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Abstract

We present a unifying framework to solve several com-
puter vision problems with event cameras: motion, depth
and optical flow estimation. The main idea of our frame-
work is to find the point trajectories on the image plane
that are best aligned with the event data by maximizing
an objective function: the contrast of an image of warped
events. Our method implicitly handles data association be-
tween the events, and therefore, does not rely on additional
appearance information about the scene. In addition to ac-
curately recovering the motion parameters of the problem,
our framework produces motion-corrected edge-like images
with high dynamic range that can be used for further scene
analysis. The proposed method is not only simple, but more
importantly, it is, to the best of our knowledge, the first
method that can be successfully applied to such a diverse
set of important vision tasks with event cameras.

1. Introduction

Unlike traditional cameras, which produce intensity im-
ages at a fixed rate, event cameras, such as the Dynamic Vi-
sion Sensor (DVS) [1], have independent pixels that report
only intensity changes (called “events”) asynchronously, at
the time they occur. Each event consists of the spatio-
temporal coordinates of the brightness change (with mi-
crosecond resolution) and its sign1. Event cameras have
several advantages over traditional cameras: a latency in the
order of microseconds, a very high dynamic range (140 dB
compared to 60 dB of traditional cameras), and very low
power consumption (10 mW vs 1.5 W of traditional cam-
eras). Moreover, since all pixels capture light indepen-
dently, such sensors do not suffer from motion blur. In sum-
mary, event cameras represent a paradigm shift since visual
information is: (i) sampled based on the dynamics of the
scene, not based on an external clock2, and (ii) encoded us-

1An animation of the principle of operation of event cameras can be
found in the video of [2] https://youtu.be/LauQ6LWTkxM?t=25

2If nothing moves in the scene, no events are generated. Conversely, the
number of events (samples) increases with the amount of scene motion.
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Figure 1: (a) Events (dots) caused by a moving edge pat-
tern and point trajectories in a space-time region of the im-
age plane, colored according to event polarity (blue: pos-
itive event, i.e., brightness increase; red: negative event,
i.e., brightness decrease). (b) Visualization of the events
along the direction of the point trajectories highlighted in
(a); corresponding events line up, revealing the edge pat-
tern that caused them. Our approach works by maximiz-
ing the contrast of an image of warped events similar to
(b). A video demonstrating our framework is available at:
https://youtu.be/KFMZFhi-9Aw

ing an asynchronous and sparse stream of events, which is
fundamentally different from a sequence of images. Such a
paradigm shift calls for new methods to process visual in-
formation and unlock the capabilities of these novel sensors.

Algorithms for event cameras can be classified accord-
ing to different criteria. Depending on the way in which
events are processed, two broad categories can be dis-
tinguished: 1) methods that operate on an event-by-event
basis, where the state of the system (the estimated un-
knowns) can change upon the arrival of a single event
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]; and 2) methods
that operate on groups of events. This category can be fur-
ther subdivided into two: 2a) methods that discard temporal
information of the events and accumulate them into frames
to re-utilize traditional, image-based computer vision algo-
rithms [16, 17, 18], and 2b) methods that exploit the tempo-
ral information of the events during the estimation process,
and therefore cannot re-utilize traditional computer vision
algorithms (sample applications of these methods include
variational optical flow estimation [19], event-based multi-
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view stereo [20, 21], rotational motion estimation [22], fea-
ture tracking [23], pose estimation [24] and visual-inertial
odometry [25, 26, 27]).

Event-by-event–based methods rely on the availability of
additional appearance data, in the form of grayscale images
or a photometric map of the scene, which may be built from
past events or provided by additional sensors. Then, each
incoming event is compared against such appearance data
and the resulting mismatch is used to update the system
unknowns. In contrast, methods that operate on groups of
events do not rely on prior appearance data. Instead, they
aggregate the information contained in the events to esti-
mate the unknowns of the problem. Since each event car-
ries little information and is subject to noise, several events
must be processed together to yield a sufficient signal-to-
noise ratio for the problem considered.

Both categories present methods with advantages and
disadvantages and current research focuses on exploring the
possibilities that each category has to offer. Filters, such as
the Extended Kalman filter, are the dominant framework of
the event-by-event–based type of methods. In contrast, for
the groups-of-events–based category, only ad-hoc solutions
for every problem have been proposed. We present the first
unifying framework for processing groups of events while
exploiting their temporal information (i.e., category 2b).

Contribution. This paper presents the first unifying
framework that allows to tackle several important estima-
tion problems for event cameras in computer vision. In a
nutshell, our framework seeks for the point trajectories on
the image plane that best fit the event data, and, by doing
so, is able to recover the parameters that describe the rela-
tive motion between the camera and the scene. The method
operates on groups of events, exploiting both their spatio-
temporal and polarity information to produce accurate re-
sults. In contrast to event-by-event–based approaches, our
method does not rely on additional appearance information
and it can be used both for estimation problems with very
short characteristic time (optical flow) as well as for prob-
lems with longer estimation time (monocular depth esti-
mation). Moreover, our framework implicitly handles data
association between events, which is a central problem of
event-based vision. Additionally, the framework produces
motion-corrected event images, which approximate the im-
age gradients that caused the events. These images can
serve as input to more complex processing algorithms such
as visual-inertial data fusion, object recognition, etc.

