_— ROBOTICS &
= PERCEPTION
2 GROUP

2\ University of e ®
i) zuiene | ETH zlirich

NERED

Institute of Informatics — Institute of Neuroinformatics

Deep Learning

Daniel Gehrig




Outline

Introduction
* Motivation and history

Supervised Learning
* Semantic Segmentation

* Image Description Relevant for the
* Image Localization exam

* Unsupervised Learning
e Depth estimation
e Optical Flow estimation
* Depth and egomotion

=

Applications to Computer Vision
* Place Recognition - NetVLAD
e Deep Visual Odometry
* Superpoint
* LIFT: Learned Invariant Feature Transform
» Differential Epipolar Geometry
e Optical Flow - FlowNet
* Deep Stereo Matching
* Monocular Depth estimation
» DSAC: Differential RANSAC

* Conclusions



The Deep Learning Revolution

Medicine Media & Entertainment




Some History

N W ;
OO0 ¢ . - IMAGENET
N '
- Back-
Perceptron Propagation SVM AlexNet
l 1969 Al Winter I 1998 2006 I

1958 l 1974 1995 l l 2012

Critics Convolutional

Restricted
Neural Networs for
) . Boltzman
Handwritten Digits ,
Machines

Recognition




What changed?

* Hardware Improvements

* Big Data Available
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Image Classification

Task of assigning an input image a label from a fixed set of categories.
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The semantic gap

* What computers see against what we see
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Classification Challenges

Directly specifying how a category looks like is impossible.

Viewpoint variation Scale variation Deformation Occlusion

VZA0N

We need use a Data Driven Approach



Supervised Learning
Find function f (x, ) that imitates a ground truth signal

N numbers representing
class scores

f(x,0)
N Predicted Ground truth, y;
0.1 1.0
0.7 0.0
0.0 0.0

Function parameters
or weights

N Loss(f(x;,0),v;)

pdate



Machine Learning Keywords

* Loss: Quantify how good @ are

* Optimization: The process of finding &
that minimize the loss

* Function: Problem modelling -> Deep
networks are highly non-linear f(x, 6)



Classifiers: K-Nearest neighbor

Features are represented in the descriptor space

] | ®
: [ _
Training
Training <> Test %
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f(x,0) = label of the K training examples nearest to x

* How fast is training? How fast is testing?
* 0(1), O(n)

* What is a good distance metric ? What K should be used? ®



Classifiers: Linear

|
1
1
1
1
1
1
1
1
\
\ O
I
[] \
1
1
\
1
1
\
1

* Find a linear function to separate the classes:

f(x,0) = sgn(w-x + b)
* What is now 8? What is the dimensionality of images?
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Classifiers: non-linear

Good classifier Bad classifier (over fitting)

* Whatis f(x,0)?

13



Biological Inspiration

x1

wl
X2

w2
x3 w3

Z »O
——
wn

XN

f(x,8) = F(Wx), Fis a non-linear activation function (Step, ReLU, Sigmoid)

The Perceptron: A Probabilistic Model for Information Storage and Organization in
the Brain, Frank Rosenblatt (1958)
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Multi Layer Perceptron

input layer

hidden\layer 1 hidden| layer 2

Non-linear Activation functions (RelLU, sigmoid, etc.)

Neural Networks and Deep Learning, Chapter 2— Michael Nielsen
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Forward propagation

Forward Pass

Loss(f (xi,0), y:)

input layer

hidden layer 1 hidden layer 2

Neural Networks and Deep Learning, Chapter 2— Michael Nielsen
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Optimization: Back-propagation

Loss(f (xi,0), y:)

input layer

| hidden layer 1 hidden layer 2

Backward Pass

Compute gradients with respect to all parameters
and perform gradient descent

Onew = Oo1qa — uVLoSs

Artificial Neural Networks, Back Propagation and the Kelley-Bryson Gradient
Procedure — Stuart E .Dreyfus
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Problems of fully connected network

input layer

hidden layer 1 hidden layer 2

* Too many parameters -> possible overfit

* We are not using the fact that inputs are images!

18
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Convolutional Neural Netw

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

Convolution filter

Destination pixel

[
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VR
VR (N

Gradient-based learning applied to document recognition, Y. LeCun et al. (1998) .



Going Deep

Convolutional Fully-

Convolutional
/ layer 2 Convolutional Locally- cclng;}:;: ?d
laver 3 connected

layer -

L2 ] Z
- - -
-zi -=1Z
- -
- e

_ Poolin Poolin

/ Pool Fully-

- l;)}?e;n layer layer connedted  Output layer
Input layer layer 1

Dog

Cup

Flower




Why Deep?

