Announcement

• Switching to remote teaching from Nov. 2
• ZOOM link will be sent by email
Vision Algorithms for Mobile Robotics

Lecture 07
Multiple View Geometry 1

Davide Scaramuzza

http://rpg.ifi.uzh.ch
Lab Exercise 5 – This afternoon

Stereo vision: rectification, epipolar matching, disparity, triangulation

3D point cloud

Disparity map (cold= far, hot=close)
Multiple View Geometry

San Marco square, Venice
14,079 images, 4,515,157 points
Multiple View Geometry

3D reconstruction from multiple views:
- **Assumptions**: K, T and R are known.
- **Goal**: Recover the 3D structure from images

Structure From Motion:
- **Assumptions**: none (K, T, and R are unknown).
- **Goal**: Recover simultaneously 3D scene structure and camera poses (up to scale) from multiple images
2-View Geometry

Depth from stereo (i.e., stereo vision):
• **Assumptions**: K, T and R are known.
• **Goal**: Recover the 3D structure from two images

2-view Structure From Motion:
• **Assumptions**: none (K, T, and R are unknown).
• **Goal**: Recover simultaneously 3D scene structure and camera poses (up to scale) from two images
Today’s outline

• Stereo Vision
• Epipolar Geometry
 Depth from Stereo

Goal: solve for the intersection of the rays and recover the 3D structure
The Human Binocular System

- **Stereopsys**: the brain allows us to see the left and right retinal images as a single 3D image.
- The images project on our retina up-side-down but our brains lets us perceive them as straight. Radial distortion is also removed. This process is called **rectification**.
The Human Binocular System

- **Stereopsys**: the brain allows us to see the left and right retinal images as a single 3D image.
- The images project on our retina up-side-down but our brains lets us perceive them as **straight**. Radial distortion is also removed. This process is called **rectification**.

Make a simple test:
1. Fix an object
2. Open and close alternatively the left and right eyes.
 - The horizontal displacement is called **disparity**
 - The smaller the disparity, the farther the object.
The Human Binocular System

- **Stereopsys**: the brain allows us to see the left and right retinal images as a single 3D image.
- The images project on our retina up-side-down but our brains lets us perceive them as **straight**. Radial distortion is also removed. This process is called **rectification**.

Make a simple test:
1. Fix an object
2. Open and close alternatively the left and right eyes.
 - The horizontal displacement is called **disparity**
 - The smaller the disparity, the farther the object.
The Human Binocular System

- **Stereopsys**: the brain allows us to see the left and right retinal images as a single 3D image.
- The images project on our retina up-side-down but our brains lets us perceive them as **straight**. Radial distortion is also removed. This process is called **rectification**.
- What happens if you wear a pair of mirrors for a week?

An early experiment in “perceptual plasticity” was conducted by Psychologist George Stratton in 1896. He used his inverted vision goggles, over a period of 8 days, and over time adapted to the point where he was able to function normally.

https://en.wikipedia.org/wiki/George_M._Stratton#Wundt's_lab_and_the_inverted-glasses_experiments
Stereo Vision

- Triangulation
 - Simplified case
 - General case
- Correspondence problem
- Stereo rectification

Intel RealSense D455 stereo camera:
uses stereo and structured infrared light for depth estimation
https://www.intelrealsense.com/stereo-depth/

Intel RealSense T265 stereo camera for visual-inertial odometry and SLAM:
https://www.intelrealsense.com/tracking-camera-t265/
Stereo Vision

- **Goal**: find an expression of the 3D point coordinates as a function of the 2D image coordinates
- **Assumptions**:
 - cameras are calibrated: both intrinsic and extrinsic parameters are known
 - point correspondences are given
Stereo Vision

Simplified case
(identical cameras and aligned)

General case
(non identical cameras and not aligned)
Both cameras are **identical** (i.e., same intrinsics) and are **aligned** with the x-axis.

Baseline = distance between the optical centers of the two cameras.

\[P = (X_p, Y_p, Z_p) \]
Stereo Vision - Simplified Case

Both cameras are identical (i.e., same intrinsics) and are aligned with the x-axis.

Baseline = distance between the optical centers of the two cameras

From Similar Triangles:

\[\frac{f}{Z_p} = \frac{u_l}{X_p} \]
\[\frac{f}{Z_p} = \frac{-u_r}{b - X_p} \]

Disparity = difference in image location of the projection of a 3D point on two image planes

1. What’s the max disparity of a stereo camera?
2. What’s the disparity of a point at infinity?
Choosing the Baseline

What’s the optimal baseline?