The rest of the paper is organized as follows. Section 2
illustrates the main idea behind our framework on a simple
example: optical flow estimation. Then, we generalize it
and apply it to other problems, such as depth estimation
(Section 7), rotational motion estimation (Section 8) and
motion estimation in planar scenes (Section 3.3). Section 4
concludes the paper.
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Figure 2: Events are warped according to point trajectories
described by motion parameters θ , resulting in an image of
warped events H(x;θ). The contrast of H measures how
well events agree with the candidate point trajectories.

2. Contrast Maximization Framework
Since event cameras report only pixel-wise brightness

changes, it implies that, assuming constant illumination,
there must exist (i) relative motion between the camera
and the objects in the scene and (ii) sufficient texture (i.e.,
brightness gradients) for events to be generated. Hence,
event cameras respond to the apparent motion of edges. In
the absence of additional information about the appearance
of the scene that caused the events, the problem of extract-
ing information from the events becomes that of establish-
ing correspondences between them, also known as data as-
sociation, i.e., establishing which events were triggered by
the same scene edge. Since moving edges describe point
trajectories on the image plane, we expect corresponding
events to be triggered along these trajectories. Fig. 1 il-
lustrates this idea with a simple example where the point
trajectories are nearly straight lines. We propose to find the
point trajectories that best fit the event data, as in Fig. 1b.
Let us describe our framework using a simple yet important
example (optical flow estimation) and then let us generalize
it to other estimation problems.

2.1. Example: Optical Flow Estimation

Assume that we are given a set of events E
.
= {ek}Ne

k=1 in
a spatio-temporal neighborhood of a pixel, as in Fig. 1a,
and the goal is to estimate the optical flow (i.e., motion
vector) at that pixel based on the information contained in
the events. Recall that each event ek

.
= (xk,yk, tk, pk) con-

sists of the space-time coordinates of a predefined bright-
ness change together with its polarity pk ∈ {−1,+1} (i.e.,
the sign of the brightness change).

As is standard, optical flow is measured over a small time
interval (ideally infinitesimal), and the trajectories followed
by points on the image plane are locally straight, approxi-
mated by translations: x(t) = x(0)+ vt, where x .

= (x,y)>

and v is the velocity of the point (i.e., the optical flow).
Hence, we expect corresponding events (triggered by the
same edge) to lie on such trajectories (Fig. 1b).

Our framework, summarized in Fig. 2, consists of count-
ing the events or summing their polarities along the straight
trajectories given by a candidate optic flow and computing
the variance ( f ) of the resulting sums (H), which measures
how well the events agree with the candidate trajectories.
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(a) f (θ) as a function of the optical flow θ ≡ v. For
illustration, we show in (b) the associated images of
warped events H for three candidate velocities.
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(b) Warped events
H(x;θ), for θ i, i =
0,1,2 in (a).

Figure 3: Optical Flow (patch-based) estimation. The cor-
rect optical flow can be found as the one that maximizes the
contrast (Fig. 3a) of the images of warped events (Fig. 3b).

More specifically, to sum the events, we warp them to a ref-
erence time tref using the proposed trajectories. Following
the local-flow–constancy hypothesis [28], we assume that
the flow is constant in the space-time neighborhood spanned
by the events, and warp the events, ek 7→ e′k, according to

x′k
.
= W(xk, tk;θ) = xk− (tk− tref)θ , (1)

with θ = v the candidate velocity. Then, we build an image
patch of warped events:

H(x;θ)
.
=

Ne

∑
k=1

bk δ (x−x′k), (2)

where each pixel x sums the values bk of the warped events
x′k that fall within it (indicated by the Dirac delta δ ). If
bk = pk, the polarities of the events along the trajectories
are summed; whereas, if bk = 1, the number of events along
the trajectories are computed. In the rest of the paper, we
use bk = 1 and show comparisons with bk = pk in the sup-
plementary material. Finally, we compute the variance of
H, which is a function of θ ,

f (θ) = σ
2(H(x;θ)

) .
=

1
Np

∑
i, j
(hi j−µH)

2, (3)

where Np is the number of pixels of H = (hi j) and µH
.
=

1
Np

∑i, j hi j is the mean of H.
Fig. 3a shows the variance (3) as a heat map, for a

given set of events E . Observe that it is smooth and has
a clear peak. The images of warped events correspond-
ing to three different motion vectors θ i in Fig. 3a are dis-
played in Fig. 3b (represented in pseudo-color, from blue

(few events) to red (many events)). As can be seen, the
warped events are best aligned in the image H that exhibits
highest variance, i.e., highest contrast (and sharpness), at-
tained at θ

∗ = argmaxθ f (θ) ≈ (−40,0)> pixel/s. Hence,
our strategy for optical flow estimation consists of seeking
the parameter θ that maximizes (3).

As anticipated in Section 1, our method produces
motion-corrected image patches H, which approximate the
gradients of the brightness pattern that caused the events
(also illustrated in Fig. 1b). More specifically, H represents
the brightness increment along the candidate trajectories.
For optimal trajectories, this increment is proportional to
∇I · v, the dot product of the brightness gradient and the
motion vector (due to the optical flow constraint). These
motion-corrected image patches can be useful for feature
tracking, such as [27, 29].

Our framework implicitly defines data association be-
tween the events. Replacing the delta in (2) with a smooth
approximation, δ (x) ≈ δε(x), such as a Gaussian, δε(x−
µ)

.
= N (x; µ,ε2Id) (we use ε = 1 pixel), we see that ev-

ery warped event e′k influences every other event e′n, and
the amount of influence is given by δε(x′n− x′k), which, in
the case of a Gaussian, is related to the Euclidean distance
‖x′n−x′k‖. Hence, our method has a built-in soft data asso-
ciation between all events, implicitly given by a function of
the distance between them: the further away warped events
are, the less likely they are corresponding events.

