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Lab Exercise — This afternoon

Implement the Kanade-Lucas-Tomasi (KLT) tracker




Outline

[- Point tracking ]
* Template tracking

* Tracking by detection of local image features



Point Tracking

* Problem: given two images, estimate the motion of a pixel point from image [, to image I;

I(x,y)
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Point Tracking

* Problem: given two images, estimate the motion of a pixel point from image [, to image I;

./" o (u, v): optical flow vector
\.
o—»0 @
X
@
Iy(x,y)

* Two approaches exist, depending on the amount of motion between the frames
* Block-based methods
* Differential methods



Point Tracking

* Consider the motion of the following corner




Point Tracking

* Consider the motion of the following corner




Point Tracking with Block Matching

e Search for the corresponding patch ina D X D region around the point to track.
* Use SSD, SAD, or NCC

Search region

Patch to track

AN




Pros and Cons of Block Matching

* Pros:
* Works well if the motion is large

* Cons
e Can become computationally demanding if the motion is large

* Can the “search” be implemented in a smart way if the motion is “small”?
* Yes, use Differential methods



Point Tracking with Differential Methods

Looks at the local brightness changes at the same location. No patch shift is performed!
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Point Tracking with Differential Methods

Looks at the local brightness changes at the same location. No patch shift is performed!
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Point Tracking with Differential Methods

Assumptions:

* Brightness constancy i‘ &-i

* The intensity of the pixels around the point to track does not change
much between the two frames

* Temporal consistency

 The motion displacement is small (1-2 pixels); however, this
can be addressed using multi-scale implementations (see later)

e Spatial coherency

* Neighboring pixels undergo similar motion (i.e., they all lay
on the same 3D surface, i.e., no depth discontinuity)

14



The Kanade-Lucas-Tomasi (KLT) tracker

Consider the reference patch centered at (x, y) in image I, and the shifted patch centered at (x + u,y + v)
in image I,. The patch has size (). We want to find the motion vector (u, v) that minimizes the Sum of
Squared Differences (SSD):

A SSD,v) = ) ((ey) — h(x +1y + v))’
o x,yE)

= Up) ~ Ly = L - L)

(%) I

(x+uy+v)

: = SSD(u,v) = E(AI — L — I,v)?

This is a simple quadratic function in two variables (u, v)

Lucas, Kanade, An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, 1981. PDF.
Tomasi, Kanade, Detection and Tracking of Point Features, Carnegie Mellon University Technical Report CMU-CS-91-132, 1991. PDF. 15


https://ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_2/lucas_bruce_d_1981_2.pdf
https://cecas.clemson.edu/%7Estb/klt/tomasi-kanade-techreport-1991.pdf

The Kanade-Lucas-Tomasi (KLT) tracker

SSD(u,v) = Z(AI — Lou — L,v)*

To minimize it, we differentiate it with respect to (u, v) and equate it to zero:

0SSD 0SSD
=0 =0
ou 7 v
aSSD
——=0 = —ZZIx(AI—Ixu—va) =0
aSSD

-—=0 = —ZZIy(AI—Ixu—va) =0



The Kanade-Lucas-Tomasi (KLT) tracker

ZIx(AI —Lu—1I,v) =0

ZIy(AI - Lu—Lv) =0

* Linear system of two equations in two unknowns

Notice that these are NOT matrix products but

* We can write them in matrix form:

— é’ -
Z LI z I 1,

z I 1, z L1,

|

u
%

|

Haven’t we seen this matrix already?

pixel-wise products!

Recall Harris detector!
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The Kanade-Lucas-Tomasi (KLT) tracker

In practice, det(M) should be non zero, which means that its eigenvalues should be large (i.e., not a flat
region, not an edge) — in practice, it should be a corner or more generally contain any textured region!

z LI z L1,

A 0 | Eldge - det(M) is low C
— R—l o . . ‘.
0 4, b '

2 I 1, Z 1,

Idet(M) is low
i & E]

1 -

; D O Flat

W T —
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Application to Corner Tracking

Color encodes motion direction
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Application to Optical Flow

What if you track every single pixel in the image?
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Application to Optical Flow
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ical Flow

Application to Opt

e
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Optical Flow example
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Aperture Problem

* Consider the motion of the following corner




Aperture Problem

* Consider the motion of the following corner




Aperture Problem

* Now, look at the local brightness changes through a small aperture
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Aperture Problem

* Now, look at the local brightness changes through a small aperture

27



Aperture Problem

* Now, look at the local brightness changes through a small aperture

* We cannot always determine the motion direction — Infinite motion solutions may exist!