- **Large baseline:**
 - Minimum measurable depth increases
 - Difficult search problem for close objects

- **Small baseline:**
 - Large depth error

1. Can you compute the depth uncertainty as a function of the disparity?
2. Can you compute the depth uncertainty as a function of the depth estimate?
3. How can we increase the accuracy of a stereo system?
Stereo Vision – General Case

• Two identical cameras do not exist in nature
• Aligning both cameras on a horizontal axis is very hard -> Impossible, why?

• In order to be able to use a stereo camera, we need the
 • **Extrinsic parameters** (relative rotation and translation)
 • **Intrinsic parameters** (focal length, optical center, lens distortion of each camera)
 ⇒ Use a calibration method (Tsai’s method (i.e., 3D object) or Zhang’s method (2D grid), see Lectures 2, 3)
 ⇒ How do we compute the relative pose between the left and right cameras?
Triangulation

- **Triangulation** is the problem of determining the 3D position of a point given a set of corresponding image locations and known camera poses.
- We want to intersect the two visual rays corresponding to p_1 and p_2, but, because of noise and numerical errors, they won’t meet exactly, so we can only compute an approximation.
Triangulation: Least Square Approximation

We construct the system of equations of the left and right cameras, and solve it:

Left camera (assumed as world frame)

\[
\begin{bmatrix}
 u_1 \\
 v_1 \\
 1
\end{bmatrix}
= K_1[I|0] \cdot
\begin{bmatrix}
 X_w \\
 Y_w \\
 Z_w \\
 1
\end{bmatrix}
\]

Right camera

\[
\begin{bmatrix}
 u_2 \\
 v_2 \\
 1
\end{bmatrix}
= K_2[R|T] \cdot
\begin{bmatrix}
 X_w \\
 Y_w \\
 Z_w \\
 1
\end{bmatrix}
\]
Review: Cross Product (or Vector Product)

\[\vec{a} \times \vec{b} = \vec{c} \]

- Vector cross product takes two vectors and returns a third vector that is perpendicular to both inputs
- So here, \(\vec{c} \) is perpendicular to both \(\vec{a} \) and \(\vec{b} \), which means the dot product = 0
- Also, recall that the cross product of two parallel vectors = 0
- The vector cross product can also be expressed as the product of a skew-symmetric matrix and a vector

\[
\begin{bmatrix}
0 & -a_z & a_y \\
a_z & 0 & -a_x \\
-a_y & a_x & 0
\end{bmatrix}
\begin{bmatrix}
b_x \\
b_y \\
b_z
\end{bmatrix}
= [\vec{a} \times \vec{b}]
\]
Triangulation: Least Square Approximation

Left camera
\[
\begin{bmatrix}
u_1 \\ v_1 \\ 1
\end{bmatrix}
= K_1 [I|0] \cdot \begin{bmatrix}
X_w \\ Y_w \\ Z_w \\ 1
\end{bmatrix}
\Rightarrow \lambda_1 p_1 = M_1 \cdot P \Rightarrow p_1 \times \lambda_1 p_1 = p_1 \times M_1 \cdot P \Rightarrow 0 = p_1 \times M_1 \cdot P
\]

Right camera
\[
\begin{bmatrix}
u_2 \\ v_2 \\ 1
\end{bmatrix}
= K_2 [R|T] \cdot \begin{bmatrix}
X_w \\ Y_w \\ Z_w \\ 1
\end{bmatrix}
\Rightarrow \lambda_2 p_2 = M_2 \cdot P \Rightarrow p_2 \times \lambda_2 p_2 = p_2 \times M_2 \cdot P \Rightarrow 0 = p_2 \times M_2 \cdot P
\]
Triangulation: Least Square Approximation

Left camera

⇒ 0 = \(p_1 \times M_1 \cdot P \) \(\Rightarrow [p_{1x}] \cdot M_1 \cdot P = 0 \)

Right camera

⇒ 0 = \(p_2 \times M_2 \cdot P \) \(\Rightarrow [p_{2x}] \cdot M_2 \cdot P = 0 \)

