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Lab Exercise – This afternoon

Implement the Kanade-Lucas-Tomasi (KLT) tracker
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Outline

• Point tracking
• Template tracking
• Tracking by detection of local image features
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Point Tracking

• Problem: given two images, estimate the motion of a pixel point from image 𝐼𝐼0 to image 𝐼𝐼1
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𝐼𝐼0(𝑥𝑥, 𝑦𝑦)



Point Tracking

• Problem: given two images, estimate the motion of a pixel point from image 𝐼𝐼0 to image 𝐼𝐼1
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𝐼𝐼1(𝑥𝑥,𝑦𝑦)



Point Tracking

• Problem: given two images, estimate the motion of a pixel point from image 𝐼𝐼0 to image 𝐼𝐼1

• Two approaches exist, depending on the amount of motion between the frames
• Block-based methods
• Differential methods
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𝐼𝐼0(𝑥𝑥, 𝑦𝑦)

(𝑢𝑢, 𝑣𝑣): optical flow vector



Point Tracking

• Consider the motion of the following corner
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Point Tracking

• Consider the motion of the following corner
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Point Tracking with Block Matching

• Search for the corresponding patch in a 𝐷𝐷 × 𝐷𝐷 region around the point to track.
• Use SSD, SAD, or NCC 
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Search region

Patch to track



Pros and Cons of Block Matching

• Pros:
• Works well if the motion is large

• Cons
• Can become computationally demanding if the motion is large

• Can the “search” be implemented in a smart way if the motion is “small”?
• Yes, use Differential methods
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Point Tracking with Differential Methods

Looks at the local brightness changes at the same location. No patch shift is performed!
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𝐼𝐼0(𝑥𝑥, 𝑦𝑦)



Point Tracking with Differential Methods

Looks at the local brightness changes at the same location. No patch shift is performed!
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𝐼𝐼0(𝑥𝑥, 𝑦𝑦)



Point Tracking with Differential Methods

Looks at the local brightness changes at the same location. No patch shift is performed!
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𝐼𝐼1(𝑥𝑥,𝑦𝑦)



Point Tracking with Differential Methods

Assumptions:
• Brightness constancy

• The intensity of the pixels around the point to track does not change 
much between the two frames

• Temporal consistency
• The motion displacement is small (1-2 pixels); however, this

can be addressed using multi-scale implementations (see later)

• Spatial coherency
• Neighboring pixels undergo similar motion (i.e., they all lay 

on the same 3D surface, i.e., no depth discontinuity)
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The Kanade-Lucas-Tomasi (KLT) tracker

Consider the reference patch centered at (𝑥𝑥, 𝑦𝑦) in image 𝐼𝐼0 and the shifted patch centered at (𝑥𝑥 + 𝑢𝑢, 𝑦𝑦 + 𝑣𝑣)
in image 𝐼𝐼1. The patch has size Ω. We want to find the motion vector (𝑢𝑢, 𝑣𝑣) that minimizes the Sum of 
Squared Differences (SSD):

This is a simple quadratic function in two variables (𝑢𝑢, 𝑣𝑣)
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Lucas, Kanade, An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, 1981. PDF.

Tomasi, Kanade, Detection and Tracking of Point Features, Carnegie Mellon University Technical Report CMU-CS-91-132, 1991. PDF.

𝑆𝑆𝑆𝑆𝑆𝑆 𝑢𝑢, 𝑣𝑣 = �
𝑥𝑥,𝑦𝑦∈Ω

(𝐼𝐼0 𝑥𝑥,𝑦𝑦 − 𝐼𝐼1 𝑥𝑥 + 𝑢𝑢,𝑦𝑦 + 𝑣𝑣 )2

≅�(𝐼𝐼0 𝑥𝑥,𝑦𝑦 − 𝐼𝐼1 𝑥𝑥,𝑦𝑦 − 𝐼𝐼𝑥𝑥𝑢𝑢 − 𝐼𝐼𝑦𝑦𝑣𝑣)2

⇒ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑢𝑢, 𝑣𝑣) = �(∆𝐼𝐼 − 𝐼𝐼𝑥𝑥𝑢𝑢 − 𝐼𝐼𝑦𝑦𝑣𝑣)2

𝐼𝐼0

𝐼𝐼1

(𝑥𝑥, 𝑦𝑦)