2.2. General Description of the Framework

The example in the previous section contains all the in-
gredients of our event-processing framework. Let us now
describe it in a more generic manner, to apply to other esti-
mation problems (in Section 3).

We propose to find the point trajectories on the image
plane that best fit the event data. More specifically, assume
we are given a set of events, E

.
= {ek}Ne

k=1, typically con-
tinuous in time, as in Fig. 1, acquired while the camera
and/or the scene undergo some motion for which we have
a geometric model of how points move on the image plane.
Such a geometric model depends on the particular estima-
tion problem addressed (optical flow, depth estimation, mo-
tion estimation). The goal is to estimate the parameters of
the model based on the information contained in the events.
We assume that estimation is possible, in that the model
parameters (unknowns) are shared among multiple events
(fewer parameters than events) and are observable. To solve
the problem, we build candidate point trajectories x(t) ac-
cording to the motion and scene models, and measure the
goodness of fit between these trajectories and the event data
E using an objective function (3) (see Fig. 2). Then, we use
an optimization algorithm to seek for the point trajectories
(i.e., the parameters θ of the motion and scene models) that
maximize the objective function. As shown in Fig. 3b, good



trajectories are those that align corresponding events, and so
the objective function that we propose measures how well
events are aligned along the candidate trajectories. There
are two by-products of our framework: (i) the estimated
point trajectories implicitly establish correspondences be-
tween events (i.e., data association), (ii) the trajectories can
be used to correct for the motion of the edges.

2.2.1. Steps of the Method. Our method consists of three
main steps:

1. Warp the events into an image H, according to the point
trajectories defined by the above-mentioned geometric
model and candidate parameters θ .

2. Compute a score f based on the image of warped events.

3. Optimize the score or objective function with respect to
the parameters of the model.

In step 1, events are geometrically transformed taking
into account their space-time coordinates and other known
quantities of the point-trajectory model, ek 7→ e′k(ek;θ),
resulting in a set of warped events E ′

.
= {e′k}

Ne
k=1. The

warp, such as W in (1), transports each event along the
point trajectory that passes through it, until a reference
time is reached (e.g., the time of the first event): ek

.
=

(xk,yk, tk, pk) 7→ (x′k,y
′
k, tref, pk)

.
= e′k.

In step 2, an image or histogram of warped events H(E ′)
is created (using their polarities pk or their count), and an
objective function (a measure of dispersion) is computed,
f (H(E ′)). We use as dispersion metric the variance of H,
which is known as contrast in image processing terminol-
ogy, and we seek to maximize it. The objective function
represents the statistics of the warped events E ′ according
to the candidate model parameters θ , hence it measures the
goodness of fit of θ to the event data E .

In step 3, an optimization algorithm, such as gradient
ascent or Newton’s method, is applied to obtain the best
model parameters, i.e., the point trajectories on the image
plane that best explain the event data. The framework is
flexible, not relying on any specific optimizer.

2.2.2. Contrast Maximization. By maximizing the vari-
ance of the image of warped events H(E ′(θ)) we favor the
point trajectories that accumulate (i.e., align) the warped
events on the image plane. The accumulation of warped
events in some regions and the dispersion of events in other
regions (since the total number of events N is constant)
produces an image H with a larger range, and, therefore
a higher contrast, which is clearly noticeable if H is dis-
played in grayscale, and hence the name contrast maximiza-
tion framework. In essence, the goal of the optimization
framework is to “pull apart” the statistics (e.g., polarity) of
the regions with and without events, in a similar way to the
segmentation approach in [30].
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Figure 4: Depth Estimation. Left: trajectories of a 3D point
(the eye of the bird) relative to the camera. The point closer
to the camera has larger apparent motion, and therefore
typically describes longer trajectories on the image plane.
Right: Trajectories of an image point (the image center, in
black), for different depth values with respect to a reference
view while the camera undergoes a 6-DOF motion. Each
depth value produces a different point trajectory; yielding a
1D family of curves. This is an example of a 2 s segment
from a sequence of the Event Camera Dataset [31].

Contrast is related to image sharpness, and therefore, an
observed effect is that the images of warped events with
higher contrast are also sharper (see Fig. 3b), which is con-
sistent with the better alignment of the warped events. The
image of warped events associated to the optimal parame-
ters is a motion-corrected edge-like image, where the “blur”
(trace of events) due to the moving edges has been removed
(cf. Fig. 3b top and bottom). Such edge-like image repre-
sents the brightness-increment patterns causing the events.

2.2.3. Computational Complexity. The core of our
method is the computation of the image of warped
events (2), whose computational complexity is linear on the
number of events to be warped. The computation of the
contrast (3) is typically negligible compared to the effort
required by the warp. The overall cost of the method also
depends on the choice of algorithm used to maximize the
contrast, which is application-dependent.

3. Sample Applications

Our framework is flexible and generic. In this section,
we use it to solve various important problems in vision.

