

Institute of Informatics – Institute or meanonmatics

Lecture 13 Visual Inertial Fusion

Davide Scaramuzza http://rpg.ifi.uzh.ch/

Lab Exercise 9 – Today afternoon

- Room ETH HG E 1.1 from 13:15 to 15:00
- Work description: Bundle Adjustment

Visual Inertial Odometry

References:

Scaramuzza, Zhang, Visual-Inertial Odometry of Aerial Robots, Encyclopedia of Robotics, Springer, 2019, <u>PDF</u>

Huang, Visual-inertial navigation: A concise review, International conference on Robotics and Automation, 2019. <u>PDF</u>.

Outline

Introduction

- IMU model and Camera-IMU system
- Visual Inertial (VIO) Fusion
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods

Camera-IMU extrinsic calibration and Synchronization

What is an IMU?

Inertial Measurement Unit

- Gyroscope: Angular velocity
- Accelerometer: Linear Accelerations

Mechanical Gyroscope

Mechanical Accelerometer

What is an IMU?

- Different categories
 - Mechanical (\$100,000-1M)
 - Optical (\$20,000-100k)
 - MEMS (from 1\$ (phones) to 1,000\$ (higher cost because they have a microchip running a Kalman filter))
- For small mobile robots & drones: MEMS IMU are mostly used
 - Cheap
 - Power efficient
 - Light weight and solid state

MEMS Accelerometer

A spring-like structure connects the device to a seismic mass vibrating in a capacitve divider. A capacitive divider converts the displacement of the seismic mass into an electric signal. Damping is created by the gas sealed in the device.

MEMS Gyroscopes

- MEMS gyroscopes measure the Coriolis forces acting on MEMS vibrating structures (tuning forks, vibrating wheels, or resonant solids)
- Their working principle is similar to the haltere of a fly
- Haltere are small structures of some two-winged insects, such as flies. They are flapped rapidly and function as gyroscopes, informing the insect about rotation of the body during flight.

Why IMU?

Monocular vision is scale ambiguous.

- Pure vision is not robust enough
 - Low texture
 - High dynamic range
 - High speed motion

Robustness is a critical issue: Tesla accident

"The autopilot sensors on the Model S failed to distinguish a white tractor-trailer crossing the highway against a bright sky. " [*The Guardian*]

Motion blur

Dynamic Range

Why vision?

Pure IMU integration will lead to large drift (especially cheap IMUs)

- Will see later mathematically
- Intuition
 - Integration of angular velocity to get orientation: if there is a bias in angular velocity, the error is **proportional to t**
 - Double integration of acceleration to get position: if there is a bias in acceleration, the error of position is proportional to t²
 - Worse, the actual position error also depends on the orientation error (see later).

2		Accelerometer Bias Error	Horizontal Position Error [m]				Automotive, Smartphone,
9	Grade	[mg]	1 s	10s	60s	1hr	& Drone
1	Navigation	0.025	0.13 mm	12 mm	0.44 m	1.6 km	accelerometers
	Tactical	0.3	1.5 mm	150 mm	5.3 m	19 km	
	Industrial	3	15 mm	1.5 m	53 m	190 km	
	Automotive	125	620 mm	60 m	2.2 km	7900 km	

Errors computed assuming the device at rest: http://www.vectornav.com/support/library/imu-and-ins

Why visual inertial fusion?

IMU and vision are complementary

Cameras

- ✓ Precise in slow motion
- ✓ Rich information for other tasks

- X Limited output rate (~100 Hz)
- X Scale ambiguity in monocular setup
- X Lack of robustness to HDR and high speed

IMU

- ✓ Robust
- ✓ High output rate (~1,000 Hz)
- $\checkmark\,$ Accurate at high acceleration
- $\checkmark\,$ Can predict next feature position
- X Large relative uncertainty when at low acceleration/angular velocity
- X Ambiguity in gravity / acceleration

What cameras and IMU have in common: both estimate the pose incrementally (known as dead-reckoning), which suffers from drifting over time. Solution: loop detection and loop closure

Outline

Introduction

IMU model and Camera-IMU system

- Visual Inertial (VIO) Fusion
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods

Camera-IMU extrinsic calibration and Synchronization

IMU model: Measurement Model

Measures angular velocity and acceleration in the body frame:

$$\mathbf{\tilde{\omega}}_{WB}(t) = {}_{B}\mathbf{\tilde{\omega}}_{WB}(t) + \mathbf{b}^{g}(t) + \mathbf{n}^{g}(t)$$

$${}_{B}\mathbf{\tilde{a}}_{WB}(t) = \mathbf{R}_{BW}(t) ({}_{W}\mathbf{a}_{WB}(t) - {}_{W}\mathbf{g}) + \mathbf{b}^{a}(t) + \mathbf{n}^{a}(t)$$

measurements
true $\mathbf{\omega}$ and \mathbf{a} to estimate
IMU biases + noise

where the superscript g stands for Gyroscope and a for Accelerometer

Notations:

- Left subscript: reference frame in which the quantity is expressed
- Right subscript {Q}{Frame1}{Frame2}: Q of Frame2 with respect to Frame1
- Biases and noise are expressed in the body frame

IMU model: Noise Property

- > Additive Gaussian white noise: $\mathbf{n}^{g}(t)$, $\mathbf{n}^{a}(t)$
- \blacktriangleright Bias: $\mathbf{b}^{g}(t), \mathbf{b}^{a}(t)$
 - $\dot{\mathbf{b}}(t) = \sigma_b \mathbf{w}(t)$ $\mathbf{w}(t) \sim \mathbf{N}(0, 1)$

i.e., the derivative of the bias is white Gaussian noise

Some facts about IMU biases:

- They can change due to temperature change and mechanical pressure
- They can change every time the IMU is started
- Good news: they can be estimated

Trawny, Nikolas, and Stergios I. Roumeliotis. "Indirect Kalman filter for 3D attitude estimation." <u>https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model</u>

IMU model: Integration

$$\mathbf{p}_{\mathrm{Wt}_{2}} = \mathbf{p}_{\mathrm{Wt}_{1}} + (t_{2} - t_{1})\mathbf{v}_{\mathrm{Wt}_{1}} + \int_{t_{1}}^{t_{2}} (\mathbf{R}_{\mathrm{Wt}}(t)(\tilde{\mathbf{a}}(t) - \mathbf{b}^{a}(t)) + \mathbf{w} \mathbf{g}) dt^{2}$$

per component: {*t*} stands for {B}ody frame at time *t*

- Depends on initial position and velocity
- The rotation R(t) is computed from the gyroscope

Trawny, Nikolas, and Stergios I. Roumeliotis. "Indirect Kalman filter for 3D attitude estimation."

Camera-IMU System

There can be multiple cameras.

Outline

Introduction

IMU model and Camera-IMU system

Visual Inertial (VIO) Fusion

- Closed-form solution
- Filtering approaches
- Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods

Camera-IMU extrinsic calibration and Synchronization

Visual Inertial (VIO) Fusion

Different paradigms

> Loosely coupled:

- Treats VO and IMU as two separate (not coupled) black boxes
 - Each black box estimates pose and velocity from visual (up to a scale) and inertial data (absolute scale)

Tightly coupled:

- Makes use of the raw sensors' measurements:
 - 2D features
 - IMU readings
 - More accurate
 - More implementation effort

In the following slides, we will only see **tightly coupled approaches**

The Loosely Coupled Approach

The Tightly Coupled Approach

Filtering: Visual Inertial Formulation

System states:

Tightly coupled:
$$\mathbf{X} = \left[{}_{\mathrm{W}} \mathbf{p}(t); \mathbf{q}_{\mathrm{WB}}(t); {}_{\mathrm{W}} \mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{s}(t); {}_{\mathrm{W}} \mathbf{L}_{1}; {}_{\mathrm{W}} \mathbf{L}_{2}; ...,; {}_{\mathrm{W}} \mathbf{L}_{K} \right]$$

Loosely coupled: $\mathbf{X} = \left[{}_{\mathbf{W}} \mathbf{p}(t); \mathbf{q}_{\mathbf{WB}}(t); {}_{\mathbf{W}} \mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{g}(t) \right]$

Outline

Introduction

- IMU model and Camera-IMU system
- Visual Inertial (VIO) Fusion
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods

Camera-IMU extrinsic calibration and Synchronization

Closed-form Solution (1D case)

The absolute pose x is known up to a scale s, thus

 $x = s\tilde{x}$

From the IMU

$$x = x_0 + v_0(t_1 - t_0) + \iint_{t_0}^{t_1} a(t)dt$$

By equating them

$$s\tilde{x} = x_0 + v_0(t_1 - t_0) + \iint_{t_0}^{t_1} a(t)dt$$

As shown in [Martinelli'14], for 6DOF, both s and v_0 can be determined in closed form from a single feature observation and 3 views. x_0 can be set to 0.

