
Augmented reality wireframe cube

Contents

1 Preliminaries 1

1.1 Outline of the exercise . 1
1.2 Description of the input data . 1
1.3 Notations and coordinate systems . 2

2 Part 1: Drawing a cube on the undistorted images 3

2.1 Reminder: Perspective projection . 3
2.1.1 Equation of perspective projection . 3
2.1.2 Axis-angle representation for rotations . 3

2.2 Writing and testing the projection function . 4
2.3 Drawing the cube . 4
2.4 (Optional) Generating a video from the images . 5

3 Part 2: Accounting for lens distortion 5

3.1 Lens distortion modelling . 5
3.2 Writing and testing the projection function with lens distortion 5
3.3 Undistorting the images . 5

1 Preliminaries

1.1 Outline of the exercise

The goal of this exercise is to superimpose a virtual cube on a video of a planar grid viewed from
di�erent orientations. In this exercise, the 3D positions of the checkerboard, and the

relative camera poses are provided, as well as the intrinsics of the camera. The purpose of this
exercise is to familiarize with the basics of perspective projection, change of coordinate systems and
lens distortion, as well as basic image processing with Matlab.

In the �rst part of the exercise, you will be given images that have already been compensated for
distortion, and you will write a function that draws a virtual cube on the compensated image.

In the second part, you will implement a simple distortion and use it to undistort the camera
image.

1.2 Description of the input data

The data/ folder contains the inputs that you will need to complete these exercises. You should be
able to load all text �les with the load command of Matlab.

• images/ contains a sequence of images recorded by a camera moving around a checkerboard
pattern.

• images_undistorted/ contains images that have been processed to compensate for lens
distortion. You will use them in the �rst part of the exercise. In the second part, you will write
code to generate these compensated images from the original images yourself.

1

Robotics and Perception Group,
University of Zurich. 1 PRELIMINARIES

Figure 1: Input image (left) and expected output (right): undistorted image with a virtual cube
superimposed

• K.txt and D.tx t contain the intrinsics of the camera

• poses.txt contains the poses of the camera for each image, given as the transformation camTw
that maps points in the world coordinate system (de�ned below) to the camera coordinate
system. Speci�cally, line i contains the pose of the camera i, given as a tuple: (ωx,ωy,ωz,tx,ty,tz)
where (ωx, ωy, ωz) = ω is an axis-angle representation (section 2.1.2) of the rotational part of
the transformation, and (tx, ty, tz) = t the translational part in meters.

1.3 Notations and coordinate systems

In this exercise, we use the following conventions:

• PA denotes that the point P is expressed in the coordinate frame A.

• BTA denotes the transformation that maps points in frame A to frame B, such that:

PB = BTAPA

The reference (or world) coordinate system, denoted W , is right-handed, and centered on the upper
left corner of the checkerboard, as illustrated in Figure 2. The size of each square if the checkerboard
is 4 cm.

X

Y Z
4 cm

Figure 2: World coordinate system W (left), and superimposed cube lying on the checkerboard
(right).

2

Robotics and Perception Group,
University of Zurich. 2 PART 1: DRAWING A CUBE ON THE UNDISTORTED IMAGES

2 Part 1: Drawing a cube on the undistorted images

In this section, you will work with an image that has been already compensated for lens distortion.
Your goal will be to create a 3D cube lying on the checkerboard and project it into the image (Figure
2).

You will �rst write a function that projects world points to a given image (knowing the corre-
sponding camera pose), and test it by reprojecting the checkerboard corners on the image. Once
your projection function works properly, you will create a cube in the world frame and draw it on
the image.

2.1 Reminder: Perspective projection

Figure 3 is a reminder of the di�erent steps involved in projecting a 3D point Pw (expressed in the
world coordinate frame) to the image plane of camera C, when the intrinsics (camera matrix K and
transformation [R|t]) are known.

Figure 3: Perspective projection: the point Pw is �rst expressed in the camera frame C through [R|t]
(to Pc = (Xc, Yc, Zc)

T), then mapped to the image plane by perspective projection (to p = (x, y)T),
and �nally converted to discretized pixel coordinates (u, v).