3.1. Depth Estimation

Consider the scenario of an event camera moving in a
static scene and the goal is to infer depth. That is, consider
the problem of event-based multi-view stereo (EMVS) [21,
32] (3D reconstruction) from a set of events E = {ek}Ne

k=1.
By assumption of the problem, the pose of the event camera
P(t) is known for every time t, where P denotes the pro-
jection matrix of the camera. We assume that the intrinsic
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Figure 5: Depth Estimation. Alignment of warped events
x′k(θ), for different depth values θ ≡ Z, measured with re-
spect to the reference view (RV). In (b), the patch of warped
events (2) is represented in pseudo-color, from few events
aligned (blue) to many events (red). At the correct depth,
the patch has the highest variance (i.e., image contrast).

parameters of the camera are also known3 and that lens dis-
tortion has been removed. Following the framework in the
previous section, we first specify the geometry of the prob-
lem, the warp (i.e., point trajectories) and the score function.

In this scenario, the trajectory of an image point obtained
by projection of a 3D point is parametrized by the known
6-DOF motion of the camera and the depth of the 3D point
with respect to a reference view. This yields a 1D fam-
ily of curves in the image plane, parametrized by depth.
Each depth value gives a different curve followed by the
point in the image plane. This is illustrated in Fig. 4. As in
the Space-Sweep approach of [21], we consider a reference
view provided by a virtual camera at some location, for ex-
ample, at a point along the trajectory of the event camera
(see Fig. 5). Let us formulate the problem for a small patch
in the reference view. For simplicity, we assume that all the
points within the patch have the same depth, which is some
candidate value θ = Z. The three main steps of our method
(Section 2.2.1) are as follow:

1. (a) Transfer the events (triggered at the image plane of
the moving event camera) onto the reference view using
the candidate depth parameter, as illustrated in Fig. 5.
An event ek is transferred, using the warp (W), onto the

3An event camera may be intrinsically calibrated using event-based al-
gorithms, such as [2] or, as in the case of the DAVIS [33], using standard
algorithms [34] since the DAVIS comprises both a traditional frame cam-
era and an event sensor (DVS) in the same pixel array.

event e′k = (x′k, tref, pk) with

x′k = W(xk,P(tk),Pv;θ), (4)

where P(t) is the pose of the event camera at time t and
Pv

.
= P(tref) is the pose of the virtual camera. The warp

is the same as in space-sweep multi-view stereo: points
are transferred using the planar homography [35, ch. 13]
induced by a plane parallel to the image plane of the ref-
erence view and at the given depth (see Fig. 5).
(b) Create an image (patch) of warped events (2) by
counting the number of events along the candidate point
trajectories (e.g., Fig. 4).

2. Measure the goodness of fit between the events and the
depth value θ by means of the variance (i.e., contrast) of
the image of warped events (3).

3. Maximize the contrast by varying the depth parameter θ .

Fig. 5 illustrates the above steps. In Fig 5a an event cam-
era with optical center C(t) moves in front of a scene with
an object (gray box). Two events ei = (xi, ti, pi), i = {1,2}
are transferred from the event camera to a reference view
(RV) via the warp (4) using three candidate depth values
(in front of, at the object and behind it, respectively). The
points transferred using depth values in front and behind
the object are not aligned, x1 6= x2, whereas the points
transferred using the correct value are aligned, x1 = x2.
Event alignment is more noticeable in Fig. 5b, with patches
of warped events (2) from a sequence of the Event Cam-
era Dataset [31]. At the correct depth, the warped events
present a better alignment, and therefore higher contrast
(and sharpness) of H (here represented in pseudo-color in-
stead of grayscale), compared to the cases of wrong depth
values (labeled as “close” and “far”).

Fig. 6 shows depth estimation for two patches in a se-
quence from the dataset [31]. The sequence was recorded
with a DAVIS camera [33], which outputs asynchronous
events and grayscale frames (at 24 Hz). The frame in Fig. 6a
is only shown for visualization purposes; our method pro-
cesses solely the events. Fig. 6b shows how the contrast of
the warped events (3) varies with respect to the depth pa-
rameter θ , for each patch in Fig. 6a. The actual warped
events (2) at selected depth values are displayed in Fig. 6c.
Remarkably, the contrast curves (Fig. 6b) have a smooth
variation, with a clear maximum at the correct depth value.
The warped events in (2) show, indeed, a better alignment
(i.e., higher contrast) at the correct depth than at other depth
values. As in Fig. 5b, a pseudo-color scale is used to repre-
sent the pixels of H, from few events aligned (blue) to many
events (red). Additionally, note that, although the contrast
curves are from different patches, the “spread” of the curves
increases with the value of the peak depth, which is consis-
tent with the well-known fact that, in short-baseline stereo,
depth uncertainty grows with depth. Finally, observe that



(a) Two patches on the reference
view. Monochrome image used
only for visualization purposes.
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(b) Contrast vs. depth for the events corresponding
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(c) Warped events for the 4 increasing depth values on each
curve in (b). Top: right patch in (a), with best depth ≈ 1.1 m
(black line in (b)). Bottom: left patch in (a), with best depth
≈ 1.8 m (blue line in (b)).

Figure 6: Depth estimation by contrast maximization. Two patches are analyzed.

the patches of warped events with highest contrast (high-
lighted in green in Fig. 6c), resemble the edgemap (gradient
magnitude) of the grayscale patches in Fig. 6a, showing that
indeed the events are triggered by moving edges and that
our framework recovers, as a by-product, an approximation
to edgemap of the scene patch that caused the events.

