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Appearance-only SLAM at Large Scale with
FAB-MAP 2.0

Mark Cummins and Paul Newman, Mobile Robotics Group, University of Oxford

Abstract— We describe a new formulation of
appearance-only SLAM suitable for very large scale
place recognition. The system navigates in the space of
appearance, assigning each new observation to either
a new or previously visited location, without reference
to metric position. The system is demonstrated
performing reliable online appearance mapping and
loop closure detection over a 1,000 km trajectory, with
mean filter update times of 14 ms. The scalability
of the system is achieved by defining a sparse
approximation to the FAB-MAP model suitable
for implementation using an inverted index. Our
formulation of the problem is fully probabilistic and
naturally incorporates robustness against perceptual
aliasing. We also demonstrate that the approach
substantially outperforms the standard tf-idf ranking
measure. The 1,000 km data set comprising almost
a terabyte of omni-directional and stereo imagery is
available for use, and we hope that it will serve as a
benchmark for future systems.

I. Introduction

This paper is concerned with the problem of appearance-
based place recognition at very large scales. We refer
to the problem as “appearance-only SLAM” because we
aim to address more than localization. Our approach
can also determine when an observation comes from a
location that has not previously been seen. Thus the system
can incrementally construct a map, and so is a SLAM
technique. However, our formulation of the problem is
quite different to typical SLAM algorithms. We make no
attempt to keep track of the vehicle or of landmarks in
metric co-ordinates. Instead we parameterize the world as
a set of discrete locations, and estimate their positions in
an appearance space. Because distinctive places can be
recognized even after unknown vehicle motion, appearance-
only SLAM techniques provide a natural solution to the
problems of loop-closure detection, multi-session mapping
and kidnapped robot problems. The approach is thus
complementary to metric SLAM methods that are typically
challenged by these scenarios.

In prior work we have considered systems suitable for
appearance-only SLAM at the scale of a few kilometers
[12], and approximate inference techniques which extend
applicability to a few tens of kilometers [11]. This paper
builds on the probabilistic framework introduced in those
papers, but modifies the structure of the model to support
efficient inference over maps several orders of magnitude
larger than previously considered. In seeking such a model,
there are some compromises to be made between the

Fig. 1: Segments of the 1,000 km evaluation trajectory
(ground truth).

fully Bayesian approach of our prior work, and a system
which meets the efficiency needs of large scale applications.
We describe a formulation which preserves almost all
the key features of our earlier model, but allows for the
exploitation of the sparsity of visual word data to achieve
large reductions in computation and memory requirements.
We validate the work on a 1,000 km data set; to date this
is the largest experiment conducted with systems of this
kind by a considerable margin. The data set, including
omni-directional imagery, 20Hz stereo imagery and 5Hz
GPS, is available for use by other researchers and is
intended to serve as a benchmark for future systems. The
paper concludes with an extensive performance evaluation
for the new system, including an analysis of a modified
visual vocabulary learning stage which is shown to increase
performance, and a comparison to the commonly used tf-
idf ranking measure, which is considerably out-performed
by our new approach. The material was first presented in
[13]; here we expand the presentation with a more detailed
treatment and additional results.

II. Related Work

While appearance-based navigation has a long history
within robotics [17], [40], there has been considerable
development in the field in the last five years. Appearance-
based navigation and loop closure detection systems oper-
ating on trajectories on the order of a few kilometers in
length are now commonplace [1], [20], [7], [42], [25]. Indeed,
place recognition systems similar in character to the one
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described here are now used even in single-camera SLAM
systems designed for small-scale applications [18], [41].

Use of these systems on the scale of tens of kilometers
or more has also begun to be feasible. In the largest
appearance-based navigation experiment we are aware of
[28], a set of biologically inspired approaches is employed.
The system achieved successful loop closure detection and
mapping in a collection of more than 12,000 images from a
66 km trajectory, with processing time of less than 100 ms
per image. The appearance-recognition component of the
system is based on direct template matching, so scales
linearly with the size of the environment. Operating at a
similar scale, Bosse and Zlot describe a place recognition
system based on distinctive keypoints extracted from
2D lidar data [4], and demonstrate good precision-recall
performance over an 18 km suburban data set. Related
results, though based on a less scalable correlation-based
submap matching method, were also described in [5].

Another recent research direction is the development of
integrated systems which combine appearance and metric
information. Olson described an approach to increasing
the robustness of general loop closure detection systems by
using both appearance and relative metric information to
select a single consistent set of loop closures from a larger
number of candidates [32]. The method was evaluated over
several kilometers of urban data and shown to recover high-
precision loop closures even with the use of artificially poor
image features. Blanco et al. described a system where
metric and topological position information is considered
jointly in the estimator [3]. More loosely coupled systems
were also described in [24], [30].

Considerable relevant work also exists on the more
restricted problem of global localization. For example,
Schindler et al. describe a city-scale location recognition
system [37] based on the vocabulary tree approach of
[31]. The system was demonstrated on a 30,000 image
data set from 20 km of urban streets, with retrieval times
below 200 ms. Also of direct relevance is the research on
content-based image retrieval systems in the computer
vision community, where systems have been described that
deal with more than a million images [34], [9], [31], [21]
. However, the problem of retrieval from a fixed index
is considerably easier than the full loop-closure problem,
because it is possible to tune the system directly on the
images to be recognized, and the difficult issue of new place
detection does not arise. We believe the results presented
in this paper represent the largest scale system that fully
addresses these issues of incrementality and perceptual
aliasing.

III. Probabilistic Model

The probabilistic model employed in this paper is
based directly on the scheme outlined in [12], [14]. For
completeness, we recap it briefly here.

The basic data representation used is the bag-of-words
approach developed in the computer vision community
[39]. Features are detected in raw sensory data, and these
features are then quantized with respect to a vocabulary,

yielding visual words. The vocabulary is learned by clus-
tering all feature vectors from a set of training data. The
Voronoi regions of the cluster centres then define the set of
feature vectors that correspond to a particular visual word.
The continuous space of feature vectors is thus mapped
into the discrete space of visual words, which enables the
use of efficient inference and retrieval techniques. In this
paper, the raw sensor data of interest is imagery, processed
with the SURF feature detector [2], though in principle
the approach is applicable to any sensor or combination of
sensors, and we have explored multi-sensory applications
elsewhere [35].

FAB-MAP, our appearance-only SLAM system, defines
a probabilistic model over the bag-of-words representation.
An observation of local scene appearance captured at time
k is denoted Zk =

{
z1, . . . , z|v|

}
, where |v| is the number

of words in the visual vocabulary. The binary variable zq,
which we refer to as an observation component, takes value
1 when the qth word of the vocabulary is present in the
observation. Zk is used to denote the set of all observations
up to time k.

At time k, our map of the environment is a collection
of nk discrete and disjoint locations Lk = {L1, . . . , Lnk

}.
Each of these locations has an associated appearance model,
which we parameterize in terms of unobservable “scene
elements”, eq. A detector yields visual word observations
zq, which are noisy measurements of the existence of the
underlying scene element eq. The appearance model of a
location in the map is our belief about the existence of
each scene element at that location:

Li :
{
p(e1 = 1 | Li), . . . , p(e|v| = 1 | Li)

}
(1)

where each of the scene elements eq are generated inde-
pendently by the location. A detector model relates scene
elements eq to feature detection zq. The detector is specified
by

D :
{
p(zq = 1 | eq = 0), false positive probability.
p(zq = 0 | eq = 1), false negative probability.