(𝑥𝑥, 𝑦𝑦)
(𝑥𝑥 + 𝑢𝑢, 𝑦𝑦 + 𝑣𝑣)

https://ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_2/lucas_bruce_d_1981_2.pdf
https://cecas.clemson.edu/%7Estb/klt/tomasi-kanade-techreport-1991.pdf


The Kanade-Lucas-Tomasi (KLT) tracker
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To minimize it, we differentiate it with respect to (𝑢𝑢, 𝑣𝑣) and equate it to zero:

𝑆𝑆𝑆𝑆𝑆𝑆(𝑢𝑢, 𝑣𝑣) = �(∆𝐼𝐼 − 𝐼𝐼𝑥𝑥𝑢𝑢 − 𝐼𝐼𝑦𝑦𝑣𝑣)2

𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕

= 0 ,  𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕

= 0

−2�𝐼𝐼𝑥𝑥(∆𝐼𝐼 − 𝐼𝐼𝑥𝑥𝑢𝑢 − 𝐼𝐼𝑦𝑦𝑣𝑣) = 0

−2�𝐼𝐼𝑦𝑦 ∆𝐼𝐼 − 𝐼𝐼𝑥𝑥𝑢𝑢 − 𝐼𝐼𝑦𝑦𝑣𝑣 = 0

𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕

= 0 ⇒

𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕

= 0 ⇒



The Kanade-Lucas-Tomasi (KLT) tracker

• Linear system of two equations in two unknowns

• We can write them in matrix form:
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�𝐼𝐼𝑥𝑥(∆𝐼𝐼 − 𝐼𝐼𝑥𝑥𝑢𝑢 − 𝐼𝐼𝑦𝑦𝑣𝑣) = 0

�𝐼𝐼𝑦𝑦 ∆𝐼𝐼 − 𝐼𝐼𝑥𝑥𝑢𝑢 − 𝐼𝐼𝑦𝑦𝑣𝑣 = 0

�𝐼𝐼𝑥𝑥𝐼𝐼𝑥𝑥 �𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦

�𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦 �𝐼𝐼𝑦𝑦𝐼𝐼𝑦𝑦

𝑢𝑢
𝑣𝑣 =

�𝐼𝐼𝑥𝑥∆𝐼𝐼

�𝐼𝐼𝑦𝑦∆𝐼𝐼
⇒ 𝑢𝑢

𝑣𝑣 =

�𝐼𝐼𝑥𝑥𝐼𝐼𝑥𝑥 �𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦

�𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦 �𝐼𝐼𝑦𝑦𝐼𝐼𝑦𝑦

−1

�𝐼𝐼𝑥𝑥∆𝐼𝐼

�𝐼𝐼𝑦𝑦∆𝐼𝐼

Haven’t we seen this matrix already? Recall Harris detector!

Notice that these are NOT matrix products but 
pixel-wise products!



The Kanade-Lucas-Tomasi (KLT) tracker

In practice, det(𝑀𝑀) should be non zero, which means that its eigenvalues should be large (i.e., not a flat 
region, not an edge) → in practice, it should be a corner or more generally contain any textured region!
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Edge → det(M) is low

Flat → det(M) is low

Texture → det(M) is high

𝑀𝑀 =

�𝐼𝐼𝑥𝑥𝐼𝐼𝑥𝑥 �𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦

�𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦 �𝐼𝐼𝑦𝑦𝐼𝐼𝑦𝑦
RR 







= −

2

11

0
0
λ

λ



Application to Corner Tracking

Color encodes motion direction
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Application to Optical Flow

What if you track every single pixel in the image?
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Application to Optical Flow
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Application to Optical Flow
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Optical Flow example
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Aperture Problem

• Consider the motion of the following corner
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Aperture Problem

• Consider the motion of the following corner
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Aperture Problem

• Now, look at the local brightness changes through a small aperture
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Aperture Problem

• Now, look at the local brightness changes through a small aperture
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Aperture Problem

• Now, look at the local brightness changes through a small aperture

• We cannot always determine the motion direction → Infinite motion solutions may exist!
• Solution?
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Aperture Problem

• Now, look at the local brightness changes through a small aperture

• We cannot always determine the motion direction → Infinite motion solutions may exist!
• Solution?