Recall:

\[
\mathbf{a} \times \mathbf{b} = \begin{bmatrix}
0 & -a_z & a_y \\
a_z & 0 & -a_x \\
-a_y & a_x & 0 \\
\end{bmatrix}
\begin{bmatrix}
b_x \\
b_y \\
b_z \\
\end{bmatrix}
= [\mathbf{a} \times \mathbf{b}]
\]
Triangulation: Least Square Approximation

Left camera

\[0 = p_1 \times M_1 \cdot P \quad \Rightarrow [p_{1x}] \cdot M_1 \cdot P = 0 \]

Right camera

\[0 = p_2 \times M_2 \cdot P \quad \Rightarrow [p_{2x}] \cdot M_2 \cdot P = 0 \]

- We get a homogeneous system of equations
- \(P \) can be determined using SVD, as we already did when we talked about DLT (see Lecture 03)
Geometric interpretation of Least Square Approximation

P is computed as the **midpoint of the shortest segment** connecting the two lines.
Triangulation: Nonlinear Refinement

- Initialize P using the linear approximation; then refine P by minimizing the sum of left and right squared reprojection errors (for the definition of reprojection error refer to Lecture 3):

$$P = \arg \min_P \|p_1 - \pi(P, K_1, I, 0)\|^2 + \|p_2 - \pi(P, K_2, R, T)\|^2$$

- Can be minimized using Levenberg–Marquardt (more robust than Gauss-Newton to local minima)
Stereo Vision

• Triangulation
 • Simplified case
 • General case

• Correspondence problem

• Stereo rectification
Correspondence Problem

Given a point p_L on left image, how do we find its correspondent p_R on the right image?
Correspondence Problem

Given a point p_L on left image, how do we find its correspondent p_R on the right image?
Correspondence Problem

Use one of these: *(Z)*NCC, *(Z)*SSD, *(Z)*SAD, Census Transform plus Hamming distance
Correspondence Problem

• This 2D exhaustive search is computationally very expensive! How many comparisons?
• Can we make the correspondence search 1D?
• Potential matches for p have to lie on the corresponding epipolar line l'
 • The epipolar line is the projection of a back-projected ray $\pi^{-1}(p)$ onto the other camera image
 • The epipole is the projection of the optical center on the other camera image
 • A stereo camera has two epipoles

$$\pi^{-1}(p) = \lambda K^{-1}p$$

C_l, C_r
The Epipolar Constraint

- The camera centers C_l, C_r and the image point p determine the so-called **epipolar plane**.
- The intersections of the epipolar plane with the two image planes are called **epipolar lines**.
- Corresponding points must therefore lie along the epipolar lines: this constraint is called **epipolar constraint**.
- The epipolar constraint: reduces correspondence problem to **1D search along the epipolar line**.

![Epipolar Diagram](image-url)
1D Correspondence Search via Epipolar Constraint

Thanks to the epipolar constraint, corresponding points can be searched for along epipolar lines: → computational cost reduced to 1 dimension!
Example: Converging Cameras

- **Remember**: all the epipolar lines intersect at the epipole
- As the position of the 3D point P changes, the epipolar lines *rotate* about the baseline
Example: Identical and Horizontally-Aligned Cameras
Example: Forward Motion (parallel to the optical axis)

- Epipole has the **same coordinates** in both images
- Points move along lines radiating from e: “Focus of expansion”
Stereo Vision

• Triangulation
 • Simplified case
 • General case

• Correspondence problem

• Stereo rectification
Stereo Rectification

- Even in **commercial stereo cameras** the left and right images are **never perfectly aligned**
- In practice, it is **convenient** if image **scanlines are the epipolar lines** because then the correspondence search can be made very efficient (only search the point along the same scanlines)

![Raw stereo pair (unrectified): scan lines do not coincide with epipolar lines](image_url)
Stereo Rectification

- Even in **commercial stereo cameras** the left and right images are **never perfectly aligned**
- In practice, it is **convenient** if image **scanlines are the epipolar lines** because then the correspondence search can be made very efficient (only search the point along the same scanlines)
- **Stereo rectification warps the left and right images** into new “rectified” images such that the **epipolar lines coincide with the scanlines**

![Rectified stereo pair: scanlines coincide with epipolar lines](image)
Stereo Rectification

- Warps original image planes onto a coplanar planes parallel to the baseline
- It works by computing two homographies, one for each image
- As a result, the new epipolar lines coincide with the scanlines of the left and right image, and they are aligned.
Stereo Rectification