* Inspired by the human visual system
* Learn multiple layers of transformations of input
e Extract progressively more sophisticated representations

21



Supervised Learning

* In supervised learning it is assumed that we have access to both input
data or images and ground truth labels.

* Networks trained with
supervision usually
perform best

ground truth label

o > L(f(x,0),y)
* However, usually it is $

hard to generate this
data since it often has

to be hand-labelled

prediction

22



Supervised Learning
Image Segmentation

Fully Convolutional Networks for Semantic Segmentation —J. Long, E. Shelhamer, 2015
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Supervised Learning
Image Captioning

SR L ST el U .
"baseball player is throwing ball "woman is holding bunch of "black cat is sitting on top of
in game.”’ bananas.’ suitcase.”

=4 -—
"a young boy is holding a "a catis sitting on a couch witha  "a woman holding a teddy bearin ~ "a horse is standing in the middle
baseball bat”’ remote control.’ front of a mirror.” of aroad’

Deep Visual-Semantic Alignments for Generating Image Descriptions — Karpathy et al., 2015



Supervised Learning
Image Localization

lus=° ;

PlaNet - Photo Geolocation with Convolutional Neural Networks - Weyand et al. 2016

Photo CC-BY-NC by steveke
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Unsupervised Learning

* In unsupervised learning we only have access to input data or images.

* Usually, these methods are more popular because they can use much
larger datasets that do not need to be manually labelled.

L(f(x, 9))
t

prediction

26



Unsupervised Learning
Monocular Depth Estimation

.ﬂ
T

Unsupervised Monocular Depth Estimation with Left-Right Consistency,
Godard et al. 2017
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Unsupervised Learning
Structure from Motion

(a) Training: unlabeled video clips.

Targel view Depth CNN

: //// -
Nearby views \ Pose CNN
: ‘ <\>'

Unsupervised Learning of Depth and Ego-Motion from Video, Zhou et al. 2017
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Unsupervised Learning
Dense Optical Flow

Backward warp

.
il

Wf “ Of
Forward-backward
consistency : .
{
e\ -
h “ o?

Smoothness loss Eg Consistency loss E¢ — Data loss Ep <

4

Characteristic of the learned flow:

* Robustness against light changes (Census Transform)
* Occlusion handling (Bi-directional Flow)

* Smooth flow

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census
Loss, Meister et al, 2018
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Unsupervised vs. Supervised learning

I

Performance Usually better for the same dataset size. Usually worse, but can outperform
supervised methods due to larger data
availability.

Data availability Low, due to manual labelling. High, no labelling required.

Training Simple, ground truth gives a strong Sometimes difficult, loss functions have

supervision signal. to be engineered to get good results.

Generalizability Good, although sometimes the network Better, since unsupervised losses often

learns to blindly copy the labels encode the task in a more fundamental
provided, leading to poor way.

generalizability.

30



Applications to
Computer Vision



Applications to Computer Vision
Keypoint Detection and Description

Deep Descriptors: LIFT

SCORE MAP

LIFT Pipeline consists of 3 neural networks:

* A keypoint detector
® An orientation detector

® A descriptor generator

LIFT: Learned Invariant Feature Transform, Kwang Moo Yi et al., 2016

'
T |
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LIFT Loss
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LIFT Loss has 3 components:

ORI

ORI

—o@-o : e
0 ‘
Q- &

DESC

DESC

DESC

 Distance between descriptors of correponding patches,

d! d?, that should be small

* Distance between descriptors of different patches,

d! d3, that should be large

* Keypoints should not be located in homogeneous regions:
P4 should not be detected as a keypoint

33



LIFT Results

® Works better than SIFT! (well, in some datasets)

34



Applications to Computer Vision

Keypoint Detection and Description

SIFT and friends are complicated heuristic algorithms
Still, SIFT is a hard to beat baseline for new methods
Can we do better with a data driven approach?
SuperPoint shows how a convolutional neural network
can be trained to predict keypoints and descriptors
simultaneously.

Detector less accurate than SIFT, but descriptor

shown to outperform SIFT in some scenarios.

