Vision Algorithms for Mobile Robotics

Lecture 10
Multiple View Geometry 4

Davide Scaramuzza
http://rpg.ifi.uzh.ch
Lab Exercise – This afternoon

Intermediate VO integration for mini projects:
• problem statement
• details about what can/needs to be done
• we will show some of best examples from last years
• we will go through FAQ such as what can be added to get up to +0.5 mark

Image sequence → Feature detection → Feature matching (tracking) → Motion estimation → Local optimization
Outline

• Bundle Adjustment
• SFM with n views
2-View Bundle Adjustment (BA)

- Non-linear, joint optimization of structure, P^i, and motion R, T
- Commonly used after least square estimation of R and T (e.g., after 8- or 5-point algorithm)
- Optimizes P^i, R, T by minimizing the **Sum of Squared Reprojection Errors**:

$$P^i, R, T = \arg\min_{P^i, R, T} \sum_{i=1}^{N} \|p_1^i - \pi(P^i, K_1, I, 0)\|^2 + \|p_2^i - \pi(P^i, K_2, R, T)\|^2$$
2-View Bundle Adjustment (BA)

- Non-linear, joint optimization of structure, P^i, and motion R, T
- Commonly used after least square estimation of R and T (e.g., after 8- or 5-point algorithm)
- Optimizes P^i, R, T by minimizing the **Sum of Squared Reprojection Errors**:

$$P^i, R, T = \arg\min_{P^i, R, T} \sum_{i=1}^{N} \left\| p_1^i - \pi(P^i, K_1, I, 0) \right\|^2 + \left\| p_2^i - \pi(P^i, K_2, R, T) \right\|^2$$

Good to know:
- Like in the formula, we typically assume the first camera as the world frame, but it's arbitrary
- Occasionally, the residual terms are weighted
- In order to not get stuck in local minima, the initial values of P^i, R, T should be close to the optimum
- Can be minimized using **Levenberg–Marquardt** (more robust than Gauss-Newton to local minima)
- **Can be modified to also optimize the intrinsic parameters**
- Implementation details in Exercise 9

What is the key difference with the reprojection error minimization seen in previous lectures?
n-View Bundle Adjustment (BA)

- Non-linear, joint optimization of structure, P^i, and camera poses $C_1 = [I, 0]$, $..., C_k = [R_k, T_k]$
- Minimizes the Sum of Squared Reprojection Errors across all views

$$P^i, C_2, ..., C_k = \arg \min_{p^i, C_2, ..., C_k} \sum_{k=1}^{n} \sum_{i=1}^{N} \|p^i_k - \pi(P^i, K_k, C_k)\|^2$$

- NB: we assume the first camera as the world frame, that’s why $C_1 = [I, 0]$
Huber and Tukey Norms

• To prevent that large reprojection errors can negatively impact the optimization, a more robust norm $\rho(\cdot)$ is used instead of the L_2:

$$P_i, C_2, ..., C_k = \arg\min_{P_i, C_2, ..., C_k} \sum_{k=1}^{n} \sum_{i=1}^{N} \rho(p^i_k - \pi(P^i_k, K_k, C_k))$$

• $\rho(\cdot)$ is a robust cost function (Huber or Tukey) to alleviate the contribution of wrong matches:

- **Huber norm:**
 $$\rho(x) = \begin{cases}
 x^2 & \text{if } |x| \leq k \\
 k(2|x| - k) & \text{if } |x| > k
 \end{cases}$$

- **Tukey norm:**
 $$\rho(x) = \begin{cases}
 \alpha^2 & \text{if } |x| \geq \alpha \\
 \alpha^2 \left(1 - \left(1 - \left(\frac{x}{\alpha}\right)^2\right)^3\right) & \text{if } |x| < \alpha
 \end{cases}$$

These formulas are not asked at the exam but their plots and meaning is asked 😊
Outline

- Bundle Adjustment
- n-views SFM
n-View Structure From Motion

- Compute initial structure and motion using either:
 - **Hierarchical SFM**
 - **Sequential SFM** \rightarrow Visual Odometry (VO)
- Refine simultaneously structure and motion through BA
Hierarchical SFM applied to random internet images

- Reconstruction from 150,000 images from Flickr associated with the tags “Rome”
- 4 million 3D points. Cloud of 496 computers. 21 hours of computation!