Martinelli, Closed-form solution of visual-inertial structure from motion, International Journal of Computer Vision, 2014

Closed-form Solution (1D case)

$$\int s\widetilde{x_1} = v_0(t_1 - t_0) + \iint_{t_0}^{t_1} a(t)dt$$
$$s\widetilde{x_2} = v_0(t_2 - t_0) + \iint_{t_0}^{t_2} a(t)dt$$

$$t_1$$
 t_1
 t_1
 t_2

$$\begin{bmatrix} \widetilde{x_1} & (t_0 - t_1) \\ \widetilde{x_2} & (t_0 - t_2) \end{bmatrix} \begin{bmatrix} s \\ v_0 \end{bmatrix} = \begin{bmatrix} \iint_{t_0}^{t_1} a(t) dt \\ \iint_{t_0}^2 a(t) dt \end{bmatrix}$$

Martinelli, Closed-form solution of visual-inertial structure from motion, International Journal of Computer Vision, 2014

Closed-form Solution (general case)

- Considers N feature observations and 6DOF case
- Can be used to initialize filters and smoothers (which always need an initialization point)
- More complex to derive than the 1D case. But it also reaches a linear system of equations that can be solved using the pseudoinverse:

X is the vector of unknowns:

- Absolute scale, s
- Initial velocity, v_0
- 3D Point distances (wrt the first camera)
- Direction of the gravity vector,
- Biases

A and S contain 2D feature coordinates, acceleration, and angular velocity measurements

- 0_3 0_3 0_3 0_3 0_{3} 0_3 $0_{33} | 0_{33} | 0_{33} | \mu$ 0_3 0_3 $\begin{vmatrix} \dots & \dots & \dots \\ -\boldsymbol{\mu}_1^N & -\boldsymbol{\mu}_2^1 \end{vmatrix} \overset{\dots}{\mathbf{0}_3} \begin{vmatrix} \dots & \dots & \dots \\ \mathbf{\mu}_2^N & \dots & \dots \end{vmatrix}$... $0_{33} | 0_{33} | 0_{33} | \mu_1^1 |$ 0_3 0_3 0_3 0_3 A = $\begin{array}{c} \dots \\ 0_3 \\ 0_3 \end{array}$ $\begin{vmatrix} \dots \\ 0_3 \\ 0_3 \end{vmatrix} = \begin{vmatrix} \dots \\ 0_3 \end{vmatrix}$... 0_3 0_3 0_3 0_3 $0_3 | 0_3$ 0_3 0_3
- Martinelli, Vision and IMU data fusion: Closed-form solutions for attitude, speed, absolute scale, and bias determination, TRO'12
- Martinelli, Closed-form solution of visual-inertial structure from motion, Int. Journal of Comp. Vision, JCV'14
- Kaiser, Martinelli, Fontana, Scaramuzza, Simultaneous state initialization and gyroscope bias calibration in visual inertial aided navigation, IEEE RAL'17

$$AX = S$$

Outline

Introduction

- IMU model and Camera-IMU system
- Visual Inertial (VIO) Fusion
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods

Camera-IMU extrinsic calibration and Synchronization

Different VIO fusion paradigms

Filtering	Fixed-lag Smoothing	Full smoothing	
Only updates the most recent state • (e.g., extended Kalman filter(EKF))	 Optimizes window of states Marginalization Nonlinear least squares optimization 	 Optimizes all states Nonlinear Least squares optimization 	
×1 Linearization	✓ Re-Linearizes	✓ Re-Linearizes	
×Accumulation of linearization errors	×Accumulation of linearization errors	✓ Sparse Matrices✓ Highest Accuracy	
×Gaussian approximation of marginalized states	×Gaussian approximation of marginalized states		
✓ Fastest	✓ Fast	×Slow (but fast with GTSAM)	

Filtering: Visual Inertial Formulation

System states:

Tightly coupled:
$$\mathbf{X} = \left[{}_{W} \mathbf{p}(t); \mathbf{q}_{WB}(t); {}_{W} \mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{g}(t); {}_{W} \mathbf{L}_{1}; {}_{W} \mathbf{L}_{2}; ...,; {}_{W} \mathbf{L}_{K} \right]$$

Loosely coupled: $\mathbf{X} = \left[{}_{\mathbf{W}} \mathbf{p}(t); \mathbf{q}_{\mathbf{WB}}(t); {}_{\mathbf{W}} \mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{g}(t) \right]$

