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What is an IMU?

 Inertial Measurement Unit

 Gyroscope: Angular velocity

 Accelerometer: Linear Accelerations

Mechanical Gyroscope

Mechanical Accelerometer
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What is an IMU?

 Different categories

 Mechanical ($100,000-1M)

 Optical ($20,000-100k)

 MEMS (from 1$ (phones) to 1,000$ 
(higher cost because they have a 
microchip running a Kalman filter))

 For small mobile robots & drones: 
MEMS IMU are mostly used

 Cheap

 Power efficient 

 Light weight and solid state
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MEMS Accelerometer

spring

capacitive 
divider

M M Maa

A spring-like structure connects the device to a seismic mass vibrating in a capacitve divider. A capacitive 
divider converts the displacement of the seismic mass into an electric signal. Damping is created by the 
gas sealed in the device.
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MEMS Gyroscopes

 MEMS gyroscopes measure the Coriolis forces acting on MEMS vibrating 
structures (tuning forks, vibrating wheels, or resonant solids)

 Their working principle is similar to the haltere of a fly

 Haltere are small structures of some two-winged insects, such as flies. They are 
flapped rapidly and function as gyroscopes, informing the insect about rotation 
of the body during flight.
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Why IMU?

 Monocular vision is scale ambiguous.

 Pure vision is not robust enough

 Low texture

 High dynamic range

 High speed motion

Robustness is a critical issue: Tesla accident

“The autopilot sensors on the Model S failed 
to distinguish a white tractor-trailer crossing 
the highway against a bright sky. ” [The Guardian]

Dynamic Range

Motion blur

https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
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Why vision?

 Pure IMU integration will lead to large drift (especially cheap IMUs)

 Will see later mathematically

 Intuition

- Integration of angular velocity to get orientation: if there is a bias in angular 
velocity, the error is proportional to t

- Double integration of acceleration to get position: if there is a bias in 
acceleration, the error of position is proportional to t2

- Worse, the actual position error also depends on the orientation error (see later).

Errors computed assuming the device at rest: http://www.vectornav.com/support/library/imu-and-ins

Automotive,
Smartphone,
& Drone 
accelerometers

http://www.vectornav.com/support/library/imu-and-ins
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Why visual inertial fusion?

IMU and vision are complementary

Cameras IMU

 Precise in slow motion
 Rich information for other tasks

ᵡ Limited output rate (~100 Hz)
ᵡ Scale ambiguity in monocular setup
ᵡ Lack of robustness to HDR and high 

speed

 Robust
 High output rate (~1,000 Hz)
 Accurate at high acceleration
 Can predict next feature position

ᵡ Large relative uncertainty when at low 
acceleration/angular velocity

ᵡ Ambiguity in gravity / acceleration

What cameras and IMU have in common: both estimate the pose 
incrementally (known as dead-reckoning), which suffers from drifting 
over time. Solution: loop detection and loop closure
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IMU model: Measurement Model
 Measures angular velocity and acceleration in the body frame:

       B WB B WB

g gt t t t  ω ω b n

          B WB BW W WB w

a at t t t t   a R a g b n

where the superscript 𝑔 stands for Gyroscope and 𝑎 for Accelerometer

Notations:
• Left subscript: reference frame in which the quantity is expressed
• Right subscript {Q}{Frame1}{Frame2}: Q of Frame2 with respect to Frame1
• Biases and noise are expressed in the body frame

IMU biases + noisemeasurements true 𝛚 and 𝐚 to estimate
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IMU model: Noise Property

 Additive Gaussian white noise:  

Trawny, Nikolas, and Stergios I. Roumeliotis. "Indirect Kalman filter for 3D attitude estimation.“
https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model

   ,g at tb b

   ,g at tn n

 ( ) bt tb w

 Bias:

i.e., the derivative of the bias is white Gaussian noise

Some facts about IMU biases:
• They can change due to temperature change and mechanical pressure
• They can change every time the IMU is started
• Good news: they can be estimated

𝐰 t ~𝐍(o, 1)

https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model
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IMU model: Integration

per component: {t} stands for {B}ody frame at time t

         
2

2 1 1

1

2

Wt Wt 2 1 Wt Wt w d

t

a

t

t t t t t t      p p v R a b g

• Depends on initial position and velocity
• The rotation R(t) is computed from the gyroscope

Trawny, Nikolas, and Stergios I. Roumeliotis. "Indirect Kalman filter for 3D attitude 
estimation."
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Camera-IMU System

There can be multiple cameras.
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Visual Inertial (VIO) Fusion

Different paradigms

 Loosely coupled:

 Treats VO and IMU as two separate (not coupled) black boxes

- Each black box estimates pose and velocity from visual (up to a scale) and inertial 
data (absolute scale)

 Tightly coupled:

 Makes use of the raw sensors’ measurements:

- 2D features

- IMU readings

- More accurate

- More implementation effort

In the following slides, we will only see tightly coupled approaches
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The Loosely Coupled Approach

Feature 
tracking

VO
images

Position (up to a scale) &

orientation

IMU Integration

Position

Orientation

Velocity

2D features

Fusion
Refined 

Position

Orientation

Velocity
IMU 

measurements
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The Tightly Coupled Approach

Feature 
tracking

images

IMU 
measurements

2D features

Fusion
Refined 

Position

Orientation

Velocity
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System states:

         W WB W W 1 W 2 W; ; ; ; ; ; ;...,;a g

Kt t t t t   X p q v b b L L L

Filtering: Visual Inertial Formulation

Tightly coupled:

Loosely coupled:          W WB W; ; ; ;a gt t t t t   X p q v b b

Corke, An Introduction to Inertial and Visual Sensing, IJRR’07
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Closed-form Solution (1D case)
 The absolute pose 𝑥 is known up to a scale 𝑠, thus 

𝑥 = 𝑠 ෤𝑥

 From the IMU

𝑥 = 𝑥0 + 𝑣0(𝑡1 − 𝑡0) +ඵ
𝑡0

𝑡1

𝑎 𝑡 𝑑𝑡

 By equating them

𝑠 ෤𝑥 = 𝑥0 + 𝑣0 𝑡1 − 𝑡0 +ඵ
𝑡0

𝑡1

𝑎 𝑡 𝑑𝑡

 As shown in [Martinelli’14], for 6DOF, both 𝑠 and 𝑣0 can be determined in 
closed form from a single feature observation and 3 views. 𝑥0 can be set to 0.

Martinelli, Closed-form solution of visual-inertial structure from motion, International Journal of Computer Vision, 2014
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Closed-form Solution (1D case)

Martinelli, Closed-form solution of visual-inertial structure from motion, International Journal of Computer Vision, 2014

𝑠෦𝑥1 = 𝑣0 𝑡1 − 𝑡0 +ඵ
𝑡0

𝑡1

𝑎 𝑡 𝑑𝑡

𝑠෦𝑥2 = 𝑣0 𝑡2 − 𝑡0 +ඵ
𝑡0

𝑡2

𝑎 𝑡 𝑑𝑡
𝑡0 𝑡1 𝑡2

𝐿1

෦𝑥1 (𝑡0−𝑡1)

෦𝑥2 (𝑡0−𝑡2)

𝑠
𝑣0

=

ඵ
𝑡0

𝑡1

𝑎 𝑡 𝑑𝑡

ඵ
𝑡0

2

𝑎 𝑡 𝑑𝑡
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Closed-form Solution (general case)

 Considers N feature observations and 6DOF case

 Can be used to initialize filters and smoothers (which always need an 
initialization point)

 More complex to derive than the 1D case. But it also reaches a linear system of 
equations that can be solved using the pseudoinverse:

𝑿 is the vector of unknowns:
• Absolute scale, 𝑠
• Initial velocity, 𝑣0
• 3D Point distances (wrt the first camera)
• Direction of the gravity vector, 
• Biases

𝑨 and 𝑺 contain 2D feature coordinates, acceleration, and 
angular velocity measurements

• Martinelli, Vision and IMU data fusion: Closed-form solutions for attitude, speed, absolute scale, and bias determination, TRO’12
• Martinelli, Closed-form solution of visual-inertial structure from motion, Int. Journal of Comp. Vision, JCV’14
• Kaiser, Martinelli, Fontana, Scaramuzza, Simultaneous state initialization and gyroscope bias calibration in visual inertial aided 

navigation, IEEE RAL’17
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Different VIO fusion paradigms

Filtering Fixed-lag Smoothing Full smoothing

Only updates the most 
recent state
• (e.g., extended

Kalman filter(EKF))

Optimizes window of states
• Marginalization
• Nonlinear least squares 

optimization

Optimizes all states
• Nonlinear Least squares

optimization

1 Linearization

Accumulation of 
linearization errors 

Gaussian 
approximation of 
marginalized states

Fastest

Re-Linearizes

Accumulation of linearization 
errors 

Gaussian approximation of 
marginalized states

Fast

Re-Linearizes

Sparse Matrices

Highest Accuracy

Slow (but fast with GTSAM)
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System states:

         W WB W W 1 W 2 W; ; ; ; ; ; ;...,;a g

Kt t t t t   X p q v b b L L L

Filtering: Visual Inertial Formulation

Process Model: from IMU

Tightly coupled:

Loosely coupled:          W WB W; ; ; ;a gt t t t t   X p q v b b

• Integration of IMU states (rotation, position, velocity)
• Propagation of IMU noise 

• needed for calculating the Kalman filter gain
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Filtering: ROVIO

Bloesch, Michael, et al. "Iterated extended Kalman filter based visual-inertial odometry using 
direct photometric feedback“, IJRR’17

• EKF state: 
• Minimizes the photometric error instead of the reprojection error

         W WB W W 1 W 2 W; ; ; ; ; ; ;...,;a g

Kt t t t t   X p q v b b L L L
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Filtering: Problems

 Wrong linearization point:

 Linearization depends on the current estimates of states, which may be 
erroneous

 Complexity of the EKF grows quadratically in the number of estimated 
landmarks, 

→ a few landmarks (~20) are typically tracked to allow real-time operation

 Alternative: MSCKF [Mourikis & Roumeliotis, ICRA’07]: used in Google ARCore 

 Keeps a window of recent states and updates them using EKF

 incorporate visual observations without including point positions into the states

Mourikis & Roumeliotis, A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation, TRO’16

Li, Mingyang, and Anastasios I. Mourikis, High-precision, consistent EKF-based visual–inertial odometry, IJRR’13



Filtering: Google ARCore

Mourikis & Roumeliotis, A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation, TRO’16

Li, Mingyang, and Anastasios I. Mourikis, High-precision, consistent EKF-based visual–inertial odometry, IJRR’13
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VIO solved as a graph optimization problem 
over:

[Jung, CVPR’01] [Sterlow’04] [Bryson, ICRA’09] [Indelman, RAS’13] [Patron-Perez, IJCV’15][Leutenegger, RSS’13-
IJRR’15] [Forster, RSS’15, TRO’17]

Smoothing methods

𝑥𝑘 = 𝑓 𝑥𝑘−1, 𝑢
𝑧𝑖𝑘 = 𝜋(𝑥𝑘, 𝑙𝑖)

𝑋 = {𝑥1, … 𝑥𝑁}: Robot states a frame 
times (position, velocity, orientation)

𝐿 = {𝑙1, … , 𝑙𝑀}: 3D Landmarks

performs the integration of IMU measurements 𝑢 = (a,ω)

𝛬𝑘 is the covariance from the IMU integration
𝛴𝑖𝑘 is the covariance from the noisy 2D feature measurements

performs the projection of the landmark 𝑙𝑖 in the camera frame 𝐼𝑘

{X, L, 𝑏𝑎, 𝑏𝑔} = 𝑎𝑟𝑔𝑚𝑖𝑛{X, L, 𝑏𝑎, 𝑏𝑔}

෍

𝑘=1

𝑁

𝑓 𝑥𝑘−1, 𝑢 − 𝑥𝑘 𝛬𝑘
2 +෍

𝑘=1

𝑁

෍

𝑖=1

𝑀

𝜋(𝑥𝑘 , 𝑙𝑖) − 𝑧𝑖𝑘 𝛴𝑖𝑘

2

IMU residuals Reprojection residuals



Fixed-lag smoothing: OKVIS 

Leutenegger, OKVIS: Open Keyframe-based Visual-Inertial SLAM, IJRR’15



Solves the same optimization problem but:

 Keeps all the frames (from the start of the trajectory)

 To make the optimization efficient

 it makes the graph sparser using keyframes

 pre-integrates the IMU data between keyframes

 Optimization solved using factor graphs (GTSAM)

 Very fast because it only optimizes the poses 
that are affected by a new observation

Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry,
IEEE Transactions on Robotics (TRO), Feb. 2017, Best Paper Award 2018.

Full Smoothing: SVO+GTSAM & IMU Pre-integration

{X, L, 𝑏𝑎, 𝑏𝑔} = 𝑎𝑟𝑔𝑚𝑖𝑛{X, L, 𝑏𝑎, 𝑏𝑔}

෍

𝑘=1

𝑁

𝑓 𝑥𝑘−1, 𝑢 − 𝑥𝑘 𝛬𝑘
2 +෍

𝑘=1

𝑁

෍

𝑖=1

𝑀

𝜋(𝑥𝑘 , 𝑙𝑖) − 𝑧𝑖𝑘 𝛴𝑖𝑘

2

IMU residuals Reprojection residuals

https://research.cc.gatech.edu/borg/download
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Problem with IMU integration

 The integration from k to k+1 is related to the state estimation at 
time k

 Idea: Preintegration

• Lupton, Sukkarieh. "Visual-inertial-aided navigation for high-dynamic motion in built 
environments without initial conditions." 

