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The Deep Learning Revolution

Medicine Media & Entertainment

Autonomous DrivingSurveillance & Security
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What changed?

• Hardware Improvements

• Big Data Available

• Algorithmic Progress

5



Image Classification
Task of assigning an input image a label from a fixed set of categories.

Slide adapted from CNNs for Visual Recognition (Stanford)
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The semantic gap
• What computers see against what we see
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Classification Challenges

Slide adapted from CNNs for Visual Recognition (Stanford)

Directly specifying how a category looks like is impossible.

We need use a Data Driven Approach
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Supervised Learning

𝑓(𝑥, 𝜃)

Function parameters
or weights

N numbers representing
class scores

0.1
0.7…
0.0

1.0
0.0…
0.0

Predicted Ground truth, 𝑦𝑖

𝐿𝑜𝑠𝑠(𝑓 𝑥𝑖 , 𝜃 , 𝑦𝑖)Update

Find function 𝑓 𝑥, 𝜃 that imitates a ground truth signal 
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Machine Learning Keywords

• Loss: Quantify how good 𝜃 are

• Optimization: The process of finding 𝜃
that minimize the loss

• Function: Problem modelling -> Deep 
networks are highly non-linear 𝑓(𝑥, 𝜃)

Slide adapted from CNNs for Visual Recognition (Stanford) 10



Classifiers: K-Nearest neighbor

𝑓(𝒙, 𝜃) = label of the K training examples nearest to 𝒙

• How fast is training? How fast is testing?
• O(1), O(n)

• What is a good distance metric ? What K should be used? 

Test 
example

Training 
examples 

from class 1

Training 
examples 

from class 2

Features are represented in the descriptor space 
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Classifiers: Linear

• Find a linear function to separate the classes:

𝑓 𝒙, 𝜃 = 𝑠𝑔𝑛 𝒘  𝒙 + 𝑏

• What is now 𝜃? What is the dimensionality of images? 12



Classifiers: non-linear

Bad classifier (over fitting)Good classifier

• What is 𝑓(𝒙, 𝜃) ?
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Biological Inspiration

Axon

Terminal Branches 

of Axon
Dendrites

S
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wn
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x3 w3

f 𝑥, 𝜃 = 𝐹(𝑊𝑥), F is a non-linear activation function (Step, ReLU, Sigmoid)

The Perceptron: A Probabilistic Model for Information Storage and Organization in 
the Brain, Frank Rosenblatt (1958)
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Multi Layer Perceptron

𝒇 (𝒙, 𝜽)

Non-linear Activation functions (ReLU, sigmoid, etc.)  

Neural Networks and Deep Learning, Chapter 2– Michael Nielsen  15



Forward propagation

Forward Pass

𝐿𝑜𝑠𝑠(𝑓 𝑥𝑖 , 𝜃 , 𝑦𝑖)

Neural Networks and Deep Learning, Chapter 2– Michael Nielsen  16



Optimization: Back-propagation

Backward Pass
Compute gradients with respect to all parameters 

and perform gradient descent

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝜇𝛻𝐿𝑜𝑠𝑠

𝐿𝑜𝑠𝑠(𝑓 𝑥𝑖 , 𝜃 , 𝑦𝑖)

Artificial Neural Networks, Back Propagation and the Kelley-Bryson Gradient 
Procedure – Stuart E .Dreyfus
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Problems of fully connected network

• Too many parameters -> possible overfit

• We are not using the fact that inputs are images!
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Convolutional Neural Networks

Gradient-based learning applied to document recognition, Y. LeCun et al. (1998)
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Going Deep

10.2%

11.5%
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62.7%

Flower

Cup

Dog

Car
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• Inspired by the human visual system
• Learn multiple layers of transformations of input
• Extract progressively more sophisticated representations

Why Deep?

21



Supervised Learning

• In supervised learning it is assumed that we have access to both input 
data or images and ground truth labels. 

• Networks trained with 
supervision usually 
perform best

• However, usually it is 
hard to generate this 
data since it often has 
to be hand-labelled

𝐿 𝑓 𝑥, 𝜃 , 𝑦

Network

ground truth label

Image prediction
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Supervised Learning
Image Segmentation

Fully Convolutional Networks for Semantic Segmentation – J. Long, E. Shelhamer, 2015
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Supervised Learning
Image Captioning

Deep Visual-Semantic Alignments for Generating Image Descriptions – Karpathy et al., 2015
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Supervised Learning
Image Localization

PlaNet - Photo Geolocation with Convolutional Neural Networks - Weyand et al. 2016 25



Unsupervised Learning

• In unsupervised learning we only have access to input data or images.

• Usually, these methods are more popular because they can use much 
larger datasets that do not need to be manually labelled.

𝐿 𝑓 𝑥, 𝜃

Network

predictionImage
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Unsupervised Learning
Monocular Depth Estimation

Unsupervised Monocular Depth Estimation with Left-Right Consistency,
Godard et al. 2017
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Unsupervised Learning
Structure from Motion

Unsupervised Learning of Depth and Ego-Motion from Video, Zhou et al. 2017 28



Unsupervised Learning
Dense Optical Flow

Characteristic of the learned flow:
• Robustness against light changes (Census Transform)
• Occlusion handling (Bi-directional Flow)
• Smooth flow

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census 
Loss, Meister et al, 2018
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Unsupervised vs. Supervised learning

30

Supervised Unsupervised

Performance Usually better for the same dataset size. Usually worse, but can outperform 
supervised methods due to larger data 
availability.