• Increase aperture size!
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Block-based vs Differential methods

• Block-based methods:
• Robust to large motions
• Can be computationally expensive (𝐷𝐷×𝐷𝐷 validations need to be made for a single point to track)

• Differential methods: 
• Works only for small motions (e.g., high frame rate). For larger motion, multi-scale implementations 

are used but are more expensive (see later)
• Much more efficient than block-based methods. Thus, can be used to track the motion of every pixel 

in the image (i.e., optical flow). It avoids searching in the neighborhood of the point by analyzing the 
local intensity changes (i.e., differences) of an image patch at a specific location (i.e., no search is 
performed)
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Outline

• Point tracking
• Template tracking
• Tracking by detection of local image features
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Template tracking

Goal: follow a template image in a video sequence by estimating the warp
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Template tracking

Goal: follow a template image in a video sequence by estimating the warp
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Template image



Template Warping

• Given the template image 𝑇𝑇(𝐱𝐱)
• Take all pixels from the template image 𝑇𝑇(𝐱𝐱) and warp them using the function 𝑊𝑊 𝐱𝐱,𝐩𝐩

parameterized in terms of parameters 𝐩𝐩
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Template image

𝑇𝑇(𝐱𝐱)

𝑊𝑊 𝐱𝐱,𝐩𝐩

warp

𝐼𝐼(𝑊𝑊 𝐱𝐱,𝐩𝐩 )

Current image



Common 2D Transformations

• Translation

• Euclidean

• Affine

• Projective
(homography)
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𝑥𝑥′ = 𝑥𝑥 + 𝑎𝑎1
𝑦𝑦′ = 𝑦𝑦 + 𝑎𝑎2

𝑥𝑥′ = 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑎𝑎3) − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑎𝑎3) + 𝑎𝑎1
𝑦𝑦′ = 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑎𝑎3) + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑎𝑎3) + 𝑎𝑎2

𝑥𝑥′ = 𝑎𝑎1𝑥𝑥 + 𝑎𝑎3𝑦𝑦 + 𝑎𝑎5
𝑦𝑦′ = 𝑎𝑎2𝑥𝑥 + 𝑎𝑎4𝑦𝑦 + 𝑎𝑎6

𝑥𝑥′ =
𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑦𝑦 + 𝑎𝑎3
𝑎𝑎7𝑥𝑥 + 𝑎𝑎8𝑦𝑦 + 1

𝑦𝑦′ =
𝑎𝑎4𝑥𝑥 + 𝑎𝑎5𝑦𝑦 + 𝑎𝑎6
𝑎𝑎7𝑥𝑥 + 𝑎𝑎8𝑦𝑦 + 1



Common 2D Transformations in Matrix form

We denote the transformation W 𝐱𝐱,𝐩𝐩 and p the set of parameters 𝑝𝑝 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛)

• Translation

• Euclidean

• Affine

• Projective
(homography)

36

𝑊𝑊 𝐱𝐱,𝐩𝐩 =
𝑥𝑥 + 𝑎𝑎1
𝑦𝑦 + 𝑎𝑎2

= 1 0 𝑎𝑎1
0 1 𝑎𝑎2

𝑥𝑥
𝑦𝑦
1

𝑊𝑊 𝐱𝐱,𝐩𝐩 = 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑎𝑎3) − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑎𝑎3) + 𝑎𝑎1
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑎𝑎3) + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑎𝑎3) + 𝑎𝑎2

= cos(𝑎𝑎3) −sin(𝑎𝑎3) 𝑎𝑎1
sin(𝑎𝑎3) cos(𝑎𝑎3) 𝑎𝑎2

𝑥𝑥
𝑦𝑦
1

𝑊𝑊 𝐱𝐱,𝐩𝐩 =
𝑎𝑎1𝑥𝑥 + 𝑎𝑎3𝑦𝑦 + 𝑎𝑎5
𝑎𝑎2𝑥𝑥 + 𝑎𝑎4𝑦𝑦 + 𝑎𝑎6

=
𝑎𝑎1 𝑎𝑎3 𝑎𝑎5
𝑎𝑎2 𝑎𝑎4 𝑎𝑎6

𝑥𝑥
𝑦𝑦
1

Homogeneous coordinates

𝑊𝑊 �𝒙𝒙,𝐩𝐩 =
𝑎𝑎1 𝑎𝑎2 𝑎𝑎3
𝑎𝑎4 𝑎𝑎5 𝑎𝑎6
𝑎𝑎7 𝑎𝑎8 1

𝑥𝑥
𝑦𝑦
1



Common 2D Transformations in Matrix form
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𝑊𝑊 𝐱𝐱,𝐩𝐩 = 1 0 𝑎𝑎1
0 1 𝑎𝑎2