Process Model: from IMU

- Integration of IMU states (rotation, position, velocity)
- Propagation of IMU noise
 - needed for calculating the Kalman filter gain

Filtering: ROVIO

- EKF state: $\mathbf{X} = \left[{}_{W}\mathbf{p}(t); \mathbf{q}_{WB}(t); {}_{W}\mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{g}(t); {}_{W}\mathbf{L}_{1}; {}_{W}\mathbf{L}_{2}; ..., ; {}_{W}\mathbf{L}_{K} \right]$
- Minimizes the photometric error instead of the reprojection error

ROVIO: Robust Visual Inertial Odometry Using a Direct EKF-Based Approach

http://github.com/ethz-asl/rovio

Michael Bloesch, Sammy Omari, Marco Hutter, Roland Siegwart

ETHzürich

Bloesch, Michael, et al. "Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback", IJRR'17 29

Filtering: Problems

Wrong linearization point:

- Linearization depends on the current estimates of states, which may be erroneous
- Complexity of the EKF grows quadratically in the number of estimated landmarks,
 - \rightarrow a **few landmarks** (~20) are typically tracked to allow real-time operation
- > Alternative: MSCKF [Mourikis & Roumeliotis, ICRA'07]: used in Google ARCore
 - Keeps a window of recent states and updates them using EKF
 - incorporate visual observations without including point positions into the states

Mourikis & Roumeliotis, A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation, TRO'16 Li, Mingyang, and Anastasios I. Mourikis, High-precision, consistent EKF-based visual–inertial odometry, IJRR'13

Filtering: Google ARCore

Mourikis & Roumeliotis, A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation, TRO'16 Li, Mingyang, and Anastasios I. Mourikis, High-precision, consistent EKF-based visual–inertial odometry, IJRR'13

Outline

Introduction

- IMU model and Camera-IMU system
- Visual Inertial (VIO) Fusion
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods

Camera-IMU extrinsic calibration and Synchronization

Smoothing methods

VIO solved as a graph optimization problem over:

 $X = \{x_1, \dots x_N\}$: Robot states a frame times (**position**, **velocity**, **orientation**)

Camera Frames 3D Landmark

 $L = \{l_1, \dots, l_M\}$: **3D Landmarks**

 $x_k = f(x_{k-1}, u)$ performs the integration of IMU measurements $u = (a, \omega)$ $z_{i_k} = \pi(x_k, l_i)$ performs the projection of the landmark l_i in the camera frame I_k

$$\{X, L, b^{a}, b^{g}\} = argmin_{\{X, L, b^{a}, b^{g}\}}$$

$$\begin{cases} \sum_{k=1}^{N} \|f(x_{k-1}, u) - x_{k}\|_{\boldsymbol{A}_{k}}^{2} + \sum_{k=1}^{N} \sum_{i=1}^{M} \|\pi(x_{k}, l_{i}) - z_{i_{k}}\|_{\boldsymbol{\Sigma}_{i_{k}}}^{2} \\ IMU \text{ residuals} \end{cases}$$
Reprojection residuals

 Λ_k is the covariance from the IMU integration

 Σ_{i_k} is the covariance from the noisy 2D feature measurements

[Jung, CVPR'01] [Sterlow'04] [Bryson, ICRA'09] [Indelman, RAS'13] [Patron-Perez, IJCV'15][Leutenegger, RSS'13-IJRR'15] [Forster, RSS'15, TRO'17]

Fixed-lag smoothing: OKVIS

OKVIS: Open Keyfram-based Visual-Inertial SLAM

A reference implementation of:

Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart and Paul Timothy Furgale. Keyframe-based visual-inertial odometry using nonlinear optimization. The International Journal of Robotics Re<u>search, 2015.</u>

Full Smoothing: SVO+GTSAM & IMU Pre-integration

Solves the same optimization problem but:

- Keeps all the frames (from the start of the trajectory)
- To make the optimization efficient
 - it makes the graph sparser using keyframes
 - pre-integrates the IMU data between keyframes
- Optimization solved using factor graphs (GTSAM)
 - Very fast because it only optimizes the poses that are affected by a new observation

$$\{X, L, b^{a}, b^{g}\} = argmin_{\{X, L, b^{a}, b^{g}\}}$$

$$\left\{\sum_{k=1}^{N} \|f(x_{k-1}, u) - x_{k}\|_{A_{k}}^{2} + \sum_{k=1}^{N} \sum_{i=1}^{M} \|\pi(x_{k}, l_{i}) - z_{i_{k}}\|_{\Sigma_{i_{k}}}^{2}\right\}$$

$$IMU residuals$$

$$Reprojection residuals$$

Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry, IEEE Transactions on Robotics (TRO), Feb. 2017, **Best Paper Award 2018**.