Most influential paper of 2009

State of the art software: [COLMAP]
Hierarchical SFM

1. Extract and match features between nearby frames
2. Build clusters consisting of 2 nearby frames
Hierarchical SFM

1. Extract and match features between nearby frames
2. Build clusters consisting of 2 nearby frames
3. Extract topological tree (e.g., count number of SIFT matches)
4. Start from the terminal nodes
 1. Compute 2-view SFM and build 3D model (point cloud)
5. Iterate according to tree structure:
 1. Merge new view by running 3-point RANSAC between 3D model and 3rd view
 2. Merge near-by models using 5.1
 3. Bundle adjust

The circle ○ corresponds to the creation of a stereo-model, the triangle △ corresponds to applying PNP, the diamond ⋄ corresponds to a fusion of two partial independent models.
n-View Structure From Motion

- Compute initial structure and motion using either:
 - Hierarchical SFM
 - **Sequential SFM** \rightarrow Visual Odometry (VO)
- Refine simultaneously structure and motion through BA
Sequential SFM (also called Visual Odometry (VO))

- Initialize structure and motion from 2 views (bootstrapping)
- For each additional view
 - Determine pose (localization)
 - Extend structure, i.e., extract and triangulate new features (mapping)
 - Refine structure and motion through Bundle Adjustment (BA) (optimization)
VO Flow Chart: review (Lecture 01)

• VO computes the camera path incrementally (pose after pose)

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Local optimization

Front-end: outputs the *relative pose* between the *last two frames*

Back-end: “*adjusts*” the relative poses among *multiple recent frames*
VO Flow Chart: review (Lecture 01)

- VO computes the camera path incrementally (pose after pose)

Image sequence → Feature detection → Feature matching (tracking) → Motion estimation → Local optimization

Features tracked over multiple recent frames overlaid on the last frame
VO Flow Chart: review (Lecture 01)

• VO computes the camera path incrementally (pose after pose)

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

<table>
<thead>
<tr>
<th></th>
<th>2D-2D</th>
<th>3D-3D</th>
<th>3D-2D</th>
</tr>
</thead>
</table>

Local optimization
VO Flow Chart: review (Lecture 01)

- VO computes the camera path incrementally (pose after pose)

\[P_i, c_2, ..., c_k = \arg\min_{P_i, c_2, ..., c_k} \sum_{k=1}^{n} \sum_{i=1}^{N} \|p_i^k - \pi(P_i, K_k, c_k)\|^2 \]

Example: Bundle Adjustment:

Or Pose-Graph Optimization (see later)
2D-to-2D (already seen: Lecture 08)

Motion from 2D-to-2D feature correspondences

• Both feature **correspondences** f_{k-1} and f_k are specified in **image coordinates** (2D)

• The **minimal-case** solution involves **5** feature correspondences

• Popular algorithms: **5- and 8-point algorithms**
3D-to-2D (already seen: Lecture 03)

Motion from 3D-to-2D feature correspondences (i.e., Perspective from n Points: PnP problem)

- f_{k-1} is specified in 3D and f_k in 2D
- **Minimal case:**
 - DLT algorithm: minimal case: 6 points from 3D objects, or 4 from planar objects
 - P3P algorithm: minimal case: 3 points (+1 for disambiguation)
 - EPNP algorithm: for more than 4 points
• **Motion from 3D-to-3D feature correspondences** (also known as point cloud registration problem)
 - Both f_{k-1} and f_k are specified in 3D. To do this, it is necessary to first triangulate 3D points (e.g. use a stereo camera)