(2)

A further salient aspect of the data is that visual words do
not occur independently – indeed, word occurrence tends
to be highly correlated. For example, words associated
with car wheels and car doors are likely to be observed
simultaneously. We capture these dependencies by learning
a tree-structured Bayesian network using the Chow Liu
algorithm [8], which yields the optimal approximation to
the joint distribution over word occurrence within the space
of tree-structured networks. Importantly, tree-structured
networks also permit efficient learning and inference even
for very large visual vocabulary sizes. The graphical model
of the system is shown in Figure 2.

Given our probabilistic appearance model, localization
and mapping can be cast as a recursive Bayes estimation
problem, closely analogous to metric SLAM. A pdf over
location given the set of observations up to time k is given
by:
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Fig. 2: Graphical model of the system. Locations Li indepen-

dently generate scene elements eq. Visual word detections zq

are conditioned on scene elements eq via the detector model,

and on each other via the Chow Liu tree.

p(Li | Zk) =
p(Zk | Li,Zk−1)p(Li | Zk−1)

p(Zk | Zk−1)
(3)

Here p(Li | Zk−1) is our prior belief about our loca-
tion, p(Zk | Li,Zk−1) is the observation likelihood, and
p(Zk | Zk−1) is a normalizing term. We briefly discuss
the evaluation of each of these terms below. For a more
detailed treatment we refer readers to [12], [14].

Observation Likelihood: To evaluate the observation
likelihood, we assume independence between the current
and past observations conditioned on the location, and
make use of the Chow Liu model of the joint distribution,
yielding:

p(Zk | Li)=p(zr | Li)
|v|∏
q=2

p(zq | zpq , Li) (4)

where zr is the root of the Chow Liu tree and zpq is the
parent of zq in the tree. After further manipulation (see
[12]), each term in the product can be further expanded
as:

p(zq | zpq
, Li) =

∑
seq∈{0,1}

p(zq | eq = seq
, zpq

)p(eq = seq
| Li)

(5)
which can be evaluated explicitly.

In some configurations of the system we find that these
likelihoods can be too peaked, so we introduce an optional
smoothing step:

p(Zk | Li) −→ σp(Zk | Li) +
(1− σ)
nk

(6)

where nk is the number of places in the map and σ is
the smoothing parameter, which we typically set to be
slightly less than 1. This smoothing is helpful because our
model inevitably captures only some of the dependencies

between visual words – as some dependencies are not
captured, individual visual words seem more informative
than they actually are, and so loop closure probabilities
have a tendency to be over-confident. See [14] for further
discussion.

Location Prior: The location prior p(Li | Zk−1) is
obtained by transforming the previous position estimate
via a simple motion model. The model assumes that if the
vehicle is at location i at time k − 1, it is likely to be at
one of the topologically adjacent locations at time k.

Normalization: In contrast to a localization system,
a SLAM system requires an explicit evaluation of the
normalizing term p(Zk | Zk−1). The normalizing term
converts the appearance likelihood into a probability of
loop closure, by accounting for the possibility that the
current observation comes from a location not currently
in the robot’s map. Intuitively p(Zk | Zk−1) is a measure
of the distinctiveness of an observation, and thus directly
related to the problem of perceptual aliasing.

To calculate p(Zk | Zk−1), we divide the world into
the set of places in our current map, Lk, and the set of
unmapped places Lk, so that

p(Zk | Zk−1) =
∑
m∈Lk

p(Zk | Lm)p(Lm | Zk−1) (7)

+
∑
u∈Lk

p(Zk | Lu)p(Lu | Zk−1) (8)

The second summation cannot be evaluated directly be-
cause it involves all possible unknown locations. However,
if we have a large set of randomly collected location models
Lu, (readily available from previous runs of the robot or
other suitable data sources such as, for our application,
Google Street View), we can approximate the summation
by Monte Carlo sampling. Assuming a uniform prior over
the samples, this yields:

p(Zk | Zk−1) ≈
∑
m∈Lk

p(Zk | Lm)p(Lm | Zk−1) (9)

+p(Lnew | Zk−1)
ns∑
u=1

p(Zk | Lu)
ns

(10)

where ns is the number of samples used, and p(Lnew |
Zk−1) is our prior probability of being at a new location.

Data Association: Once the pdf over locations is com-
puted, a data association decision is made. The observation
Zk is used either to initialize a new location, or update
the appearance model of an existing location. Recall
that an appearance model consists of a set of beliefs
about the existence of scene elements at the location,{
p(e1 = 1 | Li), . . . , p(e|v| = 1 | Li)

}
. Each component of

the appearance model can be updated according to:

p(ei = 1 | Lj ,Zk) =
p(Zk | ei = 1, Lj)p(ei = 1 | Lj ,Zk−1)

p(Zk | Lj)
(11)
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In the case of new locations, the values p(ei = 1 | L)
are first initialized to the marginal probability p(ei = 1)
derived from training data, and then the update is applied.

IV. A Model for Scalable Navigation

We now discuss the development of a system suitable for
appearance-based navigation in environments where the
map may contain hundreds of thousands of places or more.
The probabilistic model employed in the new system builds
directly on the one outlined in Section III. For a highly
scalable system, we modify the model so that it is suitable
for implementation using an inverted index architecture.
We begin by introducing the inverted index.

A. Inverted Indices
An inverted index is a simple data structure used

throughout information retrieval, which enables efficient
search of large document collections [26]. If a document is
considered as a list of word identifiers, then an inverted
index maintains the inverse mapping from words to docu-
ments. That is, for each word in the vocabulary, a list of
the documents in which that word appears is maintained.
Finding all documents that contain a word or set of words
is then a very cheap operation. In computational terms,
the inverted index approach scales to document collections
that are arbitrarily large [6].

B. FAB-MAP 2.0 - An Approximation to the FAB-MAP
Model

We would like to find a probabilistic model that can take
advantage of the scalability of inverted index techniques.
Our FAB-MAP model is not directly implementable using
an inverted index, because the appearance likelihood p(Zk |
Li) requires evaluation of Equation 4,

∏|v|
q=2 p(zq | zpq

, Li).
Every observation component contributes to the appear-
ance likelihood, including negative observations – those
where zq = 0 (words not detected in the current image).
As such, it does not have the sparsity structure that enables
inverted index approaches to scale. The computation
pattern is illustrated in Figure 3. Perhaps surprisingly, we
have found that simply ignoring the negative observations
has a detrimental impact on place recognition performance.
Thus we seek a formulation that will enable efficient
implementation, but preserve the information inherent in
the negative observations.

To enable an inverted index implementation, we modify
the probabilistic model in two ways. Firstly, we place some
restrictions on the probabilities in the location models.
Recalling Equation 1, location models are parametrized
as
{
p(e1 = 1 | Li), . . . , p(e|v| = 1 | Li)

}
, that is, by a set

of beliefs about the existence of scene elements that
give rise to observations of the words in the vocabulary.
Let p(eq | Li)|{0} denote one of these beliefs, where the
subscript {0} indicates the history of observations that have
been associated with the location. Thus {0} denotes one
associated observation with zq = 0, and {0, 0, 1} denotes
three associated observations, with zq = 1 in one of those

observations. Further, let p(eq | Li)|0 indicate that in all
observations associated with the location, zq =0.