- The idea behind rectification is to define two new Perspective Projection Matrices (PPMs) obtained by rotating the old ones around their optical centers until focal planes become parallel to each other.
- This ensures that epipoles are at infinity, hence epipolar lines are parallel.
- To have horizontal epipolar lines, the baseline must be parallel to the new X axis of both cameras.
- In addition, to have a proper rectification, corresponding points must have the same vertical coordinate. This is obtained by requiring that the new cameras have the same intrinsic parameters.
- Note that, being the focal length the same, the new image planes are coplanar too.
In Lecture 02, we have seen that the Perspective Equation for a point P_w in the world frame is defined by this equation, where $R = R_{cw}$ and $T = T_{cw}$ transform points from the World frame to the Camera frame.

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = KR \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} + T$$
Stereo Rectification (1/5)

• For Stereo Vision, however, it is more common to use $R \equiv R_{wc}$ and $T \equiv T_{wc}$, where now R, and T transform points from the Camera frame to the World frame. This is more convenient because $T \equiv C$ directly represents the world coordinates of the camera center. The projection equation can be re-written as:

$$
\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = KR^{-1} \left(\begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} - T \right) \quad \rightarrow \quad \lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = KR^{-1} \left(\begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} - C \right)
$$
We can now write the Perspective Equation for the Left and Right cameras. For generality, we assume that Left and Right cameras have different intrinsic parameter matrices, K_L, K_R:

Left camera

$$\lambda_L \begin{bmatrix} u_L \\ v_L \\ 1 \end{bmatrix} = K_L R_L^{-1} \left(\begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} - C_L \right)$$

Right camera

$$\lambda_R \begin{bmatrix} u_R \\ v_R \\ 1 \end{bmatrix} = K_R R_R^{-1} \left(\begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} - C_R \right)$$
Stereo Rectification (3/5)

The goal of stereo rectification is to warp the left and right camera images such that their image planes are coplanar (i.e., same \hat{R}) and their intrinsic parameters are identical (i.e., same \hat{K}).

\[
\lambda_L \begin{bmatrix} u_L \\ v_L \\ 1 \end{bmatrix} = K_L R_L^{-1} \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} - C_L \quad \text{Old Left camera}
\]

\[
\lambda_R \begin{bmatrix} u_R \\ v_R \\ 1 \end{bmatrix} = K_R R_R^{-1} \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} - C_R \quad \text{Old Right camera}
\]

\[
\lambda_L \begin{bmatrix} \hat{u}_L \\ \hat{v}_L \\ 1 \end{bmatrix} = \tilde{K} \tilde{R}^{-1} \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} - C_L \quad \text{New Left camera}
\]

\[
\lambda_R \begin{bmatrix} \hat{u}_R \\ \hat{v}_R \\ 1 \end{bmatrix} = \tilde{K} \tilde{R}^{-1} \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} - C_R \quad \text{New Right camera}
\]
Stereo Rectification (4/5)

By solving with respect to \((X_w, Y_w, Z_w)\) for each camera, we can compute the Homography that needs to be applied to rectify each camera image:

\[
\hat{\lambda}_L \begin{bmatrix} \hat{u}_L \\ \hat{v}_L \\ 1 \end{bmatrix} = \lambda_L \hat{K}\hat{R}^{-1}R_LK_L^{-1} \begin{bmatrix} u_L \\ v_L \\ 1 \end{bmatrix}
\]

Homography of Left Camera

\[
\hat{\lambda}_R \begin{bmatrix} \hat{u}_R \\ \hat{v}_R \\ 1 \end{bmatrix} = \lambda_R \hat{K}\hat{R}^{-1}R_RK_R^{-1} \begin{bmatrix} u_R \\ v_R \\ 1 \end{bmatrix}
\]

Homography of Right Camera
Stereo Rectification (5/5)