• The **minimal-case** solution involves 3 **non-collinear** correspondences

• Popular algorithm: [Arun’87]

Arun, Huang, Blostein, “Least-Squares Fitting of Two 3-D Point Sets,” Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1987. [PDF]
Motion Estimation: Recap

<table>
<thead>
<tr>
<th>Type of correspondences</th>
<th>Monocular</th>
<th>Stereo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-2D</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3D-2D</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3D-3D</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Case Study: Monocular VO (i.e., single camera VO)

This pipeline was initially proposed in PTAM (Parallel Tracking & Mapping) [Klein, ISMAR’07]

Case Study: Monocular VO (i.e., single camera VO)

Bootstrapping (i.e., initialization)
• Initialize structure and motion from 2 views: e.g., **5- or 8-point RANSAC**
• Refine structure and motion (**Bundle Adjustment**)
• How far should the two frames (i.e., keyframes) be?
Skipping frames (Keyframe Selection)

- When frames are taken at nearby positions compared to the scene distance, 3D points will exhibit large uncertainty

Small baseline \rightarrow large depth uncertainty

Large baseline \rightarrow small depth uncertainty
Skipping frames (Keyframe Selection)

- When frames are taken at nearby positions compared to the scene distance, 3D points will exhibit large uncertainty.
- One way to avoid this consists of **skipping frames** until the average uncertainty of the 3D points (normalized by the average distance from the scene) falls below a certain threshold. The selected frames are called **keyframes**.
- **Rule of the thumb:** add a keyframe when \(\frac{\text{keyframe distance}}{\text{average-depth}} > \text{threshold (~10-20 %)} \)
Case Study: Monocular VO (i.e., single camera VO)

Localization

• Given a 3D point cloud (map), determine the pose of each additional view
• What algorithm is used?
• How far from the last keyframe can we use it for?

<table>
<thead>
<tr>
<th>Motion estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-2D</td>
</tr>
<tr>
<td>3D-2D</td>
</tr>
<tr>
<td>3D-3D</td>
</tr>
</tbody>
</table>

Initial pointcloud

Keyframe 1

Keyframe 2

Current frame
Case Study: Monocular VO (i.e., single camera VO)

Localization

• Given a 3D point cloud (map), determine the pose of each additional view

Video of Oculus Insight (the VIO used in Oculus Quest): built by former Zurich-Eye team, today Oculus Zurich. Dr. Christian Forster (Oculus Zurich & co-founder of Zurich-Eye) will give a lecture on Nov. 26
Case Study: Monocular VO (i.e., single camera VO)

Extend Structure (i.e., mapping)

- Extract and triangulate new features
- Is it necessary to do this at every frame or can we just do it at keyframes?
- What are the pros and cons?

Initial pointcloud
New triangulated points
Keyframe 1
Keyframe 2
New keyframe
VO: putting all pieces together

• Let the relative motion t_k from images I_{k-1} to image I_k

$$t_{k,k-1} = \begin{bmatrix} R_{k,k-1} & T_{k,k-1} \\ 0 & 1 \end{bmatrix}$$

• Concatenate adjacent transformations to recover the current pose:

$$C_n = C_{n-1} t_{n,n-1}$$

• Optimize over the last m poses to refine the trajectory (Pose-Graph or Bundle Adjustment)

Sliding-window bundle adjustment
Optimization

VO flowchart:

1. Image sequence
2. Feature detection
3. Feature matching (tracking)
4. Motion estimation
5. Local optimization

Example: Bundle Adjustment:

\[p_i, c_2, ..., c_k = \arg\min_{p_i, c_2, ..., c_k} \sum_{k=1}^{n} \sum_{i=1}^{N} \| p_k^i - \pi(p_i, K_k, C_k) \|^2 \]