In the FAB-MAP 1.0 model described in Section III,
p(eq | Li)|0 can take on a range of values – for example,
p(eq | Li)|{0} 6= p(eq | Li)|{0,0}, as the belief in the non-
existence of the scene elements increases as more supporting
observations become available. While this is in some sense
the correct model, a consequence is that the appearance
likelihood due to a negative observation is just as expensive
to calculate as that due a positive observation. Negative
observations greatly outnumber positive ones, and are also
generally less informative. In FAB-MAP 2.0, we restrict the
model in such a way that the negative observations can be
evaluated much more efficiently, at the cost of a partial loss
of information content. The model is a compromise between
a correct Bayesian approach as in FAB-MAP 1.0, and a
system suitable for large scale applications. Concretely, in
FAB-MAP 2.0, the model is restricted so that p(eq | Li)|0
must take the same value for all locations; it is clamped at
the value p(eq | Li)|{0}. This restriction enables an efficient
likelihood calculation, illustrated in Figure 4. Note that
when a location in the map has been observed only once,
this new model is identical to FAB-MAP 1.0. It is only
when we have multiple observations of a location that
some descriptive power is lost (because terms of the form
p(eq | Li)|{0,0} remain clamped at the value p(eq | Li)|{0})
. However, the effect of this change is negligible in practice
because the location model built from a single observation
is typically already sufficient to enable the location to be
recognized.

To understand why the restricted model enables an
efficient implementation, consider the calculation of one
term of the observation likelihood, as per Equation 5, across
all locations in the map. That is, we wish to compute the
term p(zq | zpq , Li) for some visual word q, for all Li in
the map. Recalling Section III, the term is given by

p(zq | zpq
, Li) =

∑
seq∈{0,1}

p(zq | eq = seq
, zpq

)p(eq = seq
| Li)

In the unrestricted model, this will involve computing
one term for each location, as illustrated in Figure 4a.

In the restricted model, Figure 4b, the term takes a
single common value for all locations where word q was
not previous observed (in those locations, the word exists
with probabilityp(eq | Li)|0, which determines the value of
Equation 5. We denote this value by p(zq | zpq,L)

∣∣
0

) .

Working with log-likelihoods, and given that the dis-
tribution will later be normalized, the calculation can be
reorganized so that it has a sparse structure (Figure 4c).
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(a) FAB-MAP 1.0, [12]. (b) FAB-MAP 1.0 with
bail out strategy, [11].

(c) FAB-MAP 2.0 (this
paper)

Fig. 3: Illustration of the amount of computation performed by the different FAB-MAP models. The shaded region of
each block represents the appearance likelihood terms p(zq | zpq

, Li) which must be evaluated to compute p(Zk | Li).
In (a), FAB-MAP 1.0, each time a new observation is collected the likelihood must be computed for all words in all
locations in the map. In (b), the pattern is shown from the approximate inference procedure defined in [11], where a
“bail out” strategy discards locations during the course of the computation. Many locations are quickly excluded, so the
number of appearance likelihood terms which must be calculated is greatly reduced. In (c), the fully sparse evaluation
in FAB-MAP 2.0 is shown, which further reduces computation requirements.

(a) Unrestricted Model

(b) Restricted Model

(c) Sparse likelihood update in the restricted model.

Fig. 4: Illustration of the calculation of one term of
Equation 4, i.e. the observation likelihood due to a partic-
ular word in the vocabulary. This example shows a map
with four locations. The total observation likelihood for
a given location, p(Z | L), is calculated by evaluating
the illustrated terms for all words in the vocabulary. In
(a), the model is unrestricted, and the likelihood term
can take a different value for each location. In (b), the
restricted model, the likelihood term in all locations where
the currently considered word was not previously observed
is constrained to take the same value. The calculation can
now be organized so that it has a sparse structure, (c).

This allows for efficient implementation using an inverted
index. The terms shown in Figure 4c can be thought of as
the weights of the votes a word casts for a location.

We emphasize the fact that the restriction we have placed
on the model is slight, and most of the power of the original
model is retained. During the exploration phase, when only
one observation is associated with each location, the two

schemes are identical1. The “fixed” terms p(eq | Li)|0 can
(and do) vary with q (word ID), and in principle also
with time. Treatment of correlations between words, of
perceptual aliasing, and of the detector model remains
unaffected.

The second change we make to the model concerns data
association. Previously, data association was carried out
via Equation 11, updating the beliefs p(eq | Li). Effectively
this amounts to capturing the average appearance of a
location. For example, if a location has a multi-modal
distribution over word occurrence, such as a door that
may be either open or shut, then the location appearance
model will approach the mean of this distribution. In
FAB-MAP 1.0, when computation increased swiftly with
the number of appearance models to be evaluated, this
was a reasonable design choice. For FAB-MAP 2.0 we
switch to representing locations in a sample-based fashion,
which better handles these multi-modal appearance effects.
Locations now consist of a set of appearance models as
defined in Equation 1, with each new observation associated
with the location defining a new such model.

Concretely, a location Li now consists of a set of
samples {l1, l2, ..., lηk

}i where ηk is the number of samples
associated with the location at time k. Each sample l is
a FAB-MAP 1.0 “location model” as defined in Section
III. Previously, each location Li consisted of a single one
of these models whose mean appearance was updated via
Equation 11. In the sample based representation we simply
associate multiple such models with a location, one for
each observation collected from the location. The “samples”
are initialized via Equation 11, but never subsequently up-
dated. When evaluating the observation likelihood during
inference, we compute the expectation over the samples:

p(Zk | Li) =
1
ηk

ηk∑
r=1

p(Zk | lr ∈ Li) (12)

This change to a sample-based representation of the

1Assuming the detector model does not change with time.
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locations is actually required because of the restrictions
placed on scene element existence probabilities in our new
architecture, but we expect it also to be largely beneficial.
In addition to improving our ability to deal with multi-
modal location appearance, it also makes data association
a reversible operation, and would make the implementation
of a scheme that maintains multiple hypotheses over data
association decisions (e.g. [36]) very simple and efficient.
While it means that inference time now increases with every
observation collected, the system is sufficiently scalable that
this is not of immediate relevance, and the greater ability
to deal with variable location appearance is preferred.