The above procedure yields the depth value at the cen-
ter of the patch in the reference view. Repeating the pro-
cedure for every pixel in the reference camera for which
there is sufficient evidence of the presence of an edge pro-
duces a semi-dense depth map. This is shown in Fig. 7,
using a sequence from the dataset [31]. In this experiment,
we computed the contrast (3) on patches of 3× 3 pixels in
the reference view; the patches H were previously weighted
using a Gaussian kernel, H(x)← w(x)H(x), to emphasize
the contribution of the center pixel. A map of the maxi-
mum contrast for every pixel of the reference view is shown
in Fig. 7b. For visualization purposes, contrast is repre-
sented in negative form, from bright (low contrast) to dark
(high contrast). This map is used to select the points in the
reference view with largest contrast, which are the points
for which depth estimation is most reliable. The result is a
semi-dense depth map, which is displayed in Fig. 7a, color
coded, overlaid on a grayscale frame. To select the points,
we used adaptive thresholding [36, p.780] on the contrast
map, and we used a median filter to remove spike noise from
the depth map. As it can be observed, depth is most reliable
at strong brightness edges of the scene. The depth map is
visualized as a color-coded point cloud in Figs. 7c and 7d.

If the images of warped events (2) are interpreted as
depth slices of the disparity space image (DSI) formed by
event back-projection [21], our framework estimates depth
by selecting DSI regions with largest local variance (con-
trast). Moreover, our framework allows to iteratively refine
the depth values (e.g., by gradient ascent on the objective
function (3)) so that they are continuous, i.e., they are not
constrained to be the discrete set of values imposed by a
voxelization of the DSI.

(a) Depth map overlaid on frame. (b) Contrast map.

(c) 3D reconstruction, front view (d) 3D reconstruction, oblique view.

Figure 7: Depth Estimation. 3D reconstruction on the
slider depth sequence of the dataset [31]. One million
events in a timespan of 3.4 s were processed. In (a), (c)
and (d), depth from the reference view is color-coded, from
red (close) to blue (far), in the range of 0.45 m to 2.4 m. In
the supplementary material we show how the reconstruction
changes with the number of events processed.

3.2. Rotational Motion Estimation

Our framework can also be applied to the problem of
rotational motion estimation [9, 22, 37, 38]. Consider the
scenario of an event camera rotating in a static scene and
the goal is to estimate the camera’s ego-motion using the
events. As in Section 7, assume that the camera is calibrated
(known intrinsic parameters and no lens distortion).



(a) Warped events using θ = 0. Read
arrows indicate the true motion of
the edges causing the events.

(b) Warped events using estimated
angular velocity θ

∗, which produces
motion-corrected, sharp edges.

Figure 8: Rotational Motion Estimation. Images of warped
events, displayed in grayscale to better visualize the motion
blur due to event misalignment and the sharpness due to
event alignment. The direction of the rotation axis is clearly
identifiable on the left-image as the point with least motion
blur and where fewer events are triggered. Dataset [31].

The type of motion and the motion parameters them-
selves enforce constraints on the trajectories that image
points can follow. For example, in a rotational motion with
constant velocity, all point trajectories are parametrized by
3-DOFs: the angular velocity. Our framework aligns events
by maximizing contrast over the set of admissible trajecto-
ries: those compatible with the rotational motion.

Let us specify the steps of the method (Section 2.2.1) for
the problem at hand. Consider all events E over a small
temporal window [0,∆t]; small enough so that the angu-
lar velocity ω can be considered constant within it, and
let tref = 0. In calibrated coordinates, image points trans-
form according to x̄(t) ∝ R(t)x̄(0), where x̄ ∝ (x>,1)> are
homogeneous coordinates and R(t) = exp(ω̂t) is the rota-
tion matrix of the (3D) motion [35, p. 204]: exp is the ex-
ponential map of the rotation group SO(3) [39] and ω̂ is
the cross-product matrix associated to ω . In step 1, events
are warped to tref according to the point-trajectory model:
x′k = W(xk, tk;θ), with θ = ω the angular velocity and

W(xk, tk;θ) ∝ R−1(tk)x̄k = exp(−θ̂ tk)x̄k. (5)

The image of warped events is then given by (2). Ap-
proaches like [22] use the event polarity, which is indeed
beneficial if the motion is monotonic (i.e., does not change
direction abruptly). However, as we show, polarity is not
needed (see Figs. 8 and 9). In steps 2 and 3, the objective
function (3) is maximized using standard optimization al-
gorithms such as non-linear conjugate gradient [40].

Figure 8 shows the result of our method on a group E
of Ne = 30000events acquired while the camera is rotat-
ing approximately around its optical axis. As it can be seen,
our method estimates the motion parameters that remove the
motion blur from the image of warped events, providing the
sharpest image. Fig. 9 reports the accuracy of our method

16.5 18.5 20.5 22.5
Time [s]

-400

-300

-200

-100

0

100

200

300

400

A
ng

ul
ar

 v
el

oc
ity

 [
de

g/
s]

tilt
pan
roll

(a) Angular velocity: estimated
(solid) vs. ground truth (dashed).
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(b) Angular velocity error: esti-
mated vs. ground truth for 4 subin-
tervals of 15 s.

Figure 9: Rotational Motion Estimation. Accuracy evalua-
tion. The boxes rotation sequence of the dataset [31]
contains 180 million events and reaches speeds of up to
670 ◦/s. Comparatively, our method produces small errors.

using the same dataset and error metrics as [22]. Both
plots compare the recovered rotational motion of the event
camera against ground truth. Fig. 9a shows the estimated
and ground-truth motion curves, which are almost indistin-
guishable relative to the magnitude of the motion. Fig. 9b
further analyzes the error between them in four subinter-
vals of 15 s with increasing angular velocities (and there-
fore increasing errors). Our method is remarkably accurate,
with RMS errors of approximately 20 ◦/s with respect to
peak excursions of 670 ◦/s, which translates into 3 % error.
Moreover, our approach does not need a (panoramic) map
of the scene to estimate the rotational motion, as opposed to
approaches [9, 38]. It also does not need to estimate optical
flow prior to fitting a 3D motion, as in [41]. In a nutshell,
our approach acts like a visual event-based gyroscope.