Or Pose-Graph Optimization (see later)
Pose-Graph Optimization

• So far we assumed that the transformations are between consecutive frames

• However, transformations can also be computed between non-adjacent frames T_{ij} (e.g., when features from previous keyframes are still observed). They can be used as additional constraints to improve cameras poses by minimizing the following:

$$\{C_1, \ldots, C_n\} = \arg\min_{\{C_1, \ldots, C_n\}} \sum_i \sum_j \|C_i - C_j t_{ij}\|^2$$

• For efficiency, only the last m keyframes are used

• Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs, efficient open-source tools: g2o, GTSAM, SLAM++, Google Ceres
Bundle Adjustment (BA)

• Similar to pose-graph optimization but it also optimizes 3D points

\[\rho(p) \] is the Huber or Tukey norm

• Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs, efficient open-source tools: g2o, GTSAM, SLAM++, Google Ceres
Bundle Adjustment vs Pose-graph Optimization

- BA is more precise than pose-graph optimization because it adds additional constraints (landmark constraints).

- But more costly: $O((qN + ln)^3)$ with N being the number of points, n the number of cameras poses and q and l the number of parameters for points and camera poses. Workarounds:
 - A small window size limits the number of parameters for the optimization and thus makes real-time bundle adjustment possible.
 - It is possible to reduce the computational complexity by just optimizing over the camera parameters and keeping the 3-D landmarks fixed, e.g., (motion-only BA).
Loop Closure Detection (i.e., Place Recognition)

• **Relocalization problem:**
 - During VO, tracking can be lost (due to occlusions, low texture, quick motion, illumination change)

• **Solution:** Re-localize camera pose and continue

• **Loop closing problem**
 - When you go back to a previously mapped area:
 • Loop detection: to avoid map duplication
 • Loop correction: to compensate the accumulated drift
 - In both cases you need a place recognition technique

We will address place recognition in Lecture 12
VO vs. Visual SLAM (recap from Lecture 01)

• **Visual Odometry**
 • Focus on incremental estimation
 • **Guarantees local consistency** (i.e., estimated trajectory is locally correct, but not globally, i.e. from the start to the end)

• **Visual SLAM** (Simultaneous Localization And Mapping)
 • **SLAM = visual odometry + loop detection & closure**
 • **Guarantees global consistency** (the estimated trajectory is globally correct, i.e. from the start to the end)

Image courtesy of [Clemente et al., RSS’07]
Open Source Monocular VO and SLAM algorithms

- PTAM
- ORB-SLAM
- SVO
- LSD-SLAM
- DSO

Indirect methods: Minimize the feature reprojection error

Direct methods: Minimize the feature photometric error
PTAM: Parallel Tracking and Mapping

- Monocular only
- **Feature based**
 - FAST corners + patch descriptors
 - Minimizes reprojection error
 - Jointly optimizes poses & structure (sliding window)
- First to propose **keyframe-based VO**
- First to propose **alternation of localization** (i.e., camera tracking) and **mapping**
- Tracking and mapping running in **two independent threads**: updated map is used by localization thread asynchronously, as soon it becomes available
- Includes:
 - Relocalization
 - No global optimization, only local
- **Real-time (30Hz)**, however global optimization is not done in real time but asynchronously every once in a while

ORB-SLAM

• Supports both **monocular and stereo** cameras

• **Feature based**
 • FAST corners + ORB descriptors
 • ORB: binary descriptor, very fast to compute and match (Hamming distance)
 • Jointly optimizes poses & structure (sliding window)

• **Same workflow as PTAM** (keyframe based, alternation of localization and mapping as independent threads)

• Includes:
 • Loop closing
 • Relocalization
 • Final optimization

• **Real-time (30Hz)**, however global optimization is not done in real time but asynchronously every once in a while

Mur-Artal, Montiel, Tardos, ORB-SLAM: Large-scale Feature-based SLAM, IEEE Transactions on Robotics (T-RO), 2015. [PDF, code, videos]
Indirect vs Direct Methods