ALY
\

e Solution?
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Aperture Problem

* Now, look at the local brightness changes through a small aperture
* We cannot always determine the motion direction — Infinite motion solutions may exist!

e Solution?
* Increase aperture size!

29



Block-based vs Differential methods

* Block-based methods:
«’ * Robust to large motions

O * Can be computationally expensive (DxD validations need to be made for a single point to track)

* Differential methods:

O * Works only for small motions (e.g., high frame rate). For larger motion, multi-scale implementations
are used but are more expensive (see later)

) * Much more efficient than block-based methods. Thus, can be used to track the motion of every pixel
in the image (i.e., optical flow). It avoids searching in the neighborhood of the point by analyzing the

local intensity changes (i.e., differences) of an image patch at a specific location (i.e., no search is
performed)



Outline

* Point tracking

[° Template tracking ]

* Tracking by detection of local image features
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Template tracking

Goal: follow a template image in a video sequence by estimating the warp




Template tracking

Goal: follow a template image in a video sequence by estimating the warp

Template image

- T
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Template Warping

* Given the template image T(x)

* Take all pixels from the template image T (x) and warp them using the function W (x, p)

parameterized in terms of parameters p

Current image

Template image

34

I(W(x,p))



Common 2D Transformations

C rojective
similarity Q proj
translation

! \ B ,L-C
— -
X X + Cl] Euclidean affine

* Translation vy =y +a,

x' = xcos(az) — ysin(as) + a4

* Euclidean y' = xsin(az) + ycos(a3) + a,
. Affine x' =ax +azy+ag
y' = a,x +a,y + ag
* Projective o =t Ty al3
(homography) d7X + dgy +

, _ A4X +asy + dg
Y a,x +agy +1




Common 2D Transformations in Matrix form

We denote the transformation W(X, p) and p the set of parameters p = (aq, a,, ..., a,)

* Translation

e Euclidean

e Affine

* Projective
(homography)

X Homogeneous coordinates
X+ ay 1 0 a &
Wxp) = y+a, ] [O 1 aZH ]
W(x p) = [xcos(a3) — ysin(as) + a1] B lcos(ag) —sin(as) a1] X
P = xsin(az) + ycos(asz) + a,]  lsin(az) cos(az) a, 31]

W(X, p) _ [alx +azy + Cl5] “ a l ]

A, X + auy + agq

gl

W&, p) = [
7




Common 2D Transformations in Matrix form

Name Matrix # D.O.F. | Preserves: Icon
translation [ 1 ‘ t Lm 2 orientation + - - -
rigid (Euclidean) [ R ‘ t |, . 3 lengths + - - - O
similarity l si ‘ t L } 4 angles + - - - O
2 X
affine [ A L \ 6 parallelism +--- | /_/
9!
projective [ H ]-3}.:3 8 straight lines L‘

W@M—é

W(x,p) = [

W(x,p) = a,

W@M—

W@m=[

I

sin(az)

cos(az) —sin(az) aq
[ cos(asz)

sin(asz)

a1 as das

a, a, dg

a,; a; das
a, das dg

a; dag

1

i

X

y
1

|

cos(az) —sin(az) a4
cos(asz)

a

b

a,

I

X

y
1

|



Derivative and gradient

* Function: f(x)

L d .
e Derivative: f'(x) = d—i , Where x is a scalar

* Function: f(xq, Xy, ., Xy )

* Gradient: Vf(xq1,x5, ..., Xy )= (af - 6_f)

0x1 0x,” " 0xy,



Jacobian

fl(xlleI ...,Xn)
e F(x1,%Xy, v )Xp) = E is a vector-valued function
fm(x1:x2' ---»xn)

 The derivative in this case is called Jacobian I

OF 0x; ' 0x,

X Nofn U
0x;  0x,]

Carl Gustav Jacob (1804-1851)
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* Translation:

e Euclidean: W(x,p) = [

e Affine:

Displacement-model Jacobians VI,

W, p) =

W(x,p) = [

p = (ay,az, .., ay)

x+a1] aw
op

y +a

a|x +azy + as
a,x + a4y + a6

|

xcos(asz) — ysin(as) + a4
xsin(az) + ycos(az) + a,

oW, oW;T
da; da, _[1 0]
ow, ow,| o 1
| da; da,.