C. Implementation

Pseudocode for the main likelihood calculation required
in FAB-MAP is given in Algorithm 1. The complexity of
this implementation is O(#vocab), the number of words in
the visual vocabulary. This straight-forward implementa-
tion is in fact fast enough for practical use, however it can
be improved by a caching scheme which yields an algorithm
with complexity effectively independent of vocabulary size.
The key observation is that for a given word and a given
location, the log-likelihood increments (or “votes”) to be
calculated in Algorithm 1, log( p(zq=sq|zpq =spq ,Li)

p(zq=sq|zpq =spq ,L)|0
), have

four possible states:

Case 1 : (sq = 1, spq
= 1)

Case 2 : (sq = 1, spq
= 0)

Case 3 : (sq = 0, spq
= 1)

Case 4 : (sq = 0, spq
= 0) (13)

which depend on whether or not the word q and its parent
word pq are present in the current observation Zk. As
observations are typically sparse, case four, (sq = 0, spq

=
0), will be by far the most common. We can exploit this fact
by pre-calculating the likelihood of a location Li as if all
votes were from case four. This likelihood is calculated once,
when the location is added to the map, and cached. We
refer to this as the location’s “default likelihood”. When
processing a new observation, we need only adjust the
default likelihood of a location to take account of those
words which actually lie in cases one to three for the
current observation. Calculating this adjustment involves
only those words that are present in the current observation
(cases 1,2), or that are children of these words in the Chow
Liu tree (case 3). The number of words present in a given
observation is typically a small constant independent of
vocabulary size. The number of words that relate to case
three depends on the structure of the Chow Liu tree, and
in pathological cases could still be O(#vocab). However,
in practice we observe it to be a small multiple of the
number of observed words. Pseudocode for the algorithm
which exploits this sparsity is given in Algorithm 2. In our
experiments using a 100,000 word vocabulary, we observed
an order of magnitude speed increase with this approach.

V. Maintaining System Performance at Scale

This section discusses some issues relevant to maintain-
ing system performance when the map is very large. A
geometric verification stage is introduced which we found
to be almost essential in preserving precision on our largest
data sets. We also discuss scalable approaches to visual
vocabulary and Chow Liu tree learning.

A. Geometric Verification

While a navigation system based entirely on the bag-
of-words likelihood is possible (e.g. [12]), we have found
in common with others [34] that a post-verification stage,
which checks that the matched images satisfy geometric
constraints, considerably improves performance. The im-
pact is particularly noticeable as data set size increases -
it is helpful on our 70 km data set but almost essential on
the 1,000 km set.

We apply the geometric verification to a “shortlist” of
the 100 most likely locations (those which maximize p(Zk |
Li,Zk−1)p(Li | Zk−1)) and to the 100 most likely samples
(the location models used to evaluate the normalizing
term p(Zk | Zk−1)). For each of these locations we check
geometric consistency with the current observation using
RANSAC [19]. Candidate interest point correspondences
are derived from the bag-of-words assignment already
computed. Because our aim is only to verify approximate
geometric consistency rather than recover exact pose to
pose transformations, we assume a highly simplified model
where the transformation between poses is constrained
to be a pure rotation about the vertical axis. A single
point correspondence then defines a transformation. Due
to this simplified model, and also because our point
correspondences typically have few outliers, the geometric
verification is very rapid. Only a few RANSAC iterations
are required – we assume 65% inliers and so only 13
RANSAC iterations are needed to recover a model with
an expected 10−6 error rate. The pure-rotation model is a
gross approximation, but given the constrained motion of
our vehicle mounted camera, it is good enough to give a sub-
stantial boost to recognition performance, while imposing
very little computational overhead. We accommodate some
translation between poses by allowing large inlier regions
for point correspondences (up to 50 pixels in x and y, and
a factor of 4 in scale). Typical “consistent” correspondences
are shown in Figure 5. Having recovered a set of inliers
using RANSAC we recompute the location’s likelihood by
setting zq = 0 for all those visual words not part of the
inlier set. A likelihood of zero is assigned to all locations
not subject to geometric verification. For the 1,000 km
experiment, the mean time taken to geometrically verify
and re-rank all 200 shortlisted locations was only 10 ms
and the maximum time was 145 ms.

The post-verification step considerably boosts recogni-
tion performance, however as a method of incorporating
geometric information it is not entirely satisfying. An
interesting alternative to post-verification would be to
build the geometric information directly into the core
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Algorithm 1 Calculation of p(Zk | Li) using the inverted index.
for q in vocabulary do:

//Get all locations where word q
//was observed
locations = inverted_index[q]
for Li in locations do:

//Update the log-likelihood
//of each of these locations
loglikelihood[Li] += log( p(zq=sq|zpq =spq ,Li)

p(zq=sq|zpq =spq ,L)|0
)

Algorithm 2 Log-likelihood update using the inverted index and exploiting observation sparsity.
Update, Part A (Default Likelihood):
//Each location’s likelihood is initialized
//to appropriate “default likelihood”
//which assumes an “null” observation with zq = 0,∀q
//This can be thought of as the sum of “default votes”Dq

//for each observed word at the location
//Dq = log( p(zq=0|zpq =0,Li)

p(zq=0|zpq =0,L)|0
)

//Note that the default likelihood will be
//different for each location.
Initialize_Locations_To_Default_Likelihood()

Update, Part B (Observations such that zq = 1):
//Now, adjust the votes based on the content of the current observation.
for zq in Z, such that zq = 1 do:

//Get all locations where word q
//was observed
locations = inverted_index[q]
for Li in locations do:

//Update the log-likelihood
//of each of these locations
//by removing the default vote Dq

//and adding the appropriate vote.
loglikelihood[Li] += log( p(zq=1|zpq =spq ,Li)

p(zq=1|zpq =spq ,L)|0
)−Dq

Update, Part C (Observations such that zq = 0 and zpq = 1):
//Same as Part B, but for unobserved words that are
//children of observed words in the CL tree.
for zq in Z, such that zq = 0 and zpq

= 1 do:

locations = inverted_index[q]
for Li in locations do:

loglikelihood[Li] += log( p(zq=0|zpq =1,Li)

p(zq=0|zpq =1,L)|0
)−Dq

probabilistic model which ranks locations. Some related
work by colleagues in our lab has recently explored this
approach [33], though not yet in a formulation which can
be evaluated rapidly enough for the scales considered in
this paper.

B. Visual Vocabulary Learning At Large Scale
Clustering: A number of challenges arise in learning

visual vocabularies at large scale. The number of SURF
features extracted from training images is typically very
large; our relatively small training set of 1,921 images

produces 2.5 million 128-dimensional SURF descriptors
occupying 3.2 GB. Even the most scalable clustering algo-
rithms such as k-means are too slow to be practical. Instead
we apply the fast approximate k-means algorithm discussed
in [34], where, at the beginning of each k-means iteration, a
randomized forest of kd-trees [38], [29] is constructed over
the cluster centres, which is then used for fast (approximate)
distance calculations. This procedure has been shown to
outperform alternatives such as hierarchical k-means [31]
in terms of visual vocabulary retrieval performance.

As k-means clustering typically converges only to a
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Fig. 5: A example of geometric verification, showing inliers identified by RANSAC. Note that we are not recovering an
exact pose-to-pose transformation; the correspondences are only approximately geometrically consistent.

local minimum of its error metric, the quality of the
visual vocabulary is sensitive to the initial cluster loca-
tions supplied to k-means. Nevertheless, random initial
locations are commonly used. We have found that this
leads to poor visual vocabularies, because there are very
large density variations in the feature space. In these
conditions, randomly chosen cluster centres tend to lie
largely within the densest region of the feature space, and
the final clustering over-segments the dense region, with
poor clustering elsewhere. For example, in our vehicle-
collected data, huge numbers of very similar features are
generated by road markings, whereas rarer objects (more
useful for place recognition) may only have a few instances
in the training set. Randomly initialized k-means yields
a visual vocabulary where a large fraction of the words
correspond to road markings, with tiny variations between
words. Similar effects were observed by Jurie and Triggs
[23]. Examples are shown in Figure 6.