3.3. Motion Estimation in Planar Scenes

In this section, we show how our framework can be ap-
plied to the problem of motion estimation under the assump-
tion of a planar scene (i.e., planar homography estimation),
which allows to extract the ego-motion parameters of the
camera (rotation and translation) as well as the parameters
of the plane containing the scene structure.

In this scenario, image points transform according to
x̄(t)∝ H(t)x̄(0), where x̄ ∝ (x>,1)> are homogeneous coor-
dinates and H(t) is a 3×3 homography matrix. For simplic-
ity, we use t = 0 as reference time, and so H(0) = Id is the
identity. The point trajectories described by x(t) have the
same number of DOFs as H(t), which, for short time inter-
vals in which we consider H to be constant, is 8-DOF. We
aggregate events along the point trajectories x(t) defined by
candidate homographies H(t), and maximize the contrast of
the resulting image of warped events to recover the homog-
raphy that best explains the event data.
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(b) Events E ′ maximizing contrast.

(c) Zoom-in on (a) and (b) for comparison of warped images.

Figure 10: Motion Estimation in Planar Scenes. (a) In-
put events, with each pixel counting the number of events
triggered; (b) Warped events using the planar homography
parameters θ = {ω,v/d,n} that maximize image contrast:
ω = (0.086,0.679,0.439)>, v/d = (0.613,−0.1,0.333)>,
n = (0.07,0.075,−0.995)>.

In case of a homography induced by a plane with ho-
mogeneous coordinates π = (n>,d)>, we have [35] H(t) ∝

R(t)− 1
d t(t)n>, where P(0) ∝ (Id|0) is the projection ma-

trix of the reference view and P(t) ∝ (R(t)|t(t)) is the pro-
jection matrix of the event camera at time t. For t ∈ [0,∆t]
in a short time interval, we may compute P(t) from the lin-
ear and angular velocities of the event camera, v and ω ,
respectively, by assuming that they are constant within the
interval: R(t) = exp(ω̂t) and t(t) = vt. Hence, we may
parametrize H(t)≡ H(t;θ) by θ = (ω>,v>/d,φ ,ψ)> ∈R8,
where the 2-DOFs (φ ,ψ) parametrize the unit vector of the
plane n (e.g., latitude-longitude parameters). The parame-
ters v/d account for the well-known fact that, without ad-
ditional information, there is a scale ambiguity: the decom-
position of a planar homography [35, 39] only provides the
direction of the translation, but not its magnitude.

Hence, we consider the events E in a short time interval,
[0,∆t], and map them onto the image plane of the reference
view using the warp specified in calibrated coordinates by

W(xk, tk;θ) ∝ H−1(tk;θ) x̄k. (6)

Then, the image of warped events is built as usual (2), and
its variance (3), i.e., contrast, is computed to assess the qual-
ity of the parameters θ on event alignment.

Fig. 10 shows our method in action. The scene consists
of a freely moving event camera viewing a rock poster [31].
In Fig. 10a, a set E of Ne = 50000events is displayed in an
event image, with each pixel counting the number of events
triggered within it, i.e., as if the identity warp (x′k = xk)
was used in (2). Fig. 10b shows the result of contrast

(a) Without motion correction.

(b) With motion correction.

Figure 11: Motion Estimation in Planar Scenes. Scene
structure (black dots) and camera motion (green trajectory)
obtained by a visual-inertial algorithm [27], with and with-
out motion-corrected event images.

maximization: for the optimal parameters θ , the warped
events are better aligned with each other, resulting in an
image (2) with higher contrast than that in Fig. 10a. Ob-
serve that event alignment by contrast maximization pro-
duces a motion-corrected image, which is specially notice-
able at texture edges: in Fig. 10a (no motion correction)
edges are blurred, whereas in Fig. 10b edges are sharp.

Fig. 11 shows another example of our framework. In
this sequence, an event camera is hand-held, looking down-
wards while a person is walking outdoors over a brick-
patterned ground. Event images are used in a visual-inertial
algorithm [27] that recovers the trajectory of the event cam-
era and a sparse 3D point map of the scene. The motion-
corrected images resulting from homography estimation
(cf. Fig. 10b) produce better results, which can be seen by
the more flat point cloud representing the floor in the scene.

4. Conclusion
In this work, we have focused on showing the capabil-

ities of our framework to tackle several important vision
problems for event cameras (3D reconstruction, optical flow
and motion estimation), which we believe is its most re-
markable characteristic. We showed that there is a simple,
principled way to process events in all these problems in
the absence of additional appearance information about the
scene: maximizing event alignment along point trajectories
on the image plane.

Event cameras have multiple desirable properties: low
latency, very high dynamic range and low power consump-
tion. We believe this work is a significant step forward into
leveraging the advantages of these novel sensors in real-
world scenarios, overcoming the limitations of conventional
imaging sensors.
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5. Multimedia Material
A video showing the application of our framework to

solve several computer vision problems with event cameras
is available at: https://youtu.be/KFMZFhi-9Aw.