2.1.1 Equation of perspective projection

Assuming the lens distortion has already been compensated (which is the case in this section), the
perspective projection can be written linearly in homogeneous coordinates as shown in the lecture:

λ

uv
1

 = K[R|t]

Xw

Yw
Zw

1

 (1)

where (u, v)T is the desired projection given in pixel coordinates, and Pw = (Xw, Yw, Zw)T . K
is a 3× 3 matrix also called the camera matrix. This matrix is provided to you in K.txt .

2.1.2 Axis-angle representation for rotations

In this exercise, the rotation R from the world frame to the camera frame is given using the axis-
angle representation for rotations. Speci�cally, a 3D rotation is parameterized by a 3D vector ω =
(ωx, ωy, ωz)T , where k = ω

‖ω‖ is a unit vector indicating the axis of rotation, and ‖ω‖ = θ is

the magnitude of the rotation about the axis. Rodrigues' rotation formula allows to convert this

3

https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation
https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation
https://en.wikipedia.org/wiki/Rodrigues'_rotation_formula

Robotics and Perception Group,
University of Zurich. 2 PART 1: DRAWING A CUBE ON THE UNDISTORTED IMAGES

representation to a rotation matrix:

R = I + (sin θ)[k]× + (1− cos θ) [k]
2
×

where [k]× =

 0 −kz ky
kz 0 −kx
−ky kx 0

 is the cross-product matrix for the vector k.

2.2 Writing and testing the projection function

We will work with the �rst image, located in /data/images_undistorted/img_0001.jpg .

• Read the image into Matlab (imread) and convert it to grayscale (rgb2gray).

• Create a matrix containing the 3D positions of all the checkerboard corners Pw. You can use
the function meshgrid from Matlab to achieve this.

• Write a function to project the cornersPw on the image plane. You will need the transformation
[R|t] from world coordinates to camera coordinates, which you can read from the �rst line of
the �le poses.txt , as a tuple (ωx, ωy, ωz, tx, ty, tz) = (ω, t) . You will �nd it convenient to write
two functions poseVectorToTransformationMatrix and projectPoints.

• Superimpose the projected corners to the undistorted image (using scatter for example). The
output should look like Figure 4 if your code works properly.

Figure 4: Expected output: the checkerboard corners are reprojected (in red) at their correct position
on the undistorted image.

2.3 Drawing the cube

• Write some code to create a matrix containing the 8 vertices of a cube lying on the checker-
board's plane. The position of the cube on the checkerboard and its size should be customizable.

• Project the cube's vertices on the image and draw a line (line) for each edge of the cube.

Figure 1 illustrates the expected output.

4

https://ch.mathworks.com/help/matlab/ref/imread.html
https://ch.mathworks.com/help/matlab/ref/rgb2gray.html
https://ch.mathworks.com/help/matlab/ref/meshgrid.html
https://ch.mathworks.com/help/matlab/ref/scatter.html

Robotics and Perception Group,
University of Zurich. 3 PART 2: ACCOUNTING FOR LENS DISTORTION

2.4 (Optional) Generating a video from the images

Repeat the process above for all the images in the sequence and generate a small movie (at 30 frames
per second). https://ch.mathworks.com/help/matlab/examples/convert-between-image-sequences-
and-video.html

3 Part 2: Accounting for lens distortion

3.1 Lens distortion modelling

Real camera lenses are not ideal and introduce some distortion in the image. To account for these
non-idealities, it is necessary to add a distortion model to the equations of perspective projection. A
simple radial distortion model was introduced during the lecture. In this exercise, we use this model,
and simply add a higher-order term, parameterized by an additional variable k2. The distortion
model is therefore fully parameterized by two variables (k1, k2) that are provided in the �le D.txt .

Because the distortion model is not linear, the projection function needs to split into two steps.