- **Indirect methods**
 1. Extract & match features + 3-point RANSAC
 2. Bundle Adjust by minimizing the Reprojection Error:

 \[
 p^i, R, T = \arg \min_{p^i, R, T} \sum_{i=1}^{N} \rho \left(p^i_k - \pi(p^i, K, R, T) \right)
 \]

- **Direct methods**
 1. No feature extraction & no RANSAC needed. Instead, directly minimize Photometric Error:

 \[
 p^i, R, T = \arg \min_{p^i, R, T} \sum_{i=1}^{N} \rho \left(l^i_{k-1}(p^i_{k-1}) - l^i_k \left(\pi(p^i, K, R, T) \right) \right)
 \]

What are their pros and cons?

Irani, Anandau, *All about direct methods*, Springer’99. [PDF]
Indirect vs Direct Methods

- **Indirect methods**
 1. Extract & match features + 3-point RANSAC
 2. Bundle Adjust by minimizing the **Reprojection Error**:

\[
P^i, R, T = \arg \min_{P^i, R, T} \sum_{i=1}^{N} \rho \left(p^i - \pi \left(P^i, K, R, T \right) \right)
\]

- **Direct methods**
 1. No feature extraction & no RANSAC needed. Instead, directly minimize **Photometric Error**:

\[
P^i, R, T = \arg \min_{P^i, R, T} \sum_{i=1}^{N} \rho \left(I_k - \pi \left(P^i, K, R, T \right) \right)
\]

 ✓ Can cope with large frame-to-frame motions (large basin of convergence)
 × Slow due to costly feature extraction and matching
 × Matching Outliers (RANSAC)

✓ All information in the image can be exploited (higher accuracy, higher robustness to motion blur and weak texture (i.e., weak gradients))
✓ Increasing camera frame-rate reduces computational cost per frame (no RANSAC needed)
× Very sensitive to intial value → limited frame-to-frame motion (small basin of convergence)

Irani, Anandau, *All about direct methods*, Springer’99. [PDF](#)
Direct Methods: Dense vs Semi-dense vs Sparse

Dense

Semi-Dense

Sparse

300'000+ pixels

~10,000 pixels

~2,000 pixels

Direct Methods: Dense vs Semi-dense vs Sparse

Dense
- Live incremental reconstruction of a large scene
- Texture mapped model
- Inverse depth solution
- 300'000+ pixels
- DTAM [Newcombe ‘11], REMODE [Pizzoli’14]

Semi-Dense
- LSD-SLAM [Engel’14]
- ~10,000 pixels
- e.g., 120 feature patches × (4×4 pixels per patch)

Sparse
- SVO [Forster’14], DSO [Engel’17]
- ~2,000 pixels
- SVO with a single camera on Euroc dataset

Direct Methods: Dense vs Semi-dense vs Sparse

- What is the influence of the motion baseline on the convergence rate of direct methods?

For small motion baselines, $\|T\|$, the photometric error is usually small.

Direct Methods: Dense vs Semi-dense vs Sparse

• What is the influence of the motion baseline on the convergence rate of direct methods?
• We can use photorealistic simulation to answer this question and generate thousands of data

Findings:
• Dense and Semi-dense behave similarly
• Weak gradients are not informative for the optimization
• Dense methods are only useful with motion blur, defocus, and weak-texture regions
• Sparse methods behave equally well as dense or semi-dense for small motion baselines

LSD-SLAM

- Supports both **monocular** and **stereo** cameras
- **Direct** (photometric error) + **Semi-Dense** formulation
 - 3D structure represented as semi-dense depth map
 - Minimizes **photometric error**
 - Separately optimizes poses & structure (sliding window)
- **Same workflow as PTAM** (keyframe based, alternation of localization and mapping as independent threads)
- Includes:
 - Loop closing
 - Relocalization
 - Final optimization
- **Real-time (30Hz)**, however global optimization is not done in real time but asynchronously every once in a while