Interest Point Decoder

Input
w pTTTsmmmemeeees ; : HfS

- ﬁ D [D Descriptor Decoder
Conv ﬁ

Bi-Cubic
1 ma
HfS

H

SuperPoint: Self-Supervised Interest Point Detection and Description

Point

Image Pair Correspondence

SuperPoint Network

SuperPoint: Self-Supervised Interest Point Detection and Description — D. Detone et al, CVPRW 2018



SuperPoint - Training

(a) Interest Point Pre-Training (b) Interest Point Self-Labeling (c) Joint Training

SUpeernt
i Interest
Point Loss
’iﬂlﬁl Descriptor
' o

Loss

Labeled Interest
Point Images

&a baseDetector
5 -y

Unlabeled Image Pseudo-Ground

it

Truth Interest

Points

i 1 Base Detector

............................

Interest

- L

- ; s

- : e :

: : E Point Loss
L]

-
=
N

............................

a) Training on synthetic dataset to bootstrap the detector

a) Use this detector on real images and generate groundtruth correspondences by sampling perspective
transformations

a) Jointly training both detector and descriptor
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SuperPoint - Qualitative (Cherry Picked) Results

SuperPoint

LIFT

SIFT

ORB

37



SuperPoint - Quantitative Results

Homography Estimation | Detector Metrics Descriptor Metrics

e=1€e=3 e€e=5 |[Rep. MLE NN mAP M. Score

SuperPoint 310 .684 829 | .581 1.158 821 470

LIFT 284  .598 17 1.449  1.102 664 315
SIFT 424 676 759 1.495 0.833 694 313
ORB 150 .395 538 |.641 1.157 135 266

€: Pixel distance to count keypoint as correct. SIFT is very accurate due to sub-pixel refinement.
MLE (Mean Localization Error): Lower is better. Metric for determining detector accuracy

NN mAP (nearest-neighbor mean average precision): Measures discriminativeness of descriptors. Higher is
better.

M. Score (Matching Score): Evaluates detector and descriptor jointly on groundtruth correspondences.

38



Applications to Computer Vision
Monocular Depth Estimation
Supervised Learning of Monocular Depth (single image)

Depth cannot be inferred from a single view by only considering geometric information
Neural networks can learn priors (e.g. object sizes, scene regularity) to predict depth
But learned priors do also lead to failure cases

good prediction failure

4 77 vk
i

v

Main challenge is ground-truth data -> Research on supervised monocular depth estimation has cooled down.

39
Depth map prediction from a single image using a multi-scale deep network — D. Eigen et al, NIPS 2014



Self-Supervised Learning of Monocular Depth (video)

- Video sequences can be used to jointly learn depth and ego-motion without groundtruth.
- This way, unlimited amounts of data can be used for training.

- Requires the definition of a proxy loss. Training with this proxy loss ideally leads to accurate
prediction of depth and ego-motion.

Training: unlabeled video clips.

Depth CNN

Target view

Depth from Video in the Wild — A. Gordon et al, ICCV 2019
Unsupervised learning of depth and ego-motion from video, T. Zhou et al. CVPR 2017

40



Self-Supervised Learning of Monocular Depth (video) - Training

The depth network predicts depth D of a target image t.

The pose network takes multiple images other than t and predicts the transformations between
those image wrt. the target image.

The differentiable mapping between the homogeneous . . P700W
pixel coordinates p_tinimagetand p_sinimages: b\ S a5

Ps ™~ KTt—)sﬁt (’pt)K_lpt

Minimal loss function:

Efinal — Z ﬁi,rs + Asﬁlsmooth
l

Los=> > L(p) - L(p)|

Smoothness: Penalize depth map discontinuities if image intensity is discontinuous *
Levels I: The losses are applied on multiple image levels for gradient flow.

*Unsupervised monocular depth estimation with left-right consistency — A. Gordon et al, CVPR 2017

41
Unsupervised learning of depth and ego-motion from video, T. Zhou et al. CVPR 2017



Self-Supervised Learning of Monocular Depth (video) - Results

Depth from Video in the Wild — A. Gordon et al, ICCV 2019



Self-Supervised Learning of Monocular Depth (video) - Results

Ego-motion is usually seen as by-product of the learning process. Modern feature-based V(I1)O
algorithms are more accurate than ego-motion from learning approaches.
Depth prediction has reached remarkable accuracy. However, depth prediction error still depends

on matching training and testing data distribution.
Learning intrinsics can also lead

to better results:

Cross-dataset generalization is still a challenge:

Absolute Relative depth error

600 KI'I‘I'I Sequgnce 09 .

— Learned and corrected intrinsics
Evaluated on Cityscapes Evaluated on KITT sool ~~ Learned intrinsics 2~

0.18 - I I I I I I R S A T T I T ---  Given intrinsics +~ \ ~
' . : : e ; struct2depth
400F _ Groundtruth