• We start again by mapping the world point Pw to pixel coordinates p = (u, v)T , as in Equation
1):

λ ·

uv
1

 =
[
R t

]
Xw

Yw
Zw

1

• Next, we apply lens distortion to p to get the distorted pixel coordinates pd = (ud, vd)T :(

ud
vd

)
= (1 + k1r

2 + k2r
4)

(
u− u0
v − v0

)
+

(
u0
v0

)
(2)

where r2 = (u− u0)2 + (v− v0)2 is the radial component of p and the values u0 and v0 denote
the optical center (derived from the calibration matrix K).

3.2 Writing and testing the projection function with lens distortion

• Read the image /data/images/img_0001.jpg which is, this time, not compensated for
distortion.

• Modify your function project_points to take into account the lens distortion, as described
above.

• Project the checkerboard corners in the distorted image. The expected output is shown in
Figure 5.

3.3 Undistorting the images

We will now use the new projection function (that takes distortion into account) to generate an undis-
torted image from the original image. Let Id and Iu be respectively the distorted and undistorted
images.

A naive way to undistort Id would be through forward warping, i.e warp every pixel (u′, v′)T in
Id to Iu as follows:

Iu(Γ−1(u′, v′)) = Id(u′, v′)

where Γ(u, v) = (u′, v′) is the distortion function that maps undistorted pixel coordinates (u, v)T

to distorted pixel coordinates (u′, v′)T .
However, due to the undistorted pixel locations being non-integer, the resulting image would

have some artifacts. Moreover, inverting the distortion function Γ amounts to solving a system of
polynomial system of equations, which is costly.

5

https://ch.mathworks.com/help/matlab/examples/convert-between-image-sequences-and-video.html
https://ch.mathworks.com/help/matlab/examples/convert-between-image-sequences-and-video.html

Robotics and Perception Group,
University of Zurich. 3 PART 2: ACCOUNTING FOR LENS DISTORTION

Figure 5: Expected output: the checkerboard corners are reprojected (in red) at their correct position
on the non-corrected image.

Id Iu

(u′, v′)T (u, v)T

Γ−1

Γ

Figure 6: Distorted pixel coordinates (u′, v′)T are undistorted to (u, v)T through the distortion
function Γ.

In image processing, this is commonly solved by doing backward warping, i.e. warping pixel
locations from the destination image (undistorted image in our case) to the source image (distorted
image in our case):

Iu(u, v) = Id(Γ(u, v)) (3)

Since Γ(u, v) = (u′, v′)T are non-integer pixel locations, the image intensity Id(u′, v′) must be esti-
mated at the non-integer pixel location (u′, v′). The most simple way to do it is through nearest-
neighbor interpolation, i.e. approximating Id(u′, v′) ' Id(bu′c , bv′c), where bxc denotes the closest
integer to x.

• Write a function undistort_image that performs the image undistortion using Equation 3 and
nearest-neighbor interpolation. Keep in mind that the distortion function (de�ned by Equation
2) works with normalized pixel coordinates and not pixel coordinates. The expected output is
shown in Figure 7 (left image).

Note for loops are very ine�cient in Matlab, although we do it here for simplicity. As an additional
question, you can try to implement the undistort_image function using vectorization (hint: Matlab's
reshape function might be handy). The resulting code will be faster.

6

Robotics and Perception Group,
University of Zurich. 3 PART 2: ACCOUNTING FOR LENS DISTORTION

Note Matlab has a imwarp function dedicated to this kind of operations.

Bonus exercise Implement bilinear interpolation to get rid of the artifacts introduced by nearest-
neighbor interpolation (see Figure 7 for comparison).

Figure 7: Undistorted images. Left: nearest-neighbor interpolation (observe the artifacts on the
edges). Right: bilinear interpolation.

7

https://en.wikipedia.org/wiki/Bilinear_interpolation

	Preliminaries
	Outline of the exercise
	Description of the input data
	Notations and coordinate systems

	Part 1: Drawing a cube on the undistorted images
	Reminder: Perspective projection
	Equation of perspective projection
	Axis-angle representation for rotations

	Writing and testing the projection function
	Drawing the cube
	(Optional) Generating a video from the images

	Part 2: Accounting for lens distortion
	Lens distortion modelling
	Writing and testing the projection function with lens distortion
	Undistorting the images