To avoid these effects, we choose the initial cluster centres
for k-means using a fixed-radius incremental pre-clustering,
where the data points are inspected sequentially, and a
new cluster centre is initialized for every data point that
lies further than a fixed threshold from all existing clusters.
This is similar to the furthest-first initialization technique
[15], but more computationally tractable for large data
sets. We also modify k-means by adding a cluster merging
heuristic. After each k-means iteration, if any two cluster
centres are closer than a fixed threshold, one of the two
cluster centres is reinitialized to a random location.

The modified clustering gives a robust boost to system
performance (Figure 7). We have observed the effect on
multiple data sets and under various different system
configurations (with and without geometric verification,
etc.). Curiously, however, we do not see the effect when
using tf-idf ranking. We have no intuitive explanation for
why tf-idf does not benefit in a similar way to FAB-MAP.

Chow Liu Tree Learning: Chow Liu tree learning is
also challenging at large scale. The standard algorithm
for learning the Chow Liu tree involves computing a
(temporary) mutual information graph of size |v|2, so the
computation time is quadratic in the vocabulary size. For
the 100,000 word vocabulary discussed in Section VII, the
relevant graph would require 80 GB of storage. Happily,

(a) K-means with radius-based initializa-
tion and merging step.

(b) K-means with random initialization.

Fig. 6: The 100 most common visual words in the vo-
cabularies used for the car-based experiments, showing
one exemplar per word. With random initialization (Sub-
figure (b)) k-means tends to over-segment the densest
regions of feature space, leading to a visual vocabulary with
many highly similar visual words (in this case, many words
corresponding to near-identical views of road markings).
Using radius-based initialization and cluster merging (Sub-
figure (a)) produces a visual vocabulary with words that
are better separated in feature space.
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Fig. 7: Precision-recall curves showing the effect of k-means
initialization on overall performance. Performance shown
is for a subset of the 1,000 km data set, ranked according
to the baseline FAB-MAP 2.0 model (i.e. not including
motion model or geometric check). Detector terms were
tuned separately for each vocabulary, so as to make the
comparison fair. The performance difference persists after
geometric re-ranking is added to the model. Curiously, we
do not observe the effect when using tf-idf ranking.

there is an efficient algorithm for learning Chow Liu trees
when the data of interest is sparse [27]. Meilă’s algorithm
has complexity O(s2 log s), where s is a sparsity measure,
equal to the maximum number of visual words present
in any training image. Visual word data is typically very
sparse, with only a small fraction of the vocabulary present
in any given image. This allows efficient Chow Liu tree
learning even for large vocabulary sizes. For example, the
tree of the 100,000 word vocabulary used in Section VII
was learned in 31 minutes on a 3GHZ Pentium IV.

For both the clustering and Chow Liu learning, we
use external memory techniques to deal with the large
quantities of data involved [16].

VI. Data Set

For a truly large scale evaluation of the system, the
experiments in this paper make use of a 1,000 km data set.
The data was collected by a car-mounted sensor array (see
Figure 8), and consists of omni-directional imagery from a
Point Grey Ladybug2, 20Hz stereo imagery from a Point
Grey Bumblebee2, and 5Hz GPS data. Omni-directional
image capture was triggered every 4 meters on the basis
of GPS. The omni-directional images were captured at
1920x512 resolution, and the stereo images at 512x384.

The data set was collected over six days in Decem-
ber, with a total length of slightly less than 21 hours,
and includes a mixture of urban, rural and motorway
environments. The total set comprises 803 GB of imagery
(including stereo) and 177 GB of extracted features. There
are 103,256 omni-directional images, of which 49,493 are
loop closures. The median distance between image captures

2Not used in these results.

Fig. 8: Vehicle and sensor rig used to capture the 70 km and
1,000 km data sets. The rig consists of a Ladybug2 omni-
directional camera and Bumblebee stereo camera, both
from Point Grey Research. The cameras were mounted
approximately three meters above the road surface. GPS
data was collected with a Seres unit from CSI Wireless,
mounted on the roof of the car.

is 8.7 m – this is larger than the targeted 4 m because
the Ladybug2 could not provide the necessary frame rate
during faster portions of the route. The median time
between image captures is 0.48 seconds, which provides
our benchmark for real-time image retrieval performance.

Two supplemental data sets were also collected. A set
of 1,921 omni-directional images collected 30 m apart was
used to train the visual vocabulary and Chow Liu tree,
and also served as the sampling set for the Monte Carlo
integration required in Equation 9. The area where this
training set was collected did not overlap with that of the
test data sets. A second data set of 70 km was also collected
in August, four months prior to the main 1,000 km data
set. This serves as a smaller-scale test of the system. The
data sets are summarized in Table I.

The 1,000 km data set, collected in mid-December,
provides an extremely challenging benchmark for place
recognition systems. Due to the time of year, the sun was
low on the horizon, so that scenes typically have high
dynamic range and quickly varying lighting conditions.
We developed custom auto-exposure controllers for the
cameras that largely ensured good image quality, however,
there is unavoidable information loss in such conditions.
Additionally, large sections of the route feature self-similar
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motorway environments, which provide a challenging test
of the system’s ability to deal with perceptual aliasing.
The smaller data set collected during August features
more benign imaging conditions and will demonstrate
the performance that can be typically expected from the
system.

Finally, collecting a data set of this magnitude highlights
some practical challenges for any truly robust field robotics
deployment. We encountered significant difficulty in keeping
the camera lenses clean – in winter from accumulating
moisture and particulate matter, in summer from fly
impacts. For this experiment we periodically cleaned the
cameras manually – a more robust solution seems a worthy
research topic.

The 70 km data set is available at http://www.robots.
ox.ac.uk/~mobile/EynshamDataset.html (Extension 2),
and the 1,000 km dataset (Extension 3) is available upon
request.

VII. Results

We now present the system performance evaluation.
Overall performance is outlined, the impact of the Chow Liu
tree is examined, and the system is benchmarked against
the common tf-idf weighting function.

A. Test Conditions

The system was tested on the two data sets, respectively
70 km and 1,000 km. As input to the system, we used
128D non-rotationally invariant SURF descriptors. These
features were quantized to visual words using a randomized
forest of eight kd-trees. The visual vocabulary and Chow
Liu tree were trained using the system described in Section
V-B and the 1,921 image training set described in Section
VI. In order to ensure an unbiased Chow Liu tree, the
images in the training set were collected 30 m apart, so that
as far as possible they do not overlap in viewpoint, and thus
approximate independent samples from the distribution
over images.