0.17 1 TN

0.16 | . . 1L , , i ool
-_ — Trained on Cityscapes || | — Trained on Cityscapes g 0
0.15} —— Trained on KITTI 11 —— Trained on KITTI . E ool g
014l 1 ~— Trained on both |l .\ — Trained on both |
' ' g 100} C N
0.13} n ]
[}.12 l L _\_I\_”_F_|_"_‘_|—‘—-'—'—"l_—'-‘_|""— 1 1 1 1 1 I I \\ .
0.0 05 1.0 1.5 2.0 25 30 35 00 05 1.0 15 2.0 25 3.0 3.5 4.0 ool L l . . .
. . P . . e —-200 -100 0 100 200 300 400
Training images (millions) Training images (millions) X (meters)
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Depth from Video in the Wild — A. Gordon et al, ICCV 2019



Applications to Computer Vision
Monocular Disparity Estimation

The task is to predict the per-pixel disparity from a monocular image. The disparity is with respect to a virtual
camera with a given baseline. With this disparity and baseline full depth can be recovered.

As we saw, monocular depth works because the network learns the absolute size of objects and rescales the
depth accordingly.

Input image

Ground truth
disparities

Predicted
disparities

y |

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR 2017 44



Unsupervised Monocular Disparity

What is this virtual camera view? The network is trained using stereo images. Once trained the network can be
used to predict depth from single images.

L l I :
original images I The images are warped

remapped images Jr il / using the disparity map
used to define the 1 t can be used to
training | — —
raining 195 i i compute depth

disparities at different d dl 1

resolutions d’

network based on UNet

Testing

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR 2017 45

Training



Unsupervised Monocular Disparity - Training

The network is trained in an unsupervised way. This means no ground truth depth maps are required.

For each view (left and right) and for each resolution for disparities (four in total) three losses are computed:

1. Appearance matching loss

1~ 1-SSIM(Z},.I! - L
Cfl_p: NZ(}{ 2( J 3') +(1—a) Ifj—I.fj SSIM: structural similarity, can be at most 1
..;,Tj
2. Disparity Smoothness loss
Ch. = Z|B dijle lo=251l |3, d; o z:; 9: derivative, it is weighted by the image derivative

3. Left-Right Disparity Consistency Loss

CE? N Z

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR 2017 46

d‘ Remapped disparity maps must be the same

+d*



Unsupervised Monocular Disparity - Results

- The network is trained on the KITTI dataset using 29,000 stereo images and evaluate on depth maps provided in
the dataset. Surprisingly, it outperforms supervised methods.

- Again this method works well in regions that have low texture and repetitive structure

Method Supervised | Dataset | AbsRel | SqRel | RMSE | RMSElog | 6<1.25 | 6<1.25% | §<1.25°
Train set mean No K 0.361 4826 | 8.102 0.377 0.638 0.804 0.894
Eigen et al. [ 10] Coarse ° Yes K 0.214 1.605 | 6.563 0.292 0.673 0.884 0.957
Eigen et al. [10] Fine ° Yes K 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. [16] DCNE-FCSP FT * Yes K 0.201 1.584 | 6.471 0.273 0.68 0.898 0.967
Ours resnet pp cap SOm No CS+K 0.108 0.657 3.729 0.194 0.873 0.954 0.979

Karsch et al. [ 2] Liuetal. [37] Lainaetal. [ 1]

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR 2017 47




Applications to Computer Vision
Differential Sample Consensus (DSAC)

Random Sample Consensus (RANSAC) is not differentiable since it relies on selecting a hypothesis based on
maximizing the number of inliers.

DSAC shows how sample consensus can be used in a differentiable way

This enables the use of sample consensus in a variety of learning tasks.

Here we cover its application to localization: given a single 2D image and a global 3D map of a scene,
compute the pose of the camera

Choose the best
based on score

Randomly sample
based on score

a) Vanilla RANSAC

h,v = argmaxs;
h
J

Correspondence  Minimal Set

Pre

Hypothesis

diction Sampling Generation

Scoring

Hypothesis

) Refinement
Selection

Loss

| —>

h) == H(Y)) s;:=s(h,Y)

c) Probabilistic Selection (DSAC)

exp(s))
7 exp(syr)

hpsac =hy,J~ 5

w
4

Y_'@_'“ 1s [~ baw | R [ ¢
~ ~— — .7
\'4
dg Ol =SR { ¢

S i
~—_ — > 7

DSAC - Differentiable RANSAC for Camera Localization, E. Brachmann et al. CVPR 2017
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Differential Sample Consensus (DSAC) - Method

h, _' hy|  h~P(-|w,V) ‘“ L
h3 R ‘L h; =/ i
h4 Reprjection E
h: Errorsofh, hs

InputRGB  Correspondence Prediction Hypothesis Sampling Scoring  Probabilistic Hypothesis Selection Result

1. For each patch (42 x 42) in the image predict its corresponding global 3D point using a CNN (VGG) with parameters
W. This gives you dense 2D-3D correspondence map that can now be sampled by DSAC.