Engel, Schoeps, Cremers, *LSD-SLAM: Large-scale Semi-Dense SLAM*, European Conference on Computer Vision (ECCV), 2014. [PDF, code, videos].
DSO

• Supports both **monocular** and **stereo** cameras

• **Direct (photometric error) + Sparse** formulation
 • 3D structure represented as **sparse large gradients’ depth map**
 • Minimizes **photometric error**
 • Jointly optimizes poses & structure (sliding window)
 • Incorporates photometric correction to compensate exposure time change \((\Delta t_{k-1}, \Delta t_k)\)

\[
p^i, R, K = \arg \min_{p^i,R,K} \sum_{i=1}^{N} \rho \left(I_{k-1}(p^i_{k-1}) - \frac{\Delta t_{k-1}}{\Delta t_{k}} I_k \left(\pi(p^i, K, R, T) \right) \right)
\]

• **Same workflow as PTAM** (keyframe based, alternation of localization and mapping as independent threads)

• **Real-time (30Hz)**, however global optimization is not done in real time but asynchronously every once in a while

SVO

- Supports both **monocular, stereo, and multi camera** systems as well as omnidirectional models (fisheye and catadioptric)
- Combines **indirect + direct methods**
 - **Direct** (minimizes photometric error)
 - Used for frame-to-frame motion estimation
 - Corners and edgelets
 - Jointly optimizes poses & structure (sliding window)
 - **Indirect** (minimizes reprojection error)
 - Frame-to-Keyframe pose refinement
- **Mapping**
 - **Probabilistic depth** estimation (heavy tail Gaussian distribution)
- **Same workflow as PTAM** (keyframe based, alternation of localization and mapping as independent threads)
- **Faster than real-time (up to 400Hz): 400 fps** on i7 laptops and **100 fps** on smartphone PCs (Odroid (ARM), NVIDIA Jetsons)

SVO

- Supports both **monocular, stereo, and multi camera** systems as well as omnidirectional models (fisheye and catadioptric)
- Combines **indirect + direct methods**
 - **Direct** (minimizes photometric error)
 - Used for frame-to-frame motion estimation
 - **Corners and edgelets**
 - **Jointly optimizes poses & structure** (sliding window)
 - **Indirect** (minimizes reprojection error)
 - **Frame-to-Keyframe** pose refinement

- **Mapping**
 - **Probabilistic depth** estimation (heavy tail Gaussian distribution)
- **Same workflow as PTAM** (keyframe based, alternation of localization and mapping as independent threads)
- **Faster than real-time (up to 400Hz): 400 fps** on i7 laptops and **100 fps** on smartphone PCs (Odroid (ARM), NVIDIA Jetsons)

Processing times of ORB-SLAM, LSD-SLAM, DSO, SVO

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St.D.</th>
<th>CPU@20 fps</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVO Mono</td>
<td>2.53</td>
<td>0.42</td>
<td>55 ±10%</td>
</tr>
<tr>
<td>ORB Mono SLAM (No loop closure)</td>
<td>29.81</td>
<td>5.67</td>
<td>187 ±32%</td>
</tr>
<tr>
<td>LSD Mono SLAM (No loop closure)</td>
<td>23.23</td>
<td>5.87</td>
<td>236 ±37%</td>
</tr>
<tr>
<td>DSO</td>
<td>20.12</td>
<td>4.03</td>
<td>181 ±27%</td>
</tr>
</tbody>
</table>

Processing times in milliseconds

Applications of SVO and its surrogates

- DJI products (VIO front-end)
- Magic Leap
- Oculus
- Huawei
- ...

