsymbol{R}}^{-1} R_{R} K_{R}{ }^{-1}\left[\begin{array}{c}
u_{R} \\
v_{R} \\
1
\end{array}\right]}_{\substack{\text { Homography of } \\
\text { Right Camera }}}
$$

Stereo Rectification (5/5)

- How do we choose the new $\widehat{\boldsymbol{K}}$? A common choice is to take the arithmetic average of K_{L} and K_{R} :

$$
\widehat{\boldsymbol{K}}=\frac{K_{L}+K_{R}}{2}
$$

- How do we choose the new $\widehat{\boldsymbol{R}}=\left[\widehat{r_{1}}, \widehat{r_{2}}, \widehat{r_{3}}\right]$, with $\widehat{r_{1}}, \widehat{r_{2}}, \widehat{r_{3}}$ being the column vectors of \widehat{R} ?

A common choice is as follows:

$$
\begin{aligned}
& \widehat{r_{1}}=\frac{C_{R}-C_{L}}{\left\|C_{R}-C_{L}\right\|} \quad \text { This makes the new image planes parallel to the baseline } \\
& \widehat{r_{2}}=r_{3 L} \times \widehat{r_{1}} \quad \text { where } r_{3 L} \text { is the 3 } 3^{\text {rd }} \text { column of the rotation matrix of the left camera, i.e., } R_{L} \\
& \widehat{r_{3}}=\widehat{r_{1}} \times \widehat{r_{2}}
\end{aligned}
$$

Stereo Rectification: Example

Stereo Rectification: Example

- First, undistort images from their lens distortion

Left
Right

Stereo Rectification: Example

- First, undistort images from their lens distortion
- Then, compute homographies and rectify
- Use bilinear interpolation for warping (see lect. 06)

Stereo Rectification: Example

Dense Stereo Correspondence: Disparity Map

1. Rectify stereo pair (if not already rectified) to make epipolar lines coinciding with scanlines
2. For every pixel in the left image, find its corresponding point in the right image along the same scanline
3. Compute the disparity for each found pair of correspondences (i.e., $u_{l}-u_{r}$)
4. Visualize it as a grayscale or color-coded image: Disparity map

Left image

Right image

Close objects experience bigger disparity
\rightarrow appear brighter in disparity map

From Disparity Map to Point Cloud

Once the stereo pair is rectified, the depth of each point can be computed recalling that: $Z_{P}=\frac{b f}{u_{l}-u_{r}}$

Stereo Vision

- Triangulation
- Simplified case
- General case
- Correspondence problem: continued
- Stereo rectification

Correspondence Problem

- Once left and right images are rectified, correspondence search can be done along the same scanlines
- To average effects of feature uncertainty and camera calibration uncertainty, use a window around the point of interest (assumption: neighboring pixels have similar intensity)
- Find correspondence by maximizing or minimizing: (Z)NCC, (Z)SSD, (Z)SAD, Census Transform plus Hamming distance

Example: (Z)NCC

Textureless regions: the aperture problem

Textureless regions: the aperture problem

Solution: increase window size until the patch becomes distinctive from its neighbors

Effects of window size (W) on the disparity map

Smaller window

- more detail
- but more sensitive to noise

Larger window

- smoother disparity maps
- but less detail

$\mathrm{W}=3$ pixels

$\mathrm{W}=20$ pixels

Accuracy

Data

Block matching
Ground truth

Challenges

Occlusions and repetitive patterns

Correspondence Problems: Multiple matches

Multiple match hypotheses satisfy epipolar constraint, but which one is correct?

How can we improve window-based matching?

Beyond the epipolar constraint, there are "soft" constraints to help identify corresponding points

- Uniqueness
- Only one match in right image for every point in left image
- Ordering
- Points on same surface will be in same order in both views
- Disparity gradient
- Disparity changes smoothly between points that lie on the same surface

Example: Semi-Global Matching (SGM)

- SGM is a popular open-source algorithm that estimates a dense disparity map from a rectified stereo image pair

Left Image

Right Image

Estimated Disparity

- Main idea: Perform coarse-to-fine block matching followed by regularization (e.g. smoothing): the estimated disparity map is a piece-wise smooth surface passing through the initial disparity map (see Lecture 12a)

Better methods exist

For the latest and greatest:

- Middlebury dataset and leader board: http://vision.middlebury.edu/stereo/
- KITTI dataset and leader board:
http://www.cvlibs.net/datasets/kitti/eval scene flow.php?benchmark=stereo

Using Deep Learning

Ground truth

Things to Remember

- Disparity
- Triangulation: simplified and general case, linear and non linear approach
- Choosing the baseline
- Correspondence problem: epipoles, epipolar lines, epipolar plane
- Stereo rectification

Reading

- Szeliski book $2^{\text {nd }}$ edition: Chapter 12
- Autonomous Mobile Robot book (link): Chapter 4.2.5
- Peter Corke book: Chapter 14.3

Understanding Check

Are you able to answer the following questions?

- Can you relate Structure from Motion to 3D reconstruction? What's their difference?
- Can you define disparity in both the simplified and the general case?
- Can you provide a mathematical expression of depth as a function of the baseline, the disparity and the focal length?
- Can you apply error propagation to derive an expression for depth uncertainty? How can we improve the uncertainty?
- Can you analyze the effects of a large/small baseline?
- What is the closest depth that a stereo camera can measure?
- Are you able to show mathematically how to compute the intersection of two lines (linearly and non-linearly)?
- What is the geometric interpretation of the linear and non-linear approaches and what error do they minimize?
- Are you able to provide a definition of epipole, epipolar line and epipolar plane?
- Are you able to draw the epipolar lines for two converging cameras, for a forward motion situation, and for a side-moving camera?
- Are you able to define stereo rectification and to derive mathematically the rectifying homographies?
- How is the disparity map computed?
- How can one establish stereo correspondences with subpixel accuracy?
- Describe one or more simple ways to reject outliers in stereo correspondences.
- Is stereo vision the only way of estimating depth information? If not, are you able to list alternative options? (make link to other lectures)