2. Sample 2D-3D correspondences randomly and compute the hypothesis (=camera pose) with P3P. Why do we need
four points?

3. Reproject the all predicted 3D points according to each hypothesis and compute their reprojection error. This is done
for every 42 x 42 patch resulting in a 40 x 40 error map.

4. Using this error map predict a score for each hypothesis using a DNN (VGG) with parameters V.

5. Randomly sample the best hypothesis based on the softmax of the scores. The likelihood of sampling a hypothesis is
higher if it has a higher score. This is only done during training. During testing we choose the best hypothesis.

6. With the best hypothesis find all the inliers and compute the pose by minimizing the reprojection error.

DSAC - Differentiable RANSAC for Camera Localization, E. Brachmann et al. CVPR 2017 49



Differential Sample Consensus (DSAC) - Training

DSAC is trained in a supervised fashion in a scene with known 3D environment

We try to minimize the expected deviation from the ground truth pose after refinement.

W, v =agmin 3 By pisjyw LRMT, YD) =D D POV, wil(R(hF, Y™)

T = { ez J I
Network T refinement
L2 norm 3D point for
parameters Images step samples P
each patch

The probabilities are computed from the softmax of the scores .
hypothesis from

exp(s(h’7, Y v)) samples )
D g exp(s ( YV

During training, random images are selected and 256 hypotheses are generated which allow you to
estimate this loss and minimize it.

P(J|v,w) =

DSAC - Differentiable RANSAC for Camera Localization, E. Brachmann et al. CVPR 2017 50



Differential Sample Consensus (DSAC) - Results

Sparse Ours: Trained End-To-End

The method was trained and evaluated on the Features [36] | SoftAM DSAC
7-Scenes Dataset [1] which provides 3D models, Chess 70.7% | 94.2% 04.6%
RGB-D data, and ground truth for several camera Fire 199% | 169% 74.3%
’ Heads 67.6% 74.0% 71.7%
paths through the scenes. Office 36.6% | 56.6% 71.2%
Pumpkin 21.3% 51.9% 53.6%
Kitchen 29.8% 46.2% 51.2%
Compared to model-based methods, DSAC based Stairs 9.2% 5.5% 4.5%
localization does not rely on features. This makes the Average 407% | 57.9% 60.1%
Complete 38.6% 57.8% 62.5%

method more robust in scenes with low texture and
repetitive patterns.

*fraction of poses with error smaller than 5°and 5 cm

b) Scene Coordiante c) Scene Coordiante

a) Input RGB Ground Truth Prediction (Initial.)

[1] Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images. J. Shotton et al. CVPR 2013




Applications to Computer Vision
Deep Fundamental Matrix Estimation

- Eight-Point Algorithm involves solving a least-squares (LS) problem together with RANSAC
- Can we estimate the fundamental matrix estimation problem with fewer iterations?
- Yes: Exploit structure in the data and formulate a weighted least-squares problem accordingly.

Green: estimated
Blue: ground-truth

Deep Fundamental Matrix Estimation. R. Ranftl et al. ECCV 2018 >



Deep Fundamental Matrix Estimation - General Method

- Reformulate generic homogeneous LS to iterative weighted homogeneous LS problem

Generic hom. LS: Iterative weighted hom. LS:
Mapping of points Weight

N / Point i
minimize Y [|(A(P)); - x| | NoL 5
: =1 \Model parameters XJ—I_l — alg min Z w(p’tz Xj) H(A(P))Z ) XH

SUbjeCt to ||X|| — 1; Collection of Points X ’le:l 1=1

Iterative: instead of solving the LS problem several times in a RANSAC loop. Weights change with
each iteration because the estimate x changes too.
Weighted: Learn weights from data. Parameterized by a neural network

Network parameters

N
x/ T = argmin » (w(P,S,x7;0)); [|(AP)); - x|
x: || x||=1 i—1 T
Optional side-information for each point.