Problem with IMU integration

- The integration from k to k+1 is related to the state estimation at time k
- Idea: Preintegration

- Lupton, Sukkarieh. "Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions."
- Forster, Carlone, Dellaert, Scaramuzza, "IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation."

IMU Pre-Integration

Standard: Evaluate **error in global frame**:

$$\boldsymbol{e}_{R} = \widehat{R}(\widetilde{\omega}, R_{k-1})^{T} R_{k}$$

$$\boldsymbol{e}_{\mathrm{V}} = \hat{\mathrm{v}}(\widetilde{\omega}, \widetilde{a}, \mathrm{v}_{k-1}) - \mathrm{v}_k$$

 $e_p = \hat{p}(\tilde{\omega}, \tilde{a}, p_{k-1}) - p_k$ Predicted Estimate Repeat integration when previous state changes! **Preintegration:** Evaluate **relative errors**:

$$\boldsymbol{e}_R = \Delta \tilde{\boldsymbol{R}}^T \Delta \boldsymbol{R}$$

$$\boldsymbol{e}_{\mathrm{V}} = \Delta \tilde{\mathrm{v}} - \Delta \mathrm{v}$$

$$\boldsymbol{e}_p = \boldsymbol{\Delta} \tilde{\boldsymbol{p}} - \boldsymbol{\Delta} p$$

Preintegration of IMU deltas possible with **no initial condition required**. 37

Full Smoothing: SVO+GTSAM & IMU Pre-integration

IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation

Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza

Georgialnstitute of Technology

rpg.ifi.uzh.ch borg.cc.gatech.edu

Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry, IEEE Transactions on Robotics, Feb. 2017.

SVO + IMU Preintegration

Accuracy: 0.1% of the travel distance

Forster, Carlone, Dellaert, Scaramuzza, On-Manifold Preintegration for Real-Time Visual-Inertial Odometry, IEEE Transactions on Robotics, Feb. 2017.

Recap

Closed form solution:

- for 6DOF motion both s and v_0 can be determined **1 feature observation and at least 3 views** [Martinelli, TRO'12, IJCV'14, RAL'16]
- Can be used to **initialize filters and smoothers**
- Filters: update only last state \rightarrow fast if number of features is low (~20)
 - [Mourikis, ICRA'07, CVPR'08], [Jones, IJRR'11] [Kottas, ISER'12][Bloesch, IROS'15] [Wu et al., RSS'15], [Hesch, IJRR'14], [Weiss, JFR'13]
 - Open source: ROVIO [Bloesch, IROS'15, IJRR'17], MSCKF [Mourikis, ICRA'07] (i.e., Google ARCore)
- Fixed-lag smoothers: update a window of states \rightarrow slower but more accurate
 - [Mourikis, CVPR'08] [Sibley, IJRR'10], [Dong, ICRA'11], [Leutenegger, RSS'13-IJRR'15]
 - **Open source: OKVIS** [Leutenegger, RSS'13-IJRR'15], **VINS** [Qin, TRO'18]
- Full-smoothing methods: update entire history of states \rightarrow slower but more accurate
 - [Jung, CVPR'01] [Sterlow'04] [Bryson, ICRA'09] [Indelman, RAS'13] [Patron-Perez, IJCV'15] [Forster, RSS'15, TRO'16]
 - Open source: SVO+IMU [Forster, TRO'17]

Open Problems: consistency

➢ Filters

- Linearization around different values of the same variable may lead to error
- Smoothing methods
 - May get stuck in local minima

Outline

Introduction

- IMU model and Camera-IMU system
- Visual Inertial (VIO) Fusion
 - Closed-form solution
 - Filtering approaches
 - Smoothing methods
 - Fixed-lag Smoothing (aka sliding window estimators)
 - Full smoothing methods

Camera-IMU extrinsic calibration and Synchronization

Camera-IMU calibration

Solution Goal: estimate the rigid-body transformation T_{BC} and delay t_d between a camera and an IMU rigidly attached. Assume that the camera has already been intrinsically calibrated.

Data:

- Image points of detected calibration pattern (checkerboard).
- IMU measurements: accelerometer $\{a_k\}$ and gyroscope $\{\omega_k\}$.