𝑥𝑥
𝑦𝑦
1

𝑊𝑊 𝐱𝐱,𝐩𝐩 = cos(𝑎𝑎3) −sin(𝑎𝑎3) 𝑎𝑎1
sin(𝑎𝑎3) cos(𝑎𝑎3) 𝑎𝑎2

𝑥𝑥
𝑦𝑦
1

𝑊𝑊 𝐱𝐱,𝐩𝐩 =
𝑎𝑎1 𝑎𝑎3 𝑎𝑎5
𝑎𝑎2 𝑎𝑎4 𝑎𝑎6

𝑥𝑥
𝑦𝑦
1

𝑊𝑊 �𝒙𝒙,𝐩𝐩 =
𝑎𝑎1 𝑎𝑎2 𝑎𝑎3
𝑎𝑎4 𝑎𝑎5 𝑎𝑎6
𝑎𝑎7 𝑎𝑎8 1

𝑥𝑥
𝑦𝑦
1

𝑊𝑊 𝐱𝐱,𝐩𝐩 = 𝑎𝑎4
cos(𝑎𝑎3) −sin(𝑎𝑎3) 𝑎𝑎1
𝑠𝑠𝑖𝑖𝑖𝑖(𝑎𝑎3) cos(𝑎𝑎3) 𝑎𝑎2

𝑥𝑥
𝑦𝑦
1



Derivative and gradient

• Function: 𝑓𝑓 𝑥𝑥

• Derivative: 𝑓𝑓′ 𝑥𝑥 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, where 𝑥𝑥 is a scalar

• Function: 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 )

• Gradient: ∇𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 )= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛
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Jacobian

• 𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ) =
𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 )

⋮
𝑓𝑓𝑚𝑚(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 )

is a vector-valued function

• The derivative in this case is called Jacobian 𝜕𝜕𝐹𝐹
𝜕𝜕𝐱𝐱

:

39

Carl Gustav Jacob (1804-1851)

𝜕𝜕𝐹𝐹
𝜕𝜕𝐱𝐱

=

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

, … ,
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑛𝑛

⋮
𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝑥𝑥1

, … ,
𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝑥𝑥𝑛𝑛



Displacement-model Jacobians ∇𝑊𝑊𝑝𝑝

𝑝𝑝 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛)

• Translation:

• Euclidean:

• Affine:

40

𝑊𝑊 𝐱𝐱,𝐩𝐩 =
𝑥𝑥 + 𝑎𝑎1
𝑦𝑦 + 𝑎𝑎2

𝑊𝑊 𝐱𝐱,𝐩𝐩 = 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑎𝑎3) − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑎𝑎3) + 𝑎𝑎1
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑎𝑎3) + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑎𝑎3) + 𝑎𝑎2

𝑊𝑊 𝐱𝐱,𝐩𝐩 =
𝑎𝑎1𝑥𝑥 + 𝑎𝑎3𝑦𝑦 + 𝑎𝑎5
𝑎𝑎2𝑥𝑥 + 𝑎𝑎4𝑦𝑦 + 𝑎𝑎6

𝜕𝜕𝑊𝑊
𝜕𝜕𝐩𝐩

=

𝜕𝜕𝑊𝑊1

𝜕𝜕𝑎𝑎1
𝜕𝜕𝑊𝑊1

𝜕𝜕𝑎𝑎2
𝜕𝜕𝑊𝑊2

𝜕𝜕𝑎𝑎1
𝜕𝜕𝑊𝑊2

𝜕𝜕𝑎𝑎2

= 1 0
0 1

𝜕𝜕𝑊𝑊
𝜕𝜕𝐩𝐩

= 1 0 −𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑎𝑎3) − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑎𝑎3)
0 1 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑎𝑎3) − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑎𝑎3)

𝜕𝜕𝑊𝑊
𝜕𝜕𝐩𝐩

= 𝑥𝑥 0 𝑦𝑦
0 𝑥𝑥 0

0 1 0
𝑦𝑦 0 1



Template Warping

• Given the template image 𝑇𝑇(𝐱𝐱)
• Take all pixels from the template image 𝑇𝑇(𝐱𝐱) and warp them using the function 𝑊𝑊 𝐱𝐱,𝐩𝐩

parameterized in terms of parameters 𝐩𝐩

41

Template image

𝑇𝑇(𝐱𝐱)