6. Optical Flow Estimation
Our framework seeks for the point trajectories on the im-

age plane that best fit the event data and it is able to take into
account all the information contained in the events: space-
time coordinates and polarity (i.e., sign) of the brightness
changes. More specifically, event polarity is incorporated
in the framework during the creation of the image patches
of warped events (equation (2) in the paper).

Figure 12 compares the elements of our framework (im-
age patches of warped events H and objective function f )
for a set of events whose optical flow we want to estimate,
in two scenarios:

1. Using polarity (bk = pk), i.e.,

H(x;θ) =
Ne

∑
k=1

pk δ (x−x′k(θ)). (7)

2. Not using polarity (bk = 1), i.e.,

H(x;θ) =
Ne

∑
k=1

δ (x−x′k(θ)). (8)

For illustration purposes, the intensity frame in Fig. 12a
shows the patch corresponding to the considered events
(yellow rectangle). However, such an intensity frame is not
used in our framework.

Without using polarity, Figs. 12b and 12c show the con-
trast function f (θ) and images of warped events (8) for
three candidate point trajectories, specified by the three
optical flow vectors θ i, i = 0,1,2, that are displayed in
Fig. 12a. Conversely, Figs. 12d and 12e show the corre-
sponding elements if event polarity is used. The image

patches of warped events are color coded from blue (low)
to red (high). If polarity is not used (Fig. 12b), blue means
absence of events (small values of (8)), whereas red indi-
cates large accumulation of events (large values of (8)). If
polarity is used (Fig. 12e), green means absence of events,
whereas red and blue indicate large accumulation of posi-
tive and negative events, respectively, according to (7).

As it can be observed by comparing Figs. 12c and 12d,
both objective functions provide approximately the same
optimal velocity (peak of the objective function) θ ≡ v ≈
(−40,0) pixel/s. However, the basin of attraction of the
optimal value is slightly narrower and more pronounced if
polarity is used than if it is not taken into account, as can be
noted since Figs. 12c and 12d are displayed using the same
color range. This can be explained by comparing the image
patches of warped events in Figs. 12b and 12e. In case of
thin edge structures like the ones in the considered patch, if
events are warped so that nearby edges overlap, and there-
fore their opposite event polarities cancel, then the contrast
function f (θ) greatly decreases (thus reducing the width of
the contrast peak, i.e., its basin of attraction). Conversely, if
event polarity is not used, the alignment of nearby edges
does not produce cancellation, and therefore the contrast
decreases more slowly, due to the warped edges becoming
further apart.

7. Depth Estimation

To illustrate how depth estimation improves as more
events are processed, we carried out an experiment with the
slider depth sequence from the dataset [31]. We re-
constructed the scene with the same steps as those used for
Fig. 7 in the paper, but varying the number of events pro-
cessed, Ne, between 20000 and 1 million. The results are
displayed in Fig. 13. As it can be seen, as more events are
processed (corresponding to a larger camera baseline), the
reconstructed point cloud becomes more accurate and less
noisy. This effect is also visible in the semi-dense depth
maps overlaid on the grayscale frame of the reference view.
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(a) Intensity frame showing the patch corresponding to the considered events
(yellow rectangle) and three candidate velocities (optical flow): θ 0 (red arrow),
θ 1 (blue arrow) and θ 2 (green arrow).

θ 0 (wrong)

θ 1 (better)

θ 2 (optimal)

(b) Warped events
H(x;θ), for {θ i}2

i=0
in Fig. 12c.
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(c) Contrast function f (θ) for H in (8). For illus-
tration, we show in Fig. 12b the images of warped
events (8) corresponding to the three candidate ve-
locities in Fig. 12a.
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(d) Contrast function f (θ) for H in (7). For illus-
tration, we show in Fig. 12e the images of warped
events (7) corresponding to the three candidate ve-
locities in Fig. 12a.

θ 0 (wrong)

θ 1 (better)

θ 2 (optimal)

(e) Warped events
H(x;θ), for {θ i}2

i=0
in Fig. 12d.

Figure 12: Optical Flow (patch-based) estimation. Comparison of objective functions and images of warped events using
event polarity (Figs. 12e and 12d) or not using it (Figs. 12b and 12c). In either case, the optical flow is estimated by finding
the maximizer of the contrast f (θ).

8. Rotational Motion Estimation

A comparison between the types of warped event images
H obtained depending on whether they store the event count
(bk = 1) or the balance of polarities (bk = pk) is shown in
Fig. 14.

In the top row of Fig. 14, polarity is not used. For vi-
sualization purposes, event images in this row (Figs. 14a
and 14b) are displayed in negative form (bright means lack

of events and dark means abundance of events)1. As it is
observed, per-pixel event accumulation (Fig. 14a) produces
a motion-blurred image since events are triggered by mov-
ing edges. Contrarily, the image of warped events using the
estimated motion parameters (Fig. 14b) presents a higher
contrast and sharpness than the image in Fig. 14a, which in-
dicates a better alignment of the events along the candidate

1Figs. 14a and 14b are the same type of images as in Fig. 12b, but with
a different color scheme: from white to black instead of from blue to read.



(a) Ne = 20000events (b) Ne = 100000events (c) Ne = 1000000events
Baseline: 1.9 cm Baseline: 9.5 cm Baseline: 85 cm
Time span: 0.06 s. Time span: 0.33 s. Time span: 2.93 s.