Furgale et al. "Unified Temporal and Spatial Calibration for Multi-Sensor Systems", IROS'13. 43

Camera-IMU calibration - Example

Data acquisition: Move the sensor in front of a static calibration pattern, exciting all degrees of freedom.

Furgale et al. "Unified Temporal and Spatial Calibration for Multi-Sensor Systems", IROS'13. https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration 4

Camera-IMU calibration

Approach: Minimize a cost function (Furgale'13):

•
$$J(\theta) \coloneqq J_{feat} + J_{acc} + J_{gyro} + J_{bias_{acc}} + J_{bias_{gyro}}$$

• (Feature reprojection $\sum_{k} (a_{IMU}(t_k - t_d) - a_{Cam}(t_k))^2 \sum_{k} (\omega_{IMU}(t_k - t_d) - \omega_{Cam}(t_k))^2 \int \left\| \frac{db_{acc}}{dt}(u) \right\|^2 du \int \left\| \frac{db_{gyro}}{dt}(u) \right\|^2 du$

• Unknowns:
$$T_{BC}$$
, t_d , g_w , $T_{WB}(t)$, $b_{acc}(t)$, $b_{gyro}(t)$

- g_w = Gravity,
- $T_{WB}(t)$ = 6-DOF trajectory of the IMU,
- $b_{acc}(t)$, $b_{gyro}(t)$ = 3-DOF biases of the IMU
- Continuous-time modelling using splines for $T_{WB}(t)$, $b_{acc}(t)$, ...
- Numerical solver: Levenberg-Marquardt

Furgale et al. "Unified Temporal and Spatial Calibration for Multi-Sensor Systems", IROS'13. https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration 45

Camera-IMU calibration - Example

Software solution: Kalibr (Furgale'13).

• Generates a <u>report</u> after optimizing the cost function.

Residuals:

Reprojection error [px]: 0.0976 ± 0.051 Gyroscope error [rad/s]: 0.0167 ± 0.009 Accelerometer error [m/s^2]: 0.0595 ± 0.031

Transformation T_ci: (imu to cam): [[0.99995526 -0.00934911 -0.00143776 0.00008436] [0.00936458 0.99989388 0.01115983 0.00197427] [0.00133327 -0.0111728 0.99993669 -0.05054946] [0. 0. 0. 1.]]

Time shift (delay *d*) cam0 to imu0: [s] (t_imu = t_cam + shift) 0.00270636270255

Gravity vector in target coords: [m/s^2] [0.04170719 -0.01000423 -9.80645621]

Furgale et al. "Unified Temporal and Spatial Calibration for Multi-Sensor Systems", IROS'13. https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration

Popular Datasets for VIO / VI-SLAM

EuRoC [Burri'16]

MAV with synchronized IMU and stereo

MVSEC [Zhu'18]

Events, frames, lidar, GPS, IMU from cars, drones, and motorcycles

Blackbird [Antonini'18]

MAV indoor aggressive flight with rendered images and real dynamics + IMU

UZH FPV Drone Racing [Delmerico'19] MAV aggressive flight, standard + event cameras, IMU, indoors and outdoors

(a) Outdoor sequence

(c) Optical flow

(e) Events

(d) Indoor sequence

(f) Optical flow

UZH-FPV Drone Racing Dataset

Contains data recorded by a drone flying up to over 20m/s indoors and outdoors frown by a professional pilot. Contains frames, events, IMU, and Ground Truth from a Robotic Total Station: <u>http://rpg.ifi.uzh.ch/uzh-fpv.html</u>

Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA'19 <u>PDF</u>. <u>Video</u>. <u>Datasets</u>.

UZH-FPV Drone Racing Dataset

- Recorded with a drone flown by a professional pilot up to over 20m/s
- Contains images, events, IMU, and ground truth from a robotic total station: <u>http://rpg.ifi.uzh.ch/uzh-fpv.html</u>

Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA'19 <u>PDF</u>. <u>Video</u>. <u>Datasets</u>.

Understanding Check

Are you able to answer the following questions?

- Why is it recommended to use an IMU for Visual Odometry?
- > Why not just an IMU?
- ➢ How does a MEMS IMU work?
- What is the drift of an industrial IMU?
- What is the IMU measurement model?
- What causes the bias in an IMU?
- How do we model the bias?
- How do we integrate the acceleration to get the position formula?
- What is the definition of loosely coupled and tightly coupled visual inertial fusions?
- How can we use non-linear optimization-based approaches to solve for visual inertial fusion?