• Forster, Carlone, Dellaert, Scaramuzza, "IMU preintegration on manifold for efficient 
visual-inertial maximum-a-posteriori estimation." 
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{෥𝜔, ෤𝑎} Δ ෨𝑅, Δ ෤𝑣, Δ ෤𝑝

Standard:
Evaluate error in global frame:

Preintegration:
Evaluate relative errors:

𝒆𝑅 = Δ ෨𝑅𝑇 Δ𝑅

𝒆v = Δ෤v − Δv

𝒆𝑝 = Δ ෤𝑝 − Δ𝑝

𝒆𝑅 = ෠𝑅 ෥𝜔, 𝑅𝑘−1
𝑇𝑅𝑘

𝒆v = ොv(෥𝜔, ෤𝑎, v𝑘−1) − v𝑘

𝒆𝑝 = Ƹ𝑝(෥𝜔, ෤𝑎, 𝑝𝑘−1) − 𝑝𝑘

𝑅, 𝑝, 𝑣

Repeat integration when previous 
state changes!

Preintegration of IMU deltas possible 
with no initial condition required.

Predicted Estimate

IMU Pre-Integration
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Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry,
IEEE Transactions on Robotics, Feb. 2017.

Full Smoothing: SVO+GTSAM & IMU Pre-integration
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SVO + IMU Preintegration

Google ARCore    Proposed  OKVIS  

Accuracy: 0.1% of the travel distance

Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry,
IEEE Transactions on Robotics, Feb. 2017.
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Recap

 Closed form solution:

 for 6DOF motion both 𝑠 and 𝑣0 can be determined 1 feature observation and at least 3 views 
[Martinelli, TRO’12, IJCV’14, RAL’16]

 Can be used to initialize filters and smoothers

 Filters: update only last state → fast if number of features is low (~20)

 [Mourikis,  ICRA’07, CVPR’08], [Jones, IJRR’11] [Kottas, ISER’12][Bloesch, IROS’15] [Wu et al., 
RSS’15], [Hesch, IJRR’14], [Weiss, JFR’13] 

 Open source: ROVIO [Bloesch, IROS’15, IJRR’17], MSCKF [Mourikis, ICRA’07] (i.e., Google ARCore)

 Fixed-lag smoothers: update a window of states → slower but more accurate

 [Mourikis, CVPR’08] [Sibley, IJRR’10], [Dong, ICRA’11], [Leutenegger, RSS’13-IJRR’15]

 Open source: OKVIS [Leutenegger, RSS’13-IJRR’15], VINS [Qin, TRO’18]

 Full-smoothing methods: update entire history of states → slower but more accurate

 [Jung, CVPR’01] [Sterlow’04] [Bryson, ICRA’09] [Indelman, RAS’13] [Patron-Perez, IJCV’15] 
[Forster, RSS’15, TRO’16]

 Open source: SVO+IMU [Forster, TRO’17]
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Open Problems: consistency

 Filters

 Linearization around different values of the same variable may 
lead to error

 Smoothing methods

 May get stuck in local minima
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Camera-IMU calibration
 Goal: estimate the rigid-body transformation 𝑻𝑩𝑪 and delay 𝑡𝑑 between a 

camera and an IMU rigidly attached. Assume that the camera has already been 
intrinsically calibrated.

 Data:

 Image points of detected calibration pattern (checkerboard).

 IMU measurements: accelerometer {𝑎𝑘} and gyroscope {𝜔𝑘}.

Furgale et al. "Unified Temporal and Spatial Calibration for Multi-Sensor Systems“, IROS’13.
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Camera-IMU calibration - Example
 Data acquisition: Move the sensor in front of a static calibration pattern, 

exciting all degrees of freedom.

Gyroscope

Accelerometer

Furgale et al. "Unified Temporal and Spatial Calibration for Multi-Sensor Systems“, IROS’13.
https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration

https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration
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Camera-IMU calibration

 Approach: Minimize a cost function (Furgale’13):