] a_W _ [1 0 —xsin(as) — ycos(as)
op [0 1 =xcos(asz)— ysin(as)

a_W_[x 0o y0 1 0
op

0 x 0y 0 1



Template Warping

* Given the template image T(x)

* Take all pixels from the template image T (x) and warp them using the function W (x, p)

parameterized in terms of parameters p

Current image

Template image

41
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Template Tracking: Problem Formulation

* The goal of template-based tracking is to find the set of warp parameters p such that:

I(W(x,p)) =TX)

* This is solved by determining p that minimizes the Sum of Squared Differences:

SSD = Z[I(W(x, p)) — T(x) ]2

xXET



Assumptions

No errors in the template image boundaries: only the
object to track appears in the template image

No occlusion: the entire template is visible in the input
image

Brightness constancy,
Temporal consistency,
Spatial coherency
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KLT tracker applied to template tracking

e Uses the Gauss-Newton method for minimization, that is:
* Applies a first-order approximation of the warp
e Attempts to minimize the SSD iteratively

Lucas, Kanade, An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, 1981. PDF.
Tomasi, Kanade, Detection and Tracking of Point Features, Carnegie Mellon University Technical Report CMU-CS-91-132, 1991. PDF.


https://ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_2/lucas_bruce_d_1981_2.pdf
https://cecas.clemson.edu/%7Estb/klt/tomasi-kanade-techreport-1991.pdf

Derivation of the KLT algorithm

SSD = E[I(W(X, p)) - T(X) ]2

X€ET

* Assume that an initial estimate of p is known. Then, we want to find the increment Ap
that minimizes

SSD = E[I(W(X,p +Ap)) — T(x) ]2

X€ET

* First-order Taylor approximation of I(W(x, p+ Ap)) yelds to:

(W p +Ap)) = [(W(x p))+VI 57 Ap

VI = [Ix, Iy] = Image gradient evaluated at W (X, p) Jacobian of the warp W (X, p)



Derivation of the KLT algorithm

ssD = ) [I(W(x,p +8p) ~T() |

xeT

* By replacing I(W(x, p + Ap)) with its 15t order approximation, we get

2

SSD = Z[[(W(x p))+VI VpVAp T (x)
XeT

e How do we minimize it?
dSSD

* We differentiate SSD with respect to Ap and we equate it to zero, i.e., - —
Ap




Derivation of the KLT algorithm

oW ?
SSD = z [I(W(x, p))+\71%Ap —T(x) ]

xX€eT

955D 2 E \71—0 : I(W(x,p)) \71—a Ap — T
j— + —_—
OAp — op %P op p (%)

X

dsSD 0
0Ap

ow1" oW
ZZ lVI %] [I(W(x, p))+\71$Ap — T(x)] =0 =

xX€eT



Derivation of the KLT algorithm

Notice that these are NOT matrix products but
pixel-wise products!

= Ap = H‘lz: [\71

xX€ET

H:zlw 5P]T[V ?3_]:)/

X€eET

Second moment matrix (Hessian) of the warped image

What does H look like when the warp is a pure translation?
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KLT algorithm

= Ap = H‘lz [\71— [Tx) —1(W(x p))]
xeT
1. Warp [(x) with W(x,p) = I(W(x,p))

2. Compute the error: subtract I (W (x, p)) from T (x)
3. Compute warped gradients: VI = [Ix, Iy], evaluated at W (X, p)

4. Evaluate the Jacobian of the warping: Z—t

5. Compute steepest descent: V] —‘;p
T [ ow]]
RS o
6. Compute Inverse Hessian: H™* = [ExeT [171 6p] [\71 ap”

T
7. Multiply steepest descend with error: ), [\71%—2/ [T(x) — I(W(x, p))]
8. Compute Ap

9. Update parameters: p < p + Ap
10. Repeatuntil Ap < &



T
KLT algorithm: computing Ap = H™1 Yt [\71 %—Vﬂ ITx) —I1(W(x,p))]

Image
Template
T(x) \
Werpsd I(x)
ﬁ

I(Wix; p))
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T
KLT algorithm: computing Ap = H™1 Y, cp [VI %—Vﬂ ITx) —1(W(x,p))]

Image Image Gradient X Image Gradient Y

T(x) — I{Wix;p))
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T
KLT algorithm: computing Ap = H™1 Y, cp [VI %—Vﬂ ITx) —1(W(x,p))]

Image Image Gradient X Image Gradient Y

Why does it look like that?

oW x o yo 1 0
£=0xoy01]

What is the size?
2n X 6n

nx22n

T(x) — I{Wix;p))
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T
KLT algorithm: computing Ap = H™1 Y, cp [VI %—Vﬂ ITx) —1(W(x,p))]

Image Image Gradient X Image Gradient Y

T.mpl_ato

T(x)

\‘/‘\ Why does it look like that?

warped 1) (slide 48)
m‘ll_lw =/ wnn

1 (w{" P)) Warp Parameters Wa MGMIQ Jacobian
\What is the size?
4 2n X 6n
nx2n

Steepest Descent Images

<— What’s its size?