We investigate two different visual vocabularies, of
10,000 and 100,000 words respectively. The detector model
(Equation 2), the main user-configurable parameter of our
system, was determined by a grid search to maximize
performance on a set of training loop closures. The detector
model primarily captures the effects of variability in SURF
interest point detection and feature quantization error. For
the 10,000 word vocabulary we set p(z = 1 | e = 1) = 0.39
and p(z = 1 | e = 0) = 0.005. For the 100,000 word
vocabulary, the values were p(z = 1 | e = 1) = 0.2 and
p(z = 1 | e = 0) = 0.005. The likelihood smoothing term σ
introduced in Section III was set to 0.99, except in the case
where the geometric check was used, where we found it to be
unnecessary. This means that when the geometric check was
applied, the system could accept a loop closure on the basis
of a single image. Finally, we also investigate the importance
of learning the Chow Liu tree by comparing against a Naive
Bayes formulation which neglects the correlations between
words. We refer to these different system configurations as

Fig. 9: The typical displacement in meters between two
images identified as loop closures. While any pair separated
by less than 40 m is accepted as a true positive, because
the ground truth separation can occasionally be this large,
89% of detected loop closures are separated by less than
5m, and 98% by less than 10 m.

“100k, CL” and “100k, NB”, and similarly for the 10k word
vocabulary.

Performance of the system was measured against ground
truth loop closures determined from the GPS data. GPS
errors and dropouts were corrected manually. Any pair of
matched images that were separated by less than 40 m on
the basis of GPS was accepted as a correct correspondence.
Note that while 40 m may seem too distant for a correct
correspondence, on divided highways the minimum distance
between correct loop closing poses was sometimes as large
as this. Almost all loop closures detected by the system
are well below the 40 m limit: 89% were separated by less
than 5 m, and 98% by less than 10 m (See Figure 9).

We report precision-recall metrics for the system. Pre-
cision is defined as the ratio of true positive loop closure
detections to total detections. Recall is the ratio of true
positive loop closure detections to the number of ground
truth loop closures. Note that images for which no loop
closure exists cannot contribute to the true positive rate,
however they can generate false positives. Likewise true
loop closures which are incorrectly assigned to a “new
place” depress recall but do not impact our precision
metric. These metrics provide a good indication of how
useful the system would be for loop closure detection as
part of a metric SLAM system – recall at 100% precision
indicates the percentage of loop closures that can be
detected without any false positives that would cause
filter divergence. Finally, note that a typical loop closure
consists of a sequence of several images, so even a recall
rate of 20% or 30% is sufficient to detect most loop closure
events, provided that the detections have uniform spatial
distribution.

B. Overall Performance

Overall, we found the system to have excellent perfor-
mance on the 70 km data set, while the 1,000 km data set
was more challenging. Precision recall curves for the two

http://www.robots.ox.ac.uk/~mobile/EynshamDataset.html
http://www.robots.ox.ac.uk/~mobile/EynshamDataset.html
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TABLE I: Data set summary.

Data Set
No. of
Images

No. of
Loop Closures

Median distance
between images

Extracted
Features

Environment

1,000 km 103,256 48,493 8.7 m 177 GB
Motorways, Urban,

Rural
70 km 9,575 4,757 6.7 m 16 GB Urban, Rural

data sets are shown in Figure 10, and given numerically in
Table II. A results video is available online in Extension
1. Loop closing performance is also visualized in the
maps shown in Figures 15 and 16. Loop closures are
often detected even in the presence of large changes in
appearance, typical examples are shown in Figures 17 and
18. It is worth noting also that there are many examples
of loop closures correctly detected by FAB-MAP but not
by GPS, particularly under foliage and in city centres.

The performance contributions of the motion model and
the geometric verification step are analysed in Figure 10
and presented numerically in Table II. The geometric check
in particular is useful in maintaining recall at higher levels
of precision. The motion model is largely unnecessary on
the 70 km set. On this set we detect 44% of all pose-to-
pose correspondences at 100% precision, without using any
temporal information. These loop closures are detected on
the basis of a single image. At 99% precision, the recall
rises to 69.9%. On the 1,000 km set, the motion model
makes a more noticeable contribution. Note, however, that
the motion model we use is very weak. Stronger motion
constraints, for example from a visual odometry system,
would be expected to have a much larger impact. In
combination with such motion information, it seems that
it should be possible to achieve close to 100% recall on the
70 km set.

The effect of vocabulary size and the Chow Liu tree
on performance is shown in Figure 11 and Table III.
In common with other authors [31], [34], we find that
performance increases strongly with vocabulary size. The
Chow Liu tree also boosts performance on all data sets
and at all vocabulary sizes. The effect is weaker at the very
highest levels of precision. We discuss this in more detail
in the next section.

The recall rate for the 70 km data set is 48.4% at 100%
precision, rising to 73.2% at 99% precision. The spatial
distribution of these loop closures is uniform over the
trajectory – thus essentially every pose will be either
detected as a loop closure, or a lie within a few meters
of a loop closure. There are two short segments of the
trajectory where this is not the case, one in a forest with
poor lighting conditions, another in open fields with few
visual landmarks. For practical purposes this data set can
be considered “solved”.

By contrast, the recall for the 1,000 km data set at
100% precision is only 3.1%. However, this figure requires
careful interpretation – the data set contains hundreds
of kilometers of motorways, where the environment is
essentially devoid of distinctive visual features (see Figure
21). It is perhaps not reasonable to expect appearance-

based loop closure detection in such conditions. To examine
performance more closely, we considered separately the
results for portions of the trajectory where the vehicle is
travelling below 50 km/h (mainly urban areas). We refer to
this evaluation as“1,000 km Urban” in Tables II and III. For
these images (31% of the data set) the recall is 6.5% at 100%
precision, rising to 18.5% at 99% precision. Note that the
retrieval here is performed against the complete 1,000 km
data set, the only salient difference being the distinctiveness
of the query images. Given that the loop closures have an
even distribution over the trajectory (Figure 15), even a
recall rate of 6.5% is likely sufficient to support a good
metric SLAM system.

Both data sets exhibit a sharp drop in recall between 99%
and 100% precision. This drop is caused by particularly
challenging cases of perceptual aliasing, such as encoun-
tering rare-but-repetitive objects in environment. Figure
19 shows the two highest confidence false positives from
the 1,000 km set, typical of these difficult cases. The scenes
have high similarity in both a bag-of-words and geometric
sense, however the primary reason that they are difficult to
identify as false positives is that the repetitive objects they
contain are relatively uncommon in the environment, and
so are not easily captured by the sampling set. By contrast,
the scenes shown in Figure 21 do not cause such problems,
despite high similarity, because the content of the image
is common in the environment. Given that the system’s
sampling set consists of less than 2,000 images, these
effects are perhaps not surprising. If a second navigation
experiment were conducted using all of the 1,000km data
for training, we may begin to develop robustness even to
occasional repeated features such as those in Figure 19.
Other natural methods to deal with these cases include
relying more heavily on temporal support, or perhaps some
level of semantic verification such as rejecting the loop
closure in Figure 19b because the matched object is a
vehicle.

C. The effect of the Chow Liu tree near 100% precision

It is a notable feature of Figure 11 that while the Chow
Liu tree clearly improves the precision-recall curve up
to the 99% precision point, it does not seem to give a
consistent improvement at 100% precision. Performance
at 100% precision is of most relevance to a metric SLAM
system, which typically cannot recover from a false data
association decision. This raises the question of whether
the Chow Liu tree is actually of practical benefit in a loop
closure detection system.