 𝐽 𝜃 ≔ 𝐽𝑓𝑒𝑎𝑡 + 𝐽𝑎𝑐𝑐 + 𝐽𝑔𝑦𝑟𝑜 + 𝐽𝑏𝑖𝑎𝑠𝑎𝑐𝑐 + 𝐽𝑏𝑖𝑎𝑠𝑔𝑦𝑟𝑜

 Unknowns: 𝑇𝐵𝐶 , 𝑡𝑑, 𝑔𝑤, 𝑇𝑊𝐵 𝑡 , 𝑏𝑎𝑐𝑐 𝑡 , 𝑏𝑔𝑦𝑟𝑜 𝑡

- 𝑔𝑤 = Gravity,  

- 𝑇𝑊𝐵 𝑡 = 6-DOF trajectory of the IMU,  

- 𝑏𝑎𝑐𝑐 𝑡 , 𝑏𝑔𝑦𝑟𝑜 𝑡 = 3-DOF biases of the IMU

 Continuous-time modelling using splines for 𝑇𝑊𝐵 𝑡 , 𝑏𝑎𝑐𝑐 𝑡 , …

 Numerical solver: Levenberg-Marquardt

(Feature reprojection

Error)
෍

𝑘

𝑎𝐼𝑀𝑈 𝑡𝑘 − 𝑡𝑑 − 𝑎𝐶𝑎𝑚 𝑡𝑘
2
෍

𝑘

𝜔𝐼𝑀𝑈 𝑡𝑘 − 𝑡𝑑 − 𝜔𝐶𝑎𝑚 𝑡𝑘
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Furgale et al. "Unified Temporal and Spatial Calibration for Multi-Sensor Systems“, IROS’13.
https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration

https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration
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 Software solution:                (Furgale’13).

 Generates a report after optimizing the cost function.

Furgale et al. "Unified Temporal and Spatial Calibration for Multi-Sensor Systems“, IROS’13.
https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration

Camera-IMU calibration - Example

Residuals:

Reprojection error [px]: 0.0976  0.051

Gyroscope error [rad/s]: 0.0167  0.009

Accelerometer error [m/s^2]: 0.0595  0.031

Transformation T_ci: (imu to cam):

[[ 0.99995526 -0.00934911 -0.00143776 0.00008436]

[ 0.00936458 0.99989388 0.01115983 0.00197427]

[ 0.00133327 -0.0111728 0.99993669 -0.05054946]

[ 0. 0. 0. 1. ]]

Time shift (delay d) 

cam0 to imu0: [s] (t_imu = t_cam + shift)

0.00270636270255

Gravity vector in target coords: [m/s^2]

[ 0.04170719 -0.01000423 -9.80645621]

Reprojection error

Angular velocity error

Estimated gyro biases

https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration


Popular Datasets for VIO / VI-SLAM
EuRoC [Burri’16]
MAV with synchronized IMU 
and stereo

Blackbird [Antonini’18]
MAV indoor aggressive flight 
with rendered images and real 
dynamics + IMU

UZH FPV Drone Racing [Delmerico’19]
MAV aggressive flight, standard + event 
cameras, IMU, indoors and outdoors

MVSEC [Zhu’18]
Events, frames, lidar, GPS, 
IMU from cars, drones, and 
motorcycles

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://github.com/mit-fast/Blackbird-Dataset
http://rpg.ifi.uzh.ch/uzh-fpv.html
https://daniilidis-group.github.io/mvsec/


UZH-FPV Drone Racing Dataset
Contains data recorded by a drone flying up to over 20m/s indoors and outdoors 
frown by a professional pilot. Contains frames, events, IMU, and Ground Truth from a 
Robotic Total Station: http://rpg.ifi.uzh.ch/uzh-fpv.html

Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA’19
PDF. Video. Datasets.

http://rpg.ifi.uzh.ch/uzh-fpv.html
http://rpg.ifi.uzh.ch/docs/ICRA19_Delmerico.pdf
https://youtu.be/G5w4ZcEzvoo
http://rpg.ifi.uzh.ch/uzh-fpv.html


UZH-FPV Drone Racing Dataset

 Recorded with a drone flown by a professional pilot up to over 20m/s 

 Contains images, events, IMU, and ground truth from a robotic total station: 
http://rpg.ifi.uzh.ch/uzh-fpv.html

Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA’19
PDF. Video. Datasets.

http://rpg.ifi.uzh.ch/uzh-fpv.html
http://rpg.ifi.uzh.ch/docs/ICRA19_Delmerico.pdf
https://youtu.be/G5w4ZcEzvoo
http://rpg.ifi.uzh.ch/uzh-fpv.html
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Understanding Check

Are you able to answer the following questions?

 Why is it recommended to use an IMU for Visual Odometry?

 Why not just an IMU?

 How does a MEMS IMU work?

 What is the drift of an industrial IMU?

 What is the IMU measurement model?

 What causes the bias in an IMU?

 How do we model the bias?

 How do we integrate the acceleration to get the position formula?

 What is the definition of loosely coupled and tightly coupled visual inertial 
fusions?

 How can we use non-linear optimization-based approaches to solve for visual 
inertial fusion?


