
Introduction to SIFT (Scale-Invariant Feature Transform)

Contents

1 Preliminaries 1

1.1 Outline of the exercise . 1
1.2 Scale-invariance . 1

2 Part 1: Keypoint detection 1

2.1 Generate the DoG Pyramid . 2
2.2 Locate keypoint in scale and space . 3

3 SIFT descriptor: Histogram of Oriented Gradients 4

4 Matching descriptors 4

4.1 Comparison with Harris Corner Detector and Image Patch Descriptor 5
4.2 (Optional) Rotational Invariance for SIFT Descriptors 5

The goal of this exercise is to learn the basic concepts of the SIFT algorithm. More speci�cally,
you will learn to �nd SIFT keypoints and descriptors.

1 Preliminaries

1.1 Outline of the exercise

In this exercise, you will implement the SIFT algorithm and understand why it is better than a corner
detector (implemented in the last exercise). Note that this is a simpli�ed version of the original SIFT
algorithm, enough to familiarize with the underlying concepts.

1.2 Scale-invariance

In the last exercise, we saw the Harris corner detectors. They are rotation-invariant, which means,
even if the image is rotated, we can �nd the same corners. It is obvious because corners remain
corners in rotated image also. But what about scaling? A corner may not be a corner if the image is
scaled. For example, consider the simple image in Fig. 1. An image patch around a corner changes
appearance when zoomed in. Hence, Harris corners are not scale invariant.

To solve this problem, Scale Invariant Feature Transform (SIFT) extracts image features from
scale-invariant keypoints. Then, it describes the selected point with a history of gradient (HoG)
descriptor. Given the complexity of the detection pipeline, you will implement a detector that is
only scale-invariant but not rotation invariant.

2 Part 1: Keypoint detection

Since we want scale invariance, we will not only need to de�ne the location of interest points in
the image (where the descriptor is going to be calculated), but also to associate them with a scale.

1

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Robotics and Perception Group,
University of Zurich. 2 PART 1: KEYPOINT DETECTION

Figure 1: Harris corners are scale dependent.

As discussed in the lecture, it has been shown that the Laplacian of Gaussian kernel is optimal for
this task (under certain assumptions) [Lindeberg'94]. To approximate e�ciently the Laplacian of
Gaussians, we use the Di�erence of Gaussians (DoG). DoG is obtained as the di�erence of Gaussian
blurring of an image with two di�erent σ; e.g. σ and kσ. The keypoint position and scale is found
as local maxima or minima across the di�erence of consecutive smoothed images.

Figure 2: Interest points are at extrema of DoGs.

This process is repeated at di�erent resolutions of the image. The result is illustrated in the
following image:

Figure 3: Di�erent octaves of DoG �lter.

Once DoGs are computed, they are searched for local extrema over scale and space. Speci�cally,
one pixel in an layer is compared with its 8 neighbors as well as 9 pixels in next scale and 9 pixels
in previous scales (Fig. 2). If it is a local extrema, it is a potential keypoint.

2.1 Generate the DoG Pyramid

A Gaussian pyramid is a set of volumes of gaussian blurred images stacked over the scale dimension
(Fig. 3, in green). A DoG pyramid is formed as the di�erence of two subsequent layers in the

2

Robotics and Perception Group,
University of Zurich. 2 PART 1: KEYPOINT DETECTION

Gaussian pyramid (Fig. 3, in blue). In this exercise we will use the following parameters to generate
a DoG pyramid:

1. Number of scales per octave, S=3.

2. Number of octaves, O=5.

3. Base sigma, σo = 1.6.

For each octave, you will generate a volume that contains 5 DoGs. What you have to do is:

1. Load the image

2. For index s = [−1, ..., S + 1], blur the input image with a gaussian with standard deviation
σ = 2

s
S σ0 for σ0 =1.6.

3. Compute the di�erence of subsequent levels (should be 5 in total), and stack them along the
scale axis to produce a 3D Volume.

4. Repeat 2-3 for a total of 5 octaves. Remember that the input of octave o is the image down-
sampled by factor of 2o, with o = [0, ..., O − 1].

Refer to Fig. 4 for a visualization of the task. You should now have 5 3D volumes containing DoGs
for all the considered octaves. We will now see how to process them to obtain interest points.

Figure 4: Generation of DoG pyramid.

2.2 Locate keypoint in scale and space

As seen in the class, a keypoint is de�ned as a voxel in the DoG that is higher than its neighbors
in scale and space (Fig.2). However, since nearby points are likely to generate the same response to
the DoG kernel we will have to �rst perform non-maximum suppression. As explained in the class,
without non-maximum suppression we would have instability of matching, since extrema would be
very dense in only few image regions. More speci�cally, the steps to �nd keypoints are (not necessarily
in that order):

1. Suppress all points smaller in magnitude than a threshold C = 0.04, since they are likely to be
generated by noise.

3

Robotics and Perception Group,
University of Zurich. 4 MATCHING DESCRIPTORS

2. For any given point in the DoG volume, select it as keypoint only if all of the 26 (8 + 9 +
9) nearest neighbors in scale and space have a lower DoG magnitude, as depicted in Fig .2,.
Discard the keypoints found in the lowest and highest layer of the DoG Pyramid. This will
result in a volume of dimension height/(o+1)×width/(o+1)×S for which the last dimension
corresponds to the scale. You might want to have a look at the matlab functions imdilate() or
movmax() to maximize the e�ciency of your code.