𝑊𝑊 𝐱𝐱,𝐩𝐩

warp

𝐼𝐼(𝑊𝑊 𝐱𝐱,𝐩𝐩 )

Current image



Template Tracking: Problem Formulation

• The goal of template-based tracking is to find the set of warp parameters p such that:

• This is solved by determining p that minimizes the Sum of Squared Differences:

42

𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 = 𝑇𝑇(𝐱𝐱)

𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝐱𝐱∈𝐓𝐓

𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 − 𝑇𝑇(𝐱𝐱) 𝟐𝟐



Assumptions

• No errors in the template image boundaries: only the 
object to track appears in the template image

• No occlusion: the entire template is visible in the input 
image

• Brightness constancy, 
• Temporal consistency, 
• Spatial coherency

43



KLT tracker applied to template tracking 

• Uses the Gauss-Newton method for minimization, that is:
• Applies a first-order approximation of the warp
• Attempts to minimize the SSD iteratively

44
Lucas, Kanade, An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, 1981. PDF.

Tomasi, Kanade, Detection and Tracking of Point Features, Carnegie Mellon University Technical Report CMU-CS-91-132, 1991. PDF.

https://ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_2/lucas_bruce_d_1981_2.pdf
https://cecas.clemson.edu/%7Estb/klt/tomasi-kanade-techreport-1991.pdf


Derivation of the KLT algorithm

• Assume that an initial estimate of p is known. Then, we want to find the increment ∆𝐩𝐩
that minimizes

• First-order Taylor approximation of 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 + ∆𝐩𝐩 yelds to:
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𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝐱𝐱∈𝐓𝐓

𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 − 𝑇𝑇(𝐱𝐱)
𝟐𝟐

𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝐱𝐱∈𝐓𝐓

𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 + ∆𝐩𝐩 − 𝑇𝑇(𝐱𝐱)
𝟐𝟐

𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 + ∆𝐩𝐩 ≅ 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 +𝛻𝛻𝛻𝛻 𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩
∆𝐩𝐩

𝛻𝛻𝛻𝛻 = 𝐼𝐼𝑥𝑥 , 𝐼𝐼𝑦𝑦 = Image gradient evaluated at 𝑊𝑊(𝐱𝐱,𝐩𝐩) Jacobian of the warp 𝑊𝑊(𝐱𝐱,𝐩𝐩)



Derivation of the KLT algorithm

• By replacing 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 + ∆𝐩𝐩 with its 1st order approximation, we get

• How do we minimize it?
• We differentiate SSD with respect to ∆𝐩𝐩 and we equate it to zero, i.e., 
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𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝐱𝐱∈𝐓𝐓

𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 + ∆𝐩𝐩 − 𝑇𝑇(𝐱𝐱)
𝟐𝟐

𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝐱𝐱∈𝐓𝐓

𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 +𝛻𝛻𝛻𝛻
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

∆𝐩𝐩 − 𝑇𝑇(𝐱𝐱)
𝟐𝟐

𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕∆𝐩𝐩

= 0



Derivation of the KLT algorithm
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𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕∆𝐩𝐩

= 2�
𝐱𝐱∈𝐓𝐓

𝛻𝛻𝛻𝛻
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T

𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 +𝛻𝛻𝛻𝛻
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

∆𝐩𝐩 − 𝑇𝑇(𝐱𝐱)

𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕∆𝐩𝐩

= 0

2�
𝐱𝐱∈𝐓𝐓

𝛻𝛻𝛻𝛻
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T

𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 +𝛻𝛻𝛻𝛻
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

∆𝐩𝐩 − 𝑇𝑇(𝐱𝐱) = 0 ⇒

𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝐱𝐱∈𝐓𝐓

𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 +𝛻𝛻𝛻𝛻
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

∆𝐩𝐩 − 𝑇𝑇(𝐱𝐱)
𝟐𝟐



Derivation of the KLT algorithm
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⇒ ∆𝐩𝐩 = 𝐻𝐻−1�
𝐱𝐱∈𝐓𝐓

𝛻𝛻𝛻𝛻
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T

𝑇𝑇 𝐱𝐱 − 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 =

𝐻𝐻 = �
𝐱𝐱∈𝐓𝐓

𝛻𝛻𝛻𝛻
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T

𝛻𝛻𝛻𝛻
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

Second moment matrix (Hessian) of the warped image

What does H look like when the warp is a pure translation?