Position error: 5 mm, height: 1.5 m – Down-looking camera

Speed: 4 m/s, height: 3 m – Down-looking camera

Robustness to dynamic scenes (down-looking camera)

Automatic recovery from aggressive flight

More here: http://rpg.ifi.uzh.ch/svo2.html
Dacuda 3D (now Magic Leap Zurich)

• Fully immersive VR (running on iPhone 6)
• 6DoF Head tracking by SVO
Startup: “Zurich-Eye” – Today: Facebook-Oculus Zurich

- **Vision-based Localization and Mapping** systems for mobile robots
- Born in Sep. 2015, became **Facebook-Oculus Zurich** in Sep. 2016. Today, **100 employees**.
Startup: “Zurich-Eye” – Today: Facebook-Oculus Zurich

- **Vision-based Localization and Mapping** systems for mobile robots
- Born in Sep. 2015, became **Facebook-Oculus Zurich** in Sep. 2016. Today, **100 employees**.
- In 2018, Zurich-Eye launched **Oculus Quest**: https://youtu.be/xwW-1mbemGc
We will have a lecture by Christian Forster, from Oculus Zurich, on November 26
How can we evaluate the accuracy of VO/SLAM algorithms?

• Idea: compare the estimated trajectory against ground truth trajectory (from GPS, motion tracking systems), but the key question is what error metric should be used?

• Issues:
 • Different reference frames
 • Different scale
 • Different times stamps

• Naïve solution (not used anymore): Maybe align the first poses and measure the end-pose error?

• Not repeatable:
 • Most VIOs are non-deterministic (e.g., RANSAC, multithreading) → every time you run your VIO on the same dataset, you get different results

• Not meaningful:
 • sensitive to the trajectory shape (the number of turns of a trajectory greatly affects the end-pose error)
 • does not capture the error statistics
Metric 1: Absolute Trajectory Error (ATE)

- **Step 1:** align the estimated trajectory to the ground truth from the start to the end using a similarity transformation (i.e., R, T, s) by minimizing the sum of square position errors

$$R, T, s = \arg\min_{R,T,s} \sum_{k=0}^{n} \| \hat{C}_k - sRC_k - T \|^2$$

- **Step 2:** compute Root Mean Square Error (RMSE) after alignment:

$$RMSE = \sqrt{\frac{\sum_{k=1}^{n} \| \hat{C}_k - sRC_k - T \|^2}{n}}$$

- **Pros and cons:**
 - ✓ Single-number metric
 - ✓ Captures the global error (accuracy of the global trajectory)
 - ✗ Does not capture the relative error (accuracy of the local trajectory estimate)

Metric 2: Relative Trajectory Error (RTE)

- Computes **error statistics** of sub-trajectories of specified lengths

- **Pros and cons:**
 - ✓ Informative statistics: captures the relative error (accuracy of the local trajectory estimate)
 - ✗ Complicated to compute and rank, but the good news is that there is code for it 😊 (toolbox, link below)

Things to remember

• Hierarchical SFM
• VO flowchart
 • Monocular VO
 • Stereo VO
 • Keyframe selection
• Bundle adjustment vs pose-graph optimization
• Indirect vs direct methods
• Dense vs semi-dense vs sparse
• Popular open-source VO algorithms
• ATE and RTE trajectory evaluation metrics
Readings

Understanding Check

Are you able to answer the following questions:

• Bundle Adjustment and Pose Graph Optimization. Mathematical expressions and illustrations. Pros and cons.

• Are you able to describe hierarchical and sequential SFM for monocular VO?

• What are keyframes? Why do we need them and how can we select them?

• Are you able to define loop closure detection? Why do we need loops? How can we detect loop closures? (make link to other lectures)

• Are you able to describe the differences between feature-based methods and direct methods?

• Sparse vs semi-dense vs dense. What are their pros and cons?

• Are you able to provide a list of the most popular open source VO and VSLAM algorithms?

• Difference between SFM, VO, SLAM (see also lecture 01)

• How do we evaluate the accuracy of visual odometry? What are ATE and RTE, how are they computed and what do they capture?