Deep Fundamental Matrix Estimation. R. Ranftl et al. ECCV 2018 >



Deep Fundamental Matrix Estimation - Training

Symmetric epipolar distance as residual function:

r(p;, F) = |p, Fp)| (; n ‘#) p: homogeneous coordinate of left
2

TFTH: ], Fp’ image
Training loss: p’: homogeneous coordinate of
D Ny right image
— T > > mln pg, ’ Q(Xj))a 7)
_j‘ =0 2=1

g(x): Solves weighted LS problem (8-pt LS problem)
and extracts the estimated fundamental matrix F.

Y: Stabilize training by clamping the residual
D: Number of iterations (usually 5)
N: Number of correspondences

Deep Fundamental Matrix Estimation. R. Ranftl et al. ECCV 2018
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Deep Fundamental Matrix Estimation - Results

lanks and Temples — with ratio test Tanks and Temples — without ratio test
% Inliers F-score Mean  Median % Inliers F-score Mean Median
RANSAC 42.61 4299 1.83 1.09 2.98 10.99 122.14 79.28
LMEDS 42.96 40.57 2.41 1.14 1.57 478 120.63 108.72
MLESAC 41.89 42.39 2.04 1.08 2.13 8.28 131.11 93.04
USAC 42.76 4355 3.72 1.24 4.45 23.55 46.32 8.52
Ours 45.02 46.99 2.04 0.83 5.62 2692  36.81 7.82

Ratio test refers to David Lowe’s ratio test introduces with SIFT
Better results in noisy case (no ratio test)

Deep Fundamental Matrix Estimation. R. Ranftl et al. ECCV 2018



Applications to Computer Vision
Place Recognition

Y 3 Geotagged image database

Design an “image

representation” extractor

f1,0)
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NetVlad

Mimic the classical pipeline with deep learning

KxD)x1
VLAD
vector

I NxD local descriptors x
|

’

2

0

0

1

- 0

1
9

Extract local
Image | Aggregate
features (S|FT) (BOW, VLAD, FV)

Image  Convolutional Neural Network | NetVLAD layer =
: _______soft-assignment _______ :
: :I conv {w,b) s ft i L2 :
| :I 1x1xDxK soft-max | | normalization ||
| T I A t I
| | X V intra- !
: TWxHYD mapinterpreted::;; VLAD core (c) |- norr:;rigation :

Convolutional layers from
AlexNet or VGGNet
Slide adapted from NetVLAD presentation, CVPR 2017

Trainable pooling layer
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NetVlad Loss

® Triplet loss formulation MatChing

pIes \ ,
) Fyl)]

Non matching
samples

margm

Z max(D, (9)+m Dy 6y,0)

samples

Disclaimer: The actual NetVlad loss is a slightly more complicated version of the one above™



NetVlad Results

- Code, dataset and trained network online: give it a try!

http://www.di.ens.fr/willow/research/netviad/

Query Top result

Green:
Correct
Red: Incorrect

Slide adapted from NetVLAD presentation, CVPR 2017
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Deep Visual Odometry (DeepVO)

End-to-end trained method that computes the camera pose from images directly
Encodes image pairs to geometric features using a convolutional neural network (CNN)

Feeds these features to a recurrent neural network (RNN) which outputs the 6-DOF pose

[ End-to-End Method Video (Image Sequence) CNN RNN  Pose

7 = ) / r = / 7 > / . g
\ 2 \ J
Y

. /

DeepVO End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks, S. Wang et al. ICRA 201%



Deep Visual Odometry (DeepVO) - Training

The network is trained on the KITTI VO/SLAM [1] benchmark with 7410 samples. To deal with the small
amount of data they use a network pretrained on FlowNet [2]

During training DeepVO tries to minimize the difference between ground-truth and predicted position and

orientation (in euler angles):

N

* . 1 _— P
67 = argmin = > ) [IBe — Pillz + @i — il

i=1 k=1

The network is later tested on sequences of KITTI which were not seen during training
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[1] Are we ready for autonomous driving? the KITTI vision benchmark suite, A. Geiger et al. CVPR 2012.
[2] FlowNet: Learning Optical Flow with Convolutional Networks, A. Dosovitskiy et al. ICCV 2017. ol



Deep Visual Odometry (DeepVO) - Results

DeepVO is compared to VISO2 [1] (Monocular and Stereo setup) in terms of rotation and translation error for
different subtrajectory lengths and speeds.