nxen

T(x) — I{Wix;p))



T
KLT algorithm: computing Ap = H™1 Y, cp [VI %—Vﬂ ITx) —1(W(x,p))]

Image Image Gradient X Image Gradient Y

Template

T(x)

\‘/‘\ Why does it look like that?

warped 1) (slide 48)
m‘ll_lw =/ wnn

1 (w{" P)) Warp Parameters Wa MGMIQ Jacobian
\What is the size?
4 2n X 6n
nx2n

Steepest Descent Images
<— What's its size?

nxen

||||||

VIZNTIT(x) — I(W(x; p))]
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T
KLT algorithm: computing Ap = H™1 Y, cp [VI %—Vﬂ ITx) —1(W(x,p))]

Image Image Gradient X Image Gradient Y

Template

T(x)

Why does it look like that?

Warped i) (Slide 48)
oW x o yo 1 0
9p 0 x 0y 0 !

ITW(x;p)) Warp Parameters Warped Gradient

P _ __||

Parameter Updates

" _hal
e T e

R )

What is the size?
2n X 6n

Inverse Hessian

v G6X6
R e

SD Parameter Updates

nx?2an

Steepest Descent Images

<— What’s its size?

nxen

......

VIZNTIT(x) — I(W(x; p))]
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KLT algorithm: Discussion

Lucas-Kanade follows a predict-correct cycle

e A prediction I(W(x, p)) of the warped image is computed from an initial estimate

* The correction parameter Ap is computed as a function of the error T(x) — I(W(x, p))
between the prediction and the template

* The larger this error, the larger the correction applied
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KLT algorithm: Discussion

* How to get the initial estimate p?

* When does the Lucas-Kanade fail?
* If the initial estimate is too far, then the linear approximation does not longer hold ->

solution?
* Pyramidal implementations (see next slide)

e Other problems:
* Deviations from the mathematical model: object deformations, illumination changes,
etc.
* Occlusions
* Due to these reasons, tracking may drift -> solution?
* Update the template with the last image



Coarse-to-fine estimation

"
KT
I‘\‘\\
RN
11 \

11 \ \
1 1 \ \

1
1
1
1
1
1
1

Pyramid of image T

Pyramid of image |
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[

pyramid
construction

Coarse-to-fine estimation

refine

pyramid
construction

J
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Generalization of KLT

* The same concept (predict/correct) can be applied to tracking of 3D object (in this case,
what is the transformation to etimate? What is the template?)
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Generalization of KLT

* The same concept (predict/correct) can be applied to tracking of 3D object (in this case,
what is the transformation to etimate? What is the template?)

* In order to deal with wrong prediction, it can be implemented in a Particle-Filter fashion
(using multiple hipotheses that need to be validated)

predict to t+1 measure at t+1

time t

update model

update location

61



Outline

* Point tracking
* Template tracking

[- Tracking by detection of local image features ]
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Tracking by detection

» Step 1: Keypoint detection and matching
* invariant to scale, rotation, or perspective

Template image with the object to detect

of local image features

Current test image
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Tracking by detection of local image features

» Step 1: Keypoint detection and matching
* invariant to scale, rotation, or perspective

Template image with the object to detect Current test image
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Tracking by detection of local image features

» Step 1: Keypoint detection and matching
* invariant to scale, rotation, or perspective

e Step 2: Geometric verification (RANSAC) (e.g., 4-point RANSAC for planar objects, or 5 or 8-point RANSAC
for 3D objects)

Template image with the object to detect Current test image
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Tracking by detection of local image features
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Tracking issues

* How to segment the object to track from background?
* How to initialize the warping?
* How to handle occlusions

* How to handle illumination changes and non modeled effects?



Readings

* Chapter 8 of Szeliski’s book, 1st edition



Understanding Check

Are you able to answer the following questions?

Are you able to illustrate tracking with block matching?

Are you able to explain the underlying assumptions behind differential methods, derive their mathematical expression
and the meaning of the M matrix?

When is this matrix invertible and when not?

What is the aperture problem and how can we overcome it?

What is optical flow?

Can you list pros and cons of block-based vs. differential methods for tracking?

Are you able to describe the working principle of KLT?

What functional does KLT minimize?

What is the Hessian matrix and for which warping function does it coincide to that used for point tracking?
Can you list Lukas-Kanade failure cases and how to overcome them?

How do we get the initial guess?

Can you illustrate the coarse-to-fine Lucas-Kanade implementation?

Can you illustrate alternative tracking procedures using point features?
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