Firstly, we note that for some SLAM systems it may be
possible to make use of loop closure signals which have
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(a) 70 km set (b) 1,000 km set

Fig. 10: Precision-recall curves showing the effect of the different system components on performance. Note the scaling
on the axes. Results shown are for the 100k vocabulary with Chow Liu tree. Relative performance in other configurations
is similar. “Baseline” refers to the system without the geometric check and with a uniform position prior at each
timestep. “Motion model” includes the position prior p(Li|Zk−1), allowing loop closures to benefit from temporal
support. “Geometric Check” re-ranks the top 100 most likely locations by considering the geometric consistency of
matched image interest points.

Data Set 70 km 1,000 km 1,000 km Urban
Precision 100% 99% 100% 99% 90% 100% 99%

Recall
Motion Model and Geometric Check 48.5 73.2 3.1 8.3 14.3 6.5 18.5

Geometric Check Only 44.0 69.9 2.6 5.1 9.7 6.9 12.2
Motion Model Only 23.1 41.8 0.2 0.2 4.7 0.6 0.7

Baseline - - - - 0.5 - -

TABLE II: Recall figures at specified precision showing the effect of different system components. A dash indicates that
there is no threshold that produces the specified precision level. The same information is presented as a precision-recall
curve in Figure 10. “Baseline” refers to the system without the geometric check and with a uniform position prior at
each timestep. “Motion model” includes the position prior p(Li|Zk−1), allowing loop closures to benefit from temporal
support. “Geometric Check” re-ranks the top 100 most likely locations by considering the geometric consistency of
matched image interest points.

(a) 70 km set (b) 1,000 km set

Fig. 11: Precision-recall curves showing the effect of the vocabulary size and the Chow Liu tree on performance. Note
the scaling on the axes. Performance shown includes motion model and geometric check. Performance increases strongly
with vocabulary size. The Chow Liu tree also increases performance, for all vocabulary sizes.



13

Data Set 70 km 1,000 km 1,000 km Urban
Precision 100% 99% 100% 99% 90% 100% 99%

Recall
100k CL 48.5 73.2 3.1 8.3 14.3 6.5 18.5
100k NB 49.1 70.0 3.7 7.9 13.5 7.5 17.9
10k CL 37.0 52.3 - 2.7 4.7 - 5.2
10k NB 30.1 51.5 - - 4.4 - -

TABLE III: Recall figures at specified precision for varying vocabulary size and with/without the Chow Liu tree. A
dash indicates that there is no threshold that produces the specified precision level. The same information is presented
as a precision-recall curve in Figure 11. Recall improves with increasing vocabulary size at all levels of precision. The
Chow Liu tree also improves recall in all cases with the exception of the 100k vocabulary at 100% precision. The 100%
precision figure is sensitive to the probability assigned to all possible false positives, so can be skewed by a single outlier
with a high likelihood. So whereas the Chow Liu tree yields better probability estimates in general, the effect is more
robustly observable at lower levels of precision, where it cannot masked by a small number of outliers.

less than 100% precision, if some secondary step can be
used to increase the precision to 100%. For example, in the
system of Willams et al. [41], when a putative loop closure
is identified, the system attempts to track in the relevant
section of the map. If the tracking fails, the loop closure
is not accepted. In combination with a secondary step of
this kind, the recall boost provided by the Chow Liu tree
will be benificial.

However, it would obviously be preferable if we could
determine why the Chow Liu tree does not naturally lead
to higher recall at 100% precision. As noted in the previous
section, the main difficulty in moving from 99% to 100%
precision is overcoming a few very challenging examples of
perceptual aliasing, such as those illustrated in Figure 19.
The Chow Liu tree does not particularly help in dealing
with false positives due to perceptual aliasing; its main
purpose is to improve the similarity measure between
images, allowing more difficult matches to be correctly
identified (as evidenced by higher recall along most of
the precision curve). Rejection of false matches due to
perceptual aliasing is mainly achieved by the Monte Carlo
integration of the partition function described at the end of
Section III. This becomes the performance limiting factor
at the top end of the precision recall curve, particularly in
large data sets such as those considered here. No matter
how good a similarity metric we learn (via the Chow Liu
tree), recall at 100% precision cannot improve until we have
a way to reject the (very visually similar) false positive
matches that arise.

We conclude that the Chow Liu is indeed performing
well, however it’s impact is masked near 100% precision.
We would expect the tree to have a bigger impact if
(A) the perceptual aliasing is less severe (e.g. smaller
environments, c.f. our earlier results in [12]), (B) the
handling of perceptual aliasing was improved, perhaps via
Monte Carlo integration over a larger sampling set, or via
some other technique developed subsequent to this paper,
or (C) the data was such that the performance-limiting
factor was detecting difficult matches rather than rejecting
perceptual aliasing.

A secondary factor which may be relevant is that while
the Chow Liu tree will on average improve the likelihood
estimates assigned, some individual likelihoods may get

worse. The recall at 100% precision is determined by the
likelihood assigned to the very last false positive to be
eliminated. While on average we expect the Chow Liu tree
to improve this likelihood estimate, the opposite may be
observed in some fraction of data sets. Below 100% precision
the results are sensitive to the likelihood estimates for a
larger number of false positives, and so the improvement
due to the Chow Liu tree is more robustly observable.
However, we do not think that this is the dominant effect.

D. Comparison to tf-idf

Term-frequency inverse-document-frequency (tf-idf) is
a standard ranking metric used in most existing visual
search engines [39], [34], [21], [26]. To compare FAB-MAP
against this baseline in the most transparent way possible,
we examined performance on a pure retrieval task. For each
image in our data sets where at least one valid match exists,
we computed the ranking according to tf-idf weighted cosine
distance and also according to the FAB-MAP likelihood
p(Zk | Li)3. This ranking-only task is intended to examine
the likelihood function alone, so does not involve new place
detection, motion model effects or geometric re-ranking.
For the 1,000 km data set there are 48,493 images that have
at least one valid loop closure; for the 70 km set there are
4,757. Retrieval was performed against the set of images
collected up to the point of loop closure. There are a variety
of ways to perform the tf-idf weighting - we have followed
[21] and have verified that our implementation gives results
identical to those reported there.

Precision-recall curves showing relative performance are
given in Figure 12. FAB-MAP substantially outperforms
tf-idf, the difference being particularly dramatic on the
1,000 km data set.

The performance of tf-idf results could perhaps be
improved by applying various known tweaks to the measure
- for example by taking account of word burstiness [22]
or using pivoted normalized document lengths [26] among
others. However, it seems to us that increasing performance
in this way essentially amounts to finding heuristics by trial-
and-error. Indeed, to achieve the performance reported here

3Note that the tf-idf measure has access to word count (tf)
information which is not used by FAB-MAP.
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already required considerable experimentation with various
aspects of the tf-idf measure, such as whether to use L1
or L2 normalization, whether to apply tf-idf weighting to
query or document vectors or both, how the tf counts should
be normalized, etc. Some of these choices, particularly the
choice of vector normalization, have a dramatic impact on
ranking performance, without any clear intuition as to why.
FAB-MAP by contrast is a natural generative framework
which provides clear rationale for the structure of the
ranking function and offers paths to improved performance
via extensions to the generative model. It also substantially
out-performs tf-idf for our application of interest.