While DeepVO outperforms the monocular setup for VISO2 (VISO2_M) it is still outperformed by the stereo setup
(VISO2_S)

An important thing to note is that learning based visual odometry is not yet solved since many of these method
overfit to the driving scenario (2D motion). However, this field is growing rapidly.
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FlowNet

The task here is to predict dense correspondences between two image, also called optical flow

This is particularly challenging for model based methods if there are large displacements, textureless regions or
repetitive patterns

FlowNet shows how a Convolutional Neural Network (CNN) can solve this task

convolutional
network

FlowNet: Learning Optical Flow with Convolutional Networks, A. Dosovitskiy et al. ICCV 2017.
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FlowNet - Architecture

FlowNet takes a stack of two images as input and consists of two modules:
- an Encoder which convolves and downsamples the feature maps

with learnt weights
- a Decoder which convolves and upsamples the feature maps. In addtion,
intermediate flow predictions at lower resolution are generated that help learning

flow across different scales

convolutional j\

network ;

*: upconvolved

Encoder Decoder

FlowNet: Learning Optical Flow with Convolutional Networks, A. Dosovitskiy et al. ICCV 2017. 64



FlowNet - Training

Training is performed on a simulated dataset call the Flying Chairs Dataset. This dataset features pairs of images
of flying chairs with random backgrounds and ground truth optical flow.

Care was taken to move the chairs in a way to mimic the distribution of optical flow in real data

During training the average end point error (AEE) between predicted and ground truth optical flow is minimized
for all different scales
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FlowNet: Learning Optical Flow with Convolutional Networks, A. Dosovitskiy et al. ICCV 2017.
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FlowNet - Results

- Although the training data for FlowNet was very crude and only consisted of chairs it generalizes surprisingly well.
This is because optical flow is a low level task, i.e the network does not need to know about high level features
like chairs to solve it.

- FlowNet outperforms model based methods on all benchmark datasets

Method Sintel Clean Sintel Final KITTI Middlebury train  Middlebury test | Chairs
train test train test | train  test | AEE AAE AEE AAE test
EpicFlow [30] 227 412 | 357 6.290 | 347 3.8 | 0.31 3.24 (.39 3.55 2.94
model based I DeepFlow [35] 3.19 538 | 440 7.21 | 458 5.8 | 0.21 3.04 (.42 4.22 3.53

EPPM [3] - 6.4Y9 - 835 - 9.2 - - (.33 3.36 -

methods I LDOF [6] 4.19 7.56 6.28 9.12 | 13.73 124 | 0.45 4.97 (.56 4.55 3.47
FlowNetS 4.50) 7.42 .45 .43 | R.26 - 1.09 13.28 - - 2.71
FlowNetS+v 3.00 0.45 4.76 7.67 | Bb.ol - 0.33 3.87 - - 2.86
o FlowNetS+ft (3.66) 6.96 | (4.44) 7.76 | 7.52 9.1 0.98 15.20 - - a.04
variations FlowNetS+ft+v || (2.97) 6.16 | (4.07) 7.22 | 6.07 7.6 | 0.32 3.84 0.47 4.58 3.03
of FlowNet ' FlowNetC 431 T.28 | 587 B8l | 935 - 1.15 15.64 - - 2.19
FlowNetC+v 3.57 6.27 .20 8.01 7.45 - (.34 3.92 - - 2.61
FlowNetC+ft (3.78) 6.85 | (5.28) K.51 X.79 - 0.93 12.33 - - 2.27
FlowNetC+ft+v (3.20) 6.08 | (4.83) T7.88 | 7.31 - 0.33 3.81 (.50 4.52 2.67

FlowNet: Learning Optical Flow with Convolutional Networks, A. Dosovitskiy et al. ICCV 2017. 66



Conclusion



Deep Learning Limitations

e Require lots of data to learn
Neural Networks

* Difficult debugging and finetuning .
Practitioners

* Poor generalization across similar tasks

Tweaking NeuraliNet

DI

rarameters............
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Things to remember

* Deep Learning is able to extract meaningful
patterns from data.

* It can be applied to a wide range of tasks.
 Artificial Intelligence + Deep Learning
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Come over for projects in DL!

Visit our webpage for projects!

http://rpg.ifi.uzh.ch/student projects.php

Learning 3D Reconstruction using an Event Camera

Description

Event cameras such as the Dynamic Vision Sensor (DVS) are recent sensors with large
potential for high-speed and high dynamic range robotic applications. In particular, they
have been used to generate high speed video and for high speed visual odometry. In
this project we want to explore the possibility using an event camera to do asynchronous
3D reconstruction with very high temporal resolution. These properties are critical in
applications such as fast obstacle avoidance and fast mapping. Applicants should have
a background in C++ programming and low-level vision. In addition, familiarity with
learning frameworks such as pytorch or tensorflow are required.