Notice that these are NOT matrix products but 
pixel-wise products!



KLT algorithm

1. Warp 𝐼𝐼(𝐱𝐱) with 𝑊𝑊(𝐱𝐱,𝐩𝐩) →𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩

2. Compute the error: subtract 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 from 𝑇𝑇(𝐱𝐱)

3. Compute warped gradients: 𝛻𝛻𝛻𝛻 = 𝐼𝐼𝑥𝑥 , 𝐼𝐼𝑦𝑦 , evaluated at 𝑊𝑊(𝐱𝐱,𝐩𝐩)

4. Evaluate the Jacobian of the warping: 𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

5. Compute steepest descent: 𝛻𝛻𝛻𝛻 𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

6. Compute Inverse Hessian: 𝐻𝐻−1 = ∑𝐱𝐱∈𝐓𝐓 𝛻𝛻𝛻𝛻 𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T
𝛻𝛻𝛻𝛻 𝜕𝜕𝜕𝜕

𝜕𝜕𝐩𝐩

−1

7. Multiply steepest descend with error: ∑𝐱𝐱∈𝐓𝐓 𝛻𝛻𝛻𝛻 𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T
𝑇𝑇 𝐱𝐱 − 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩

8. Compute ∆𝐩𝐩

9. Update parameters: 𝐩𝐩←𝐩𝐩 + ∆𝐩𝐩
10. Repeat until ∆𝐩𝐩 < 𝜺𝜺
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⇒ ∆𝐩𝐩 = 𝐻𝐻−1�
𝐱𝐱∈𝐓𝐓

𝛻𝛻𝛻𝛻
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T

𝑇𝑇 𝐱𝐱 − 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩



KLT algorithm: computing ∆𝐩𝐩 = 𝐻𝐻−1 ∑𝐱𝐱∈𝐓𝐓 𝛻𝛻𝛻𝛻 𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T
𝑇𝑇 𝐱𝐱 − 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩

6x1

6x6
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KLT algorithm: computing ∆𝐩𝐩 = 𝐻𝐻−1 ∑𝐱𝐱∈𝐓𝐓 𝛻𝛻𝛻𝛻 𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T
𝑇𝑇 𝐱𝐱 − 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩

6x1

6x6
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KLT algorithm: computing ∆𝐩𝐩 = 𝐻𝐻−1 ∑𝐱𝐱∈𝐓𝐓 𝛻𝛻𝛻𝛻 𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T
𝑇𝑇 𝐱𝐱 − 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩

6x1

6x6

What is the size?
𝟐𝟐𝟐𝟐 × 𝟔𝟔𝟔𝟔

𝒏𝒏 × 𝟐𝟐𝟐𝟐

Why does it look like that?
𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

=
𝑥𝑥 0 𝑦𝑦

0 𝑥𝑥 0

0 1 0

𝑦𝑦 0 1
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KLT algorithm: computing ∆𝐩𝐩 = 𝐻𝐻−1 ∑𝐱𝐱∈𝐓𝐓 𝛻𝛻𝛻𝛻 𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T
𝑇𝑇 𝐱𝐱 − 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩

6x1

6x6

Why does it look like that?
(slide 48)

What is the size?
𝟐𝟐𝟐𝟐 × 𝟔𝟔𝟔𝟔

𝒏𝒏 × 𝟐𝟐𝟐𝟐

What’s its size?

𝒏𝒏 × 𝟔𝟔𝒏𝒏

𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

=
𝑥𝑥 0 𝑦𝑦

0 𝑥𝑥 0

0 1 0

𝑦𝑦 0 1



KLT algorithm: computing ∆𝐩𝐩 = 𝐻𝐻−1 ∑𝐱𝐱∈𝐓𝐓 𝛻𝛻𝛻𝛻 𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T
𝑇𝑇 𝐱𝐱 − 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩

6x1

6x6

What is the size?
𝟐𝟐𝟐𝟐 × 𝟔𝟔𝟔𝟔

𝒏𝒏 × 𝟐𝟐𝟐𝟐

What’s its size?