E. Timing
Timing performance is presented in Figure 14. Average

filter update time over the 1,000 km data set, including the
geometric check, was 14 ms. The time quoted was measured
on a single core of a 2.40 GHZ Intel Core 2 processor.
SURF feature extraction and kd-tree quantization adds
an overhead of 484 ms on average, with typical variance
illustrated in Figure 13. The cost is dominated by 423 ms
for SURF. Recent GPU-based implementations can largely
eliminate this overhead [10]. However, even including
feature detection, our real time requirement of 480 ms could
be achieved by simply spreading the processing over two
cores.

F. Comparison to Original System
In comparison to the original system described in [12],

the inference times of the system described here are on
average 4,400 times faster, with comparable precision-recall
performance. Equally important, the sparse representation
means that location models now require only O(1) memory,
as opposed to O(#vocabulary). For the 100k vocabulary,
a typical sparse location model requires 4 KB of memory
as opposed to 400 KB previously. This enables the use
of large vocabularies which improve performance, and is
crucial for scalability because the size of the mappable area
is effectively limited by available RAM.

VIII. Summary

This paper has outlined a new, highly scalable archi-
tecture for appearance-only SLAM. We have defined a
new model that permits efficient inverted index implemen-
tation, while preserving the key benefits of our original
Bayesian approach to the problem. The framework is fully
probabilistic, and deals with challenging issues such as
perceptual aliasing and new place detection. In addition
to these benefits, as a pure ranking function it has been
shown to considerably out-perform the baseline tf-idf
approach. The paper also discussed techniques necessary for
visual vocabulary generation and Chow Liu tree learning
at large scale. On the issue of vocabulary learning, we
have demonstrated the benefit of good cluster centre
initialization on overall performance. Finally, we have
evaluated the system on two substantial data sets, of
70 km and 1,000 km. Both experiments are larger than any

existing result we are aware of. Our approach shows very
strong performance on the 70 km experiment, in conditions
of challenging perceptual aliasing. For practical purposes
this set can be considered solved, and moreover this
performance can be achieved on the basis of single images,
without temporal information. The 1,000 km experiment is
more challenging, and we do not consider it fully solved,
nevertheless our system’s performance is already sufficient
to provide a useful competency for an autonomous vehicle
operating at this scale. Our data sets are available to the
research community, and we hope that they will serve as a
benchmark for future systems.
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(a) 70 km set (b) 1,000 km set

Fig. 12: Comparison to tf-idf ranking. FAB-MAP substantially outperforms this standard ranking metric, particularly
on the larger data set. To ensure the fairest possible comparison, these performance figures relate to a retrieval-only
task that excluded new place detection. See Section VII-D for details.

(a) SURF generation time. (b) Quantization time using the kd-tree.

Fig. 13: Bag-of-words generation time (per Ladybug2 panoramic image) for a representative sample of the 1,000 km data set,

using the 100k vocabulary. The time is dominated by SURF generation, (a), which takes 423ms on average. Quantization using

the randomized kd-trees, (b), takes on average 60ms.

(a) Total inference time. (b) Inference time, excluding geometric verification.

Fig. 14: Filter update times on the 1,000 km data set for the 100k vocabulary, (a). Mean filter update time is 14 ms
and maximum update time is 157 ms. The cost is dominated by the RANSAC geometric verification, which has O(1)
complexity. The core ranking stage excluding RANSAC, (b), exhibits linear complexity but with a very small constant -
taking 25 ms on average with 100,000 locations in the map.
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Appendix

The multimedia extensions to this article can be found on-
line by following the hyperlinks from http://www.ijrr.org.

Extension Media Type Description

1 Video Results video for 70 km and 1000 km data sets.
2 Data 70 km data set, available at http://www.robots.ox.ac.uk/˜mobile/EynshamDataset.html
3 Data 1,000 km data set, available on request.

TABLE IV: Index of multimedia extensions
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(a) (b)

Fig. 15: Loop closure maps for the 1,000 km data set. Best viewed in colour. Sections of the trajectory where loop
closures exist are shown in red. (a) The ground truth. (b) Loop closures detected by FAB-MAP (100k CL), showing
99.8% precision and 5.7% recall. There are 2,819 correct loop closures and six false positives. False positives are marked
with a green line between poses, however the six present here are spatially close, so are not readily visible on the map.
The long section on the right with no detected loop closures is a motorway at dusk. The section on the bottom left
with intermittent loop closures is also a motorway.

(a) (b)

Fig. 16: Loop closure maps for the 70 km data set. Best viewed in colour. Sections of the trajectory where loop closures
exist are shown in red. (a) The ground truth. (b) Detected loop closures using FAB-MAP (100k CL), at 100% precision.
The recall rate is 48.4%. However, the system clearly detects loop closures in almost all parts of the trajectory. The
recall rate reflects the fact that not every possible image along the trajectory is matched. Two short sections of the
trajectory generate fewer loop closures – one is in a forest, where imaging conditions were poor, the other is in open
fields, with few visual landmarks. A total of 2,300 loop closures are detected, with no false positives.
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(a) At the confidence value of this match, the precision is 99.6%.

(b) At the confidence value of this match, the precision is 100%.

Fig. 17: Some correct loop closures from the 1,000 km data set. The system typically finds correct matches in the
presence of considerable scene change when the image content is distinctive.
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(a) At the confidence value of this match, the precision is 100%.

(b) At the confidence value of this match, the precision is 99.9%.

Fig. 18: Some correct loop closures from the 70 km data set. These are not unusual matches. The system typically finds
correct matches in the presence of considerable scene change when the image content is distinctive.
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(a)

(b)

Fig. 19: The two highest confidence false positives in the 1,000 km data set. Both matches are assigned probabilities
very close to 1. In (a), we pass a similar-looking roundabout. The locations are 1 km apart. In (b), we encounter the
same van twice. The locations are 9 km apart. Such rare-but-repetitive objects represent the most challenging class of
perceptual aliasing.
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(a)

(b)

Fig. 20: Some examples of perceptual aliasing correctly handled by the system. In (a), the locations are 4 km apart.
Their highly similar appearance is typical of motorway driving. However, this similarity does not lead to a false positive
loop closure detection because this repetitive aspect of the environment has been captured in the sampling set used to
evaluate the partition function p(Zk | Zk−1) (see Section III). This allows the system to assign the newly collected
image a “new place” probability of 0.9997. A similar case from the 70 km set is shown in (b).
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(a) First image captured at the location.

(b) Image collected at loop closure.

(c) A second, unrelated location in the map, with very similar appearance.

Fig. 21: A typical false negative. Figures (a) and (b) come from the same location, but the loop closure is not detected
by FAB-MAP. Figure (c) shows a second, unrelated location, to illustrate the self-similar character of the route. The
1,000 km sequence contains hundreds of kilometers of such motorway scenes, so the system’s inability to correctly
identify this loop closure is unsurprising. This effect depresses the recall in the 1,000 km results. However, the strong
perceptual aliasing generates very few false positive detections. In the above case, the new observation is assigned to
a new place with probability 0.9994. This is possible because these common modes of perceptual aliasing are easily
captured by the sampling set.