Contact Details

Daniel Gehrig (dgehrig (af) ifi (dot) uzh (dot) ch), Mathias Gehrig (mgehrig (af) ifi (dot)
uzh (dot) chy)

Learning an Event Camera

Description

Event cameras such as the Dynamic Vision Sensor (DVS) are recent sensors with a lot
of potential for high-speed and high dynamic range robotic applications. They have been
successfully applied in many applications, such as high speed video and high speed
visual odometry. In spite of this success, the exact operating principle of event cameras,
that is, how events are generated from a given visual signal and how noise is generated,
is not well understood. In his work we want to explore new techniques for modelling the
generation of events in an event camera, which would have wide implications for
existing techniques. Applicants should have a background in C++ programming and low-
level vision. In addition, familiarity with learning frameworks such as pytorch or
tensorflow are required.

Contact Details

Daniel Genhrig (dgehrig (af) ifi (dot) uzh (dot) ch), Mathias Gehrig (mgehrig (af) ifi (dot)
uzh (dot) ch)

High-Performance Simulation of Spiking Neural Network on GPUs -
Available

Description: One majer complication in research of biclogically-inspired spiking
neural Networks (SNNs) is simulation performance on conventional hardware
(CPU/GPU). Computation in SNNs is dominated by operations on sparse tensors
but usually this potential benefit is ignored to save development time. However, the
exploitation of sparsity could be beneficial to scale simulation of SNNs to larger
datasets. Requirements: - Experience with deep leaming frameworks (e.g

TensorFlow ar PyTorch) - Excellent programming skills and experience in CUDA

Goal: In this project, you will leverage sparse computation to develop high-performance simulations of SNNs that can be
used for optimization. This will help to scale experiments and drastically improve results obtained by SNNs

Contact Details: Mathias Gehrig, mgehrig (at) ifi {dot) uzh (dot) ch
Thesis Type: Semester Project
See project on SIROP

Learning to Deblur Images with Events - Available

Description: Images suffer from motion blur due to long exposure in poor light
condition or rapid motion. Unlike conventional cameras, event-cameras do not
suffer from motion blur. This is due to the fact that event-cameras provide events
together with the exact time when they were triggered. In this project, we will make
use of hybrid sensors which provide both conventional images and events such
that we can leverage the advantages of both. Requirements: - Background in
computer vision and machine learning - Deep learning experience preferable but
not strictly required - Programming experience in C++ and Python

Goal: The goal is to develop an algerithm capable producing a blur-free image from the captured, blurry image, and
events within the exposure time. To this end, synthetic data can be generated by our simulation framework which is able
to generate both synthetic event data and motion blurred images. This data can be used by machine learning algorithms
designed to solve the task at hand. At the end of the project, the algorithm will be adapted to perform optimally with real-
world data.

Contact Details: Mathias Gehrig (mgehrig at ifi.uzh ch); Daniel Gehrig (dgehrig at ifi uzh.ch)
Thesis Type: Semester Project / Master Thesis
See project on SIROP

Optimization for Spiking Neural Networks - Available

- Description: Spiking neural networks {SNNs) are neural networks that process
il ¥l information with timing of events/spikes rather than numerical values. Together with
ey | [— event-cameras, SNNs show promise to both lower latency and computational

burden compared to artificial neural networks. In recent years, researchers have
L —— .~ proposed several methods to estimate gradients of SNN parameters in a

supervised learning context. In practice, many of these approaches rely on
assumptions that might not hold in all scenarios. Requirements: - Background in machine lzarning; especially deep
learning - Good programming skills; experience in CUDA is a plus.

Goal: In this project we explore state-of-the-art optimization methods for SNNs and their suitability to solve the temporal
credit-assignment problem. As a first step, an in-depth evaluation of a selection of algorithms is required. Based on the
acquired insights, the prospactive student can propose improvements and implement their own method.

Contact Details: Mathias Gehrig, mgehrig (at) ifi (dot) uzh (dot) ch

Thesis Type: Master Thesis 70
See project on SIROP



Additional Readings

* Neural Networks and Deep Learning, by Michael
Nielsen [Chapter 2]

e Practical Recommendations for Gradient-Based
Training of Deep Architectures, Y. Bengio

* Deep Learning, |. Goodfellow, Y. Bengio, A. Courville

e All the references above!