Data availability Low, due to manual labelling. High, no labelling required.

Training Simple, ground truth gives a strong 
supervision signal.

Sometimes difficult, loss functions have 
to be engineered to get good results.

Generalizability Good, although sometimes the network 
learns to blindly copy the labels 
provided, leading to poor 
generalizability.

Better, since unsupervised losses often 
encode the task in a more fundamental 
way.



Applications to 
Computer Vision
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Deep Descriptors: LIFT

LIFT Pipeline consists of 3 neural networks:

• A keypoint detector

• An orientation detector 

• A descriptor generator

LIFT: Learned Invariant Feature Transform, Kwang Moo Yi et al.,  2016

Applications to Computer Vision
Keypoint Detection and Description

32



LIFT Loss

•
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LIFT Results
• Works better than SIFT! (well, in some datasets)
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SuperPoint: Self-Supervised Interest Point Detection and Description
• SIFT and friends are complicated heuristic algorithms
• Still, SIFT is a hard to beat baseline for new methods
• Can we do better with a data driven approach?
• SuperPoint shows how a convolutional neural network

can be trained to predict keypoints and descriptors
simultaneously.

• Detector less accurate than SIFT, but descriptor
shown to outperform SIFT in some scenarios.

Applications to Computer Vision
Keypoint Detection and Description

SuperPoint: Self-Supervised Interest Point Detection and Description – D. Detone et al, CVPRW 2018
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SuperPoint - Training

a) Training on synthetic dataset to bootstrap the detector

a) Use this detector on real images and generate groundtruth correspondences by sampling perspective 
transformations

a) Jointly training both detector and descriptor

36



SuperPoint - Qualitative (Cherry Picked) Results
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SuperPoint - Quantitative Results

- ε: Pixel distance to count keypoint as correct. SIFT is very accurate due to sub-pixel refinement.
- MLE (Mean Localization Error): Lower is better. Metric for determining detector accuracy
- NN mAP (nearest-neighbor mean average precision): Measures discriminativeness of descriptors. Higher is 

better.
- M. Score (Matching Score): Evaluates detector and descriptor jointly on groundtruth correspondences.
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Supervised Learning of Monocular Depth (single image)
- Depth cannot be inferred from a single view by only considering geometric information
- Neural networks can learn priors (e.g. object sizes, scene regularity) to predict depth
- But learned priors do also lead to failure cases

good prediction failure 
case

- Main challenge is ground-truth data -> Research on supervised monocular depth estimation has cooled down.

Applications to Computer Vision
Monocular Depth Estimation

Depth map prediction from a single image using a multi-scale deep network – D. Eigen et al, NIPS 2014
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Self-Supervised Learning of Monocular Depth (video)

- Video sequences can be used to jointly learn depth and ego-motion without groundtruth.
- This way, unlimited amounts of data can be used for training.
- Requires the definition of a proxy loss. Training with this proxy loss ideally leads to accurate 

prediction of depth and ego-motion.

Depth from Video in the Wild – A. Gordon et al, ICCV 2019
Unsupervised learning of depth and ego-motion from video, T. Zhou et al. CVPR 2017
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Self-Supervised Learning of Monocular Depth (video) - Training

- The depth network predicts depth D of a target image t.
- The pose network takes multiple images other than t and predicts the transformations between 

those image wrt. the target image.
- The differentiable mapping between the homogeneous

pixel coordinates p_t in image t and p_s in image s:

- Minimal loss function:

- Smoothness: Penalize depth map discontinuities if image intensity is discontinuous *
- Levels l: The losses are applied on multiple image levels for gradient flow.

*Unsupervised monocular depth estimation with left-right consistency – A. Gordon et al, CVPR 2017
Unsupervised learning of depth and ego-motion from video, T. Zhou et al. CVPR 2017
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Self-Supervised Learning of Monocular Depth (video) - Results

Depth from Video in the Wild – A. Gordon et al, ICCV 2019
42



Self-Supervised Learning of Monocular Depth (video) - Results

- Ego-motion is usually seen as by-product of the learning process. Modern feature-based V(I)O 
algorithms are more accurate than ego-motion from learning approaches.

- Depth prediction has reached remarkable accuracy. However, depth prediction error still depends 
on matching training and testing data distribution.

Cross-dataset generalization is still a challenge:

Learning intrinsics can also lead 
to better results:

Depth from Video in the Wild – A. Gordon et al, ICCV 2019
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- The task is to predict the per-pixel disparity from a monocular image. The disparity is with respect to a virtual 
camera with a given baseline. With this disparity and baseline full depth can be recovered. 

- As we saw, monocular depth works because the network learns the absolute size of objects and rescales the 
depth accordingly.