How do we chose the new \hat{K} and \hat{R}? A good choice is to impose that:

$$\hat{R} = \frac{K_L + K_R}{2}$$

$$\hat{R} = [\hat{r}_1, \hat{r}_2, \hat{r}_3]$$

with $\hat{r}_1, \hat{r}_2, \hat{r}_3$ being the column vectors of \hat{R}, where:

$$\hat{r}_1 = \frac{C_2 - C_1}{\|C_2 - C_1\|}$$

$$\hat{r}_2 = r_3 \times \hat{r}_1$$ \quad \text{where } r_3 \text{ is the 3}^{rd} \text{ column of the rotation matrix of the left camera, i.e., } R_L$$

$$\hat{r}_3 = \hat{r}_1 \times \hat{r}_2$$

Stereo Rectification: Example

scanlines

Left

Right

49
Stereo Rectification: Example

- First, *compute lens distortion*
Stereo Rectification: Example

- First, compute lens distortion
- Then, compute homographies and rectify
- Use bilinear interpolation for warping (see lect. 06)
Stereo Rectification: Example
Dense Stereo Correspondence: Disparity Map

1. For every pixel in the left image, find its corresponding point in the right image
2. Compute the disparity for each found pair of correspondences
3. Visualize it in gray-scale or color coded image: Disparity map

Left image

Right image

Close objects experience bigger disparity → appear brighter in disparity map
From Disparity Map to Point Cloud

Once the stereo pair is rectified, the depth of each point recalling that:

$$Z_P = \frac{bf}{u_l - u_r}$$
Stereo Vision

• Triangulation
 • Simplified case
 • General case
• Correspondence problem: continued
• Stereo rectification
Correspondence Problem

- Once left and right images are rectified, correspondence search can be done along the same scanlines.
- To average noise effects, use a window around the point of interest (assumption: neighborhoods of corresponding points are similar in intensity patterns).
- Find correspondence by maximizing or minimizing: \((Z)\text{NCC}, (Z)\text{SSD}, (Z)\text{SAD}, \text{Census Transform}\) plus Hamming distance.
Example: (Z)NCC
Textureless regions: the aperture problem

Textureless regions are not distinctive; high ambiguity for matches.
Textureless regions: the aperture problem

Solution: increase window size
Effects of window size on the disparity map

Smaller window
• more detail 🟢
• but more noise 🟥

Larger window
• smoother disparity maps 🟢
• but less detail 🟥

W = 3
W = 20
Accuracy

Data

Window-based matching

Ground truth
Challenges

Occlusions and repetitive patterns

Non-Lambertian surfaces (e.g., specularities), textureless surfaces
Correspondence Problems: Multiple matches

- Multiple match hypotheses satisfy epipolar constraint, but which one is correct?
How can we improve window-based matching?

- Beyond the epipolar constraint, there are “soft” constraints to help identify corresponding points
 - Uniqueness
 - Only one match in right image for every point in left image
 - Ordering
 - Points on same surface will be in same order in both views
 - Disparity gradient
 - Disparity changes smoothly between points on the same surface
Better methods exist

For the latest and greatest:

• **Middlebury dataset** and leader board: http://vision.middlebury.edu/stereo/

Using Deep Learning

Ground truth

Things to Remember

• Disparity
• Triangulation: simplified and general case, linear and non linear approach
• Choosing the baseline
• Correspondence problem: epipoles, epipolar lines, epipolar plane
• Stereo rectification
Reading

• Szeliski book 1st edition: Chapter 11
• Autonomous Mobile Robot book (link): Chapter 4.2.5
• Peter Corke book: Chapter 14.3
Understanding Check

Are you able to answer the following questions?

- Can you relate Structure from Motion to 3D reconstruction? What’s their difference?
- Can you define disparity in both the simplified and the general case?
- Can you provide a mathematical expression of depth as a function of the baseline, the disparity and the focal length?
- Can you apply error propagation to derive an expression for depth uncertainty? How can we improve the uncertainty?
- Can you analyze the effects of a large/small baseline?
- What is the closest depth that a stereo camera can measure?
- Are you able to show mathematically how to compute the intersection of two lines (linearly and non-linearly)?
- What is the geometric interpretation of the linear and non-linear approaches and what error do they minimize?
- Are you able to provide a definition of epipole, epipolar line and epipolar plane?
- Are you able to draw the epipolar lines for two converging cameras, for a forward motion situation, and for a side-moving camera?
- Are you able to define stereo rectification and to derive mathematically the rectifying homographies?
- How is the disparity map computed?
- How can one establish stereo correspondences with subpixel accuracy?
- Describe one or more simple ways to reject outliers in stereo correspondences.
- Is stereo vision the only way of estimating depth information? If not, are you able to list alternative options? (make link to other lectures)