Figure 13: Depth Estimation for different subsets of events, with increasing time span and baseline. Top row: depth map
overlaid on grayscale frame. Bottom row: 3D reconstruction (point cloud). Depth is color-coded, from red (close) to blue
(far), in the range of 0.45 m to 2.4 m.

point trajectories on the image plane. The effect of having
a higher contrast can also be noticed by comparing the dis-
tribution of values (i.e., histogram) of the images of warped
events, as shown in Fig. 14c. The image with larger con-
trast (Fig. 14b) has a larger range of values than the image
with lower contrast (i.e., darker pixels and larger amount of
dark pixels in Fig. 14b with respect to Fig. 14a), and, since
the range of values is non-negative and with a peak at zero,
this means that the mass distribution of values shifts toward
larger (positive) numbers as the contrast increases (i.e., the
red curve in Fig. 14c becomes the blue curve as contrast
increases).

The previous observations are also applicable to the
second row of Fig. 14, where event polarity is used (cf.
Figs. 14d and 14e). The average gray level corresponds to
pixels where no events were generated; dark regions corre-
spond to negative events, and bright regions correspond to
positive events. Indeed, the image of warped events H ob-

tained with the optimal parameters (Fig. 14e) has a larger
contrast than the one with per-pixel polarity accumulation
(Fig. 14d). The larger contrast of Fig. 14e over Fig. 14d is
evidenced by the larger range of values and larger amount
of brighter and darker pixels, as reported in the comparison
of the distributions (Fig. 14f) of pixel values in both images.

We quantified the effect of using or not using the event
polarity for rotational motion estimation on sequences from
the dataset [31]. Each sequence has a 1 minute length and
contains about 100-200 million events. Ground truth cam-
era motion is provided by a sub-millimeter motion capture
system. Each rotational motion sequence starts with rota-
tions around each camera axis, and then is followed by ro-
tations in all 3-DOFs. In addition, the speed of the mo-
tion increases as the sequence progresses. Fig. 15 shows
the comparison of the results of our framework, not us-
ing event polarity (bk = 1), against ground truth on the
poster rotation sequence. The curves corresponding to



the 3-DOFs of the event camera on the entire sequence are
shown in Fig. 15a. This plot shows the increasing speed
of the motion, with excitations close to ±1000 ◦/s. Fig-
ures 15b and 15c are zoomed-in versions of Fig. 15a, with
rotations dominantly around each axis of the event camera
(Fig. 15b) or in arbitrary axes (Fig. 15c), respectively. Our
framework provides very accurate results, as highlighted by
the very small errors: the lines of our method and those of
the ground truth are almost indistinguishable at this scale.
These errors are better noticed in the boxplots of Fig 16a,
where errors are reported in sub-intervals of 15 s, in accor-
dance with the increasing speed of the motion in the se-
quence. Fig. 16b reports the boxplot errors in case of using
the event polarity (bk = pk) to build the image of warped
events. As it can be observed by comparing both boxplots
(Figs. 16a and 16b), using event polarity does not signif-
icantly change the results in this scenario. We measured
Root Mean Square (RMS) angular velocity errors over the
entire sequence of: 25.96 ◦/s (without using polarity) and
24.39 ◦/s (using polarity). Both are relatively small, com-
pared to the peak velocities close to 1000 ◦/s, i.e., in the
order of 2.5 % error.



(a) Warped events for angular velocity θ = 0 (i.e.,
no motion correction). Using bk = 1 in the image of
warped events H.

(b) Warped events using the estimated angular ve-
locity θ

∗, which produces motion-corrected, sharp
edges.
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(c) Histograms of the negative of the
images in Figs. 14a and 14b. The peak
at zero corresponds to the white pixels.

(d) Warped events angular velocity θ = 0 (i.e., no mo-
tion correction). Using polarity, bk = pk , in the image
of warped events H.

(e) Warped events using the estimated angular ve-
locity θ

∗, which produces motion-corrected, sharp
edges. Using polarity, bk = pk , in H.
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(f) Histograms of Figs. 14d and 14e.
The peak at zero corresponds to the
gray pixels.

Figure 14: Rotational Motion Estimation. Images of warped events, displayed in grayscale to better visualize the motion blur
due to event misalignment and the sharpness due to event alignment. Top: Not using polarity (bk = 1 in the image of warped
events H); bottom: using polarity (bk = pk in H). Sequence dynamic rotation from the dataset [31].
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(a) Whole sequence. Rotational motion with increasing velocity, reaching
speeds close to ±1000◦/s.
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(b) Zoom of Fig. 15a, showing a series of rotations dominantly along one
axis: pan (rotation around Y axis), tilt (rotation around X axis) and roll
(rotation around Z axis).
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(c) Zoom of Fig. 15a, showing rotations in arbitrary directions, with speed
close to 1000 ◦/s.

Figure 15: Rotational Motion Estimation. Comparison of
the estimated angular velocity (solid line) using our frame-
work with bk = 1 (i.e., without event polarity) against
ground truth (dashed line). Sequence poster rotation

in the dataset [31].
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(a) Without polarity

1 2 3 4
Sub-interval #

-80

-60

-40

-20

0

20

40

60

80

A
ng

ul
ar

 v
el

oc
ity

 e
rr

or
 [

de
g/

s]

tilt
pan
roll

(b) With polarity

Figure 16: Rotational Motion Estimation. Angular velocity
error (estimated vs. ground truth) for the same sequence,
with or wihout taking into account event polarity in the
image of warped events H. Sequence poster rotation

from the dataset [31].
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