𝒏𝒏 × 𝟔𝟔𝒏𝒏

𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

=
𝑥𝑥 0 𝑦𝑦

0 𝑥𝑥 0

0 1 0

𝑦𝑦 0 1
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Why does it look like that?
(slide 48)



KLT algorithm: computing ∆𝐩𝐩 = 𝐻𝐻−1 ∑𝐱𝐱∈𝐓𝐓 𝛻𝛻𝛻𝛻 𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

T
𝑇𝑇 𝐱𝐱 − 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩

𝜕𝜕𝜕𝜕
𝜕𝜕𝐩𝐩

=
𝑥𝑥 0 𝑦𝑦

0 𝑥𝑥 0

0 1 0

𝑦𝑦 0 1

What is the size?
𝟐𝟐𝟐𝟐 × 𝟔𝟔𝟔𝟔

What’s its size?

𝒏𝒏 × 𝟔𝟔𝒏𝒏

𝒏𝒏 × 𝟐𝟐𝟐𝟐

6x1

6x6
6x1
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Why does it look like that?
(slide 48)



KLT algorithm: Discussion

Lucas-Kanade follows a predict-correct cycle

• A prediction 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩 of the warped image is computed from an initial estimate

• The correction parameter ∆𝐩𝐩 is computed as a function of the error 𝑇𝑇 𝐱𝐱 − 𝐼𝐼 𝑊𝑊 𝐱𝐱,𝐩𝐩
between the prediction and the template

• The larger this error, the larger the correction applied

predict correct
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KLT algorithm: Discussion

• How to get the initial estimate p?
• When does the Lucas-Kanade fail?

• If the initial estimate is too far, then the linear approximation does not longer hold -> 
solution?

• Pyramidal implementations (see next slide)

• Other problems:
• Deviations from the mathematical model: object deformations, illumination changes, 

etc.
• Occlusions
• Due to these reasons, tracking may drift -> solution?

• Update the template with the last image
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Coarse-to-fine estimation

image I

p
I(W)warp refine

p Δp
+

Pyramid of image I Pyramid of image T

image Tu=10 pixels

u=5 pixels

u=1.25 pixels

u=2.5 pixels

image T
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Coarse-to-fine estimation

I I(W) Twarp refine

inp

p∆
+

I I(W) Twarp refine

p

p∆+

I

pyramid 
construction

I I(W) Twarp refine

p∆+

T

pyramid 
construction

outp 59



Generalization of KLT

• The same concept (predict/correct) can be applied to tracking of 3D object (in this case, 
what is the transformation to etimate? What is the template?)

60



Generalization of KLT

• The same concept (predict/correct) can be applied to tracking of 3D object (in this case, 
what is the transformation to etimate? What is the template?)

• In order to deal with wrong prediction, it can be implemented in a Particle-Filter fashion 
(using multiple hipotheses that need to be validated)
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Outline

• Point tracking
• Template tracking
• Tracking by detection of local image features
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Tracking by detection of local image features

• Step 1: Keypoint detection and matching
• invariant to scale, rotation, or perspective

63Template image with the object to detect Current test image



Tracking by detection of local image features

• Step 1: Keypoint detection and matching
• invariant to scale, rotation, or perspective

64Template image with the object to detect Current test image



Tracking by detection of local image features

• Step 1: Keypoint detection and matching
• invariant to scale, rotation, or perspective

• Step 2: Geometric verification (RANSAC) (e.g., 4-point RANSAC for planar objects, or 5 or 8-point RANSAC 
for 3D objects)

65Template image with the object to detect Current test image



Tracking by detection of local image features
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Tracking issues

• How to segment the object to track from background?
• How to initialize the warping?
• How to handle occlusions
• How to handle illumination changes and non modeled effects?
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Readings

• Chapter 8 of Szeliski’s book, 1st edition

68



Understanding Check

Are you able to answer the following questions?
• Are you able to illustrate tracking with block matching?
• Are you able to explain the underlying assumptions behind differential methods, derive their mathematical expression 

and the meaning of the M matrix?
• When is this matrix invertible and when not?
• What is the aperture problem and how can we overcome it?
• What is optical flow?
• Can you list pros and cons of block-based vs. differential methods for tracking?
• Are you able to describe the working principle of KLT?
• What functional does KLT minimize?
• What is the Hessian matrix and for which warping function does it coincide to that used for point tracking?
• Can you list Lukas-Kanade failure cases and how to overcome them?
• How do we get the initial guess?
• Can you illustrate the coarse-to-fine Lucas-Kanade implementation?
• Can you illustrate alternative tracking procedures using point features?
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