3. Repeat the process for each octave.

3 SIFT descriptor: Histogram of Oriented Gradients

After keypoints have been localized in scale-space, a 128 dimensional descriptor is associated to each
of them. This descriptor encodes the histogram of gradients in a local patch around the keypoint
(Fig. 5). To implement it, you will have to do the following steps:

1. If the keypoint has been detected in octave o ∈ {0, 1, 2, 3, 4} and scale ∈ {1, ..., O ∗ 3}, the
image used to compute gradients should be the blurred image with index s = (scale−1)−S ∗o
from octave o.

2. Generate the norm and the orientation of the x, y-spatial gradients of the selected image. To
generate them, you can use the matlab function imgradient(I). Extract a 16× 16 patch around
the keypoint (+7 pix up-left, +8 down-right) for both the norm and orientation.

3. Scale the norm of the gradients by their distance to the keypoint center (Fig. 5). To do it,
multiply elementwise the gradient norms with a gaussian centered in the keypoint and with
σw = 1.5 ∗ 16 (have a look at the matlab function fspecial).

4. Divide the 16 × 16 patch into 16 sub-patches of 4 × 4 size. For each sub-block, an 8 bin
orientation histogram is created. Before creating the histogram, each gradient is weighted
according to its scaled norm. Use the provided function weightedhistc() to generate it.

5. Concatenation of this histograms results in a 128 bin values: the descriptor of the keypoint.
Remember to normalize the descriptor such that it has unit norm. This will make it invariant
to linear illumination changes.

We recommend you to start implement this the easy way and then optimize for e�ciency. Note:
This is a simpli�cation of the original implementation of SIFT.

Figure 5: The SIFT descriptor is a concatenation of histogram of gradients in a patch around the
keypoint.

4 Matching descriptors

After you've associated a descriptor for each keypoint, you are now ready to use it for matching
keypoints in di�erent images. There are several ways to match descriptors calculated from di�erent
images. In the last exercise, we have seen how to use an adaptive distance threshold to match
descriptors from two di�erent images. In this exercise, we will use a more robust approach based on
distance comparison: the ratio test. Result should look like the ones in Fig. 6. Follow these steps to
get matches:

4

Robotics and Perception Group,
University of Zurich. 4 MATCHING DESCRIPTORS

1. Let us de�ne F1 ∈ RN×128and F2 ∈ RM×128 the matrices containing descriptors for image 1
and image 2.

2. Use F1 and F2 together with the Matlab function matchFeatures() to generate matches. Set
the argument 'MatchThreshold' to 100, 'MaxRatio' to 0.8 and 'Unique' to true.

3. Use the Matlab function showMatchedFeatures() to show the discovered matches.

Figure 6: Matches calculated by SIFT descriptors.

4.1 Comparison with Harris Corner Detector and Image Patch Descriptor

What are the di�erences between matches provided by SIFT and what you implemented last week?
Are the keypoints in the same location? Compare the feature matches obtained by the two methods.
What is (approximately) the ratio of true positives between the 2 methods?

4.2 (Optional) Rotational Invariance for SIFT Descriptors

Currently the SIFT descriptors are not rotation invariant. This means that key points from im-
ages with di�erent orientation cannot be matched. Try this out by setting the parameter rota-
tion_img2_deg in the main �le to some nonzero value. For a relative rotation of 60◦ the result
should look something like in Fig. 7. In this part of the exercise we will implement a method for
making the descriptors rotation invariant. The main steps for this part are:

1. Compute the principal gradient direction for each feature by looking at its surrounding patch.
Do this by (a) computing a histogram over orientations and (b) selecting the most common
angle.

2. Compute a canonical form of the feature patch. Do this by rotating the patch so that its prin-
cipal gradient direction shows to the right. You can use the provided function derotatePatch()
which takes an image, the keypoint location, patch size (in this case 16× 16) and the principal
gradient direction and returns the rotated patch.

Once you have implemented this, the result should look more like in Fig. 8.

5

Robotics and Perception Group,
University of Zurich. 4 MATCHING DESCRIPTORS

Figure 7: Wrong matches due to changing orientation.

Figure 8: Correct matches due to rotation invariance.

6

	Preliminaries
	Outline of the exercise
	Scale-invariance

	Part 1: Keypoint detection
	Generate the DoG Pyramid
	Locate keypoint in scale and space

	SIFT descriptor: Histogram of Oriented Gradients
	Matching descriptors
	Comparison with Harris Corner Detector and Image Patch Descriptor
	(Optional) Rotational Invariance for SIFT Descriptors