Input image

Ground truth 
disparities

Predicted 
disparities

Applications to Computer Vision
Monocular Disparity Estimation

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR 2017 44



Unsupervised Monocular Disparity

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR 2017

Training Testing

disparities at different 
resolutions

remapped images 

original images

used to define the 
training loss

can be used to 
compute depth

network based on UNet

- What is this virtual camera view? The network is trained using stereo images. Once trained the network can be 
used to predict depth from single images.

The images are warped 
using the disparity map
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Unsupervised Monocular Disparity - Training

- The network is trained in an unsupervised way. This means no ground truth depth maps are required.

- For each view (left and right) and for each resolution for disparities (four in total) three losses are computed:

1. Appearance matching loss

1. Disparity Smoothness loss

3.

Left-Right Disparity Consistency Loss

SSIM: structural similarity, can be at most 1

∂: derivative, it is weighted by the image derivative

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR 2017 46

Remapped disparity maps must be the same

1.

2.

3.



Unsupervised Monocular Disparity - Results

- The network is trained on the KITTI dataset using 29,000 stereo images and evaluate on depth maps provided in 
the dataset. Surprisingly, it outperforms supervised methods.

- Again this method works well in regions that have low texture and repetitive structure

Godard et al. Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR 2017 47



- Random Sample Consensus (RANSAC) is not differentiable since it relies on selecting a hypothesis based on 
maximizing the number of inliers.

- DSAC shows how sample consensus can be used in a differentiable way

- This enables the use of sample consensus in a variety of learning tasks.

- Here we cover its application to localization: given a single 2D image and a global 3D map of a scene, 
compute the pose of the camera

DSAC - Differentiable RANSAC for Camera Localization, E. Brachmann et al. CVPR 2017

Choose the best
based on score

Randomly sample 
based on score

Applications to Computer Vision
Differential Sample Consensus (DSAC)
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Differential Sample Consensus (DSAC) - Method

1. For each patch (42 x 42) in the image predict its corresponding global 3D point using a CNN (VGG) with parameters 
W. This gives you dense 2D-3D correspondence map that can now be sampled by DSAC.

2. Sample 2D-3D correspondences randomly and compute the hypothesis (=camera pose) with P3P. Why do we need 
four points?

3. Reproject the all predicted 3D points according to each hypothesis and compute their reprojection error. This is done 
for every 42 x 42 patch resulting in a 40 x 40 error map.

4. Using this error map predict a score for each hypothesis using a DNN (VGG) with parameters V.

5. Randomly sample the best hypothesis based on the softmax of the scores. The likelihood of sampling a hypothesis is 
higher if it has a higher score. This is only done during training. During testing we choose the best hypothesis.

6. With the best hypothesis find all the inliers and compute the pose by minimizing the reprojection error.

DSAC - Differentiable RANSAC for Camera Localization, E. Brachmann et al. CVPR 2017 49



Differential Sample Consensus (DSAC) - Training

- DSAC is trained in a supervised fashion in a scene with known 3D environment

- We try to minimize the expected deviation from the ground truth pose after refinement.

- The probabilities are computed from the softmax of the scores

- During training, random images are selected and 256 hypotheses are generated which allow you to 
estimate this loss and minimize it. 

Network 
parameters samples

L2 norm
refinement 

stepImages

hypothesis from
samples J

3D point for 
each patch

DSAC - Differentiable RANSAC for Camera Localization, E. Brachmann et al. CVPR 2017 50



Differential Sample Consensus (DSAC) - Results

- The method was trained and evaluated on the 
7-Scenes Dataset [1] which provides 3D models, 
RGB-D data, and ground truth for several camera 
paths through the scenes.    

- Compared to model-based methods, DSAC based 
localization does not rely on features. This makes the 
method more robust in scenes with low texture and 
repetitive patterns.

*fraction of poses with error smaller than 5° and 5 cm

[1]

DSAC - Differentiable RANSAC for Camera Localization, E. Brachmann et al. CVPR 2017
[1] Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images. J. Shotton et al. CVPR 2013 51



- Eight-Point Algorithm involves solving a least-squares (LS) problem together with RANSAC
- Can we estimate the fundamental matrix estimation problem with fewer iterations?
- Yes: Exploit structure in the data and formulate a weighted least-squares problem accordingly.

Deep Fundamental Matrix Estimation. R. Ranftl et al. ECCV 2018

Top-bottom as image-pair

Red: inlier (correspondences)
Blue: outliers

Epipolar lines

Green: estimated
Blue: ground-truth

Applications to Computer Vision
Deep Fundamental Matrix Estimation
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Deep Fundamental Matrix Estimation - General Method

- Reformulate generic homogeneous LS to iterative weighted homogeneous LS problem
Generic hom. LS: Iterative weighted hom. LS:

- Iterative: instead of solving the LS problem several times in a RANSAC loop. Weights change with 
each iteration because the estimate x changes too.

- Weighted:  Learn weights from data. Parameterized by a neural network

Collection of Points

Model parameters

Weight

Point i

Mapping of points

Network parameters

Optional side-information for each point.

Deep Fundamental Matrix Estimation. R. Ranftl et al. ECCV 2018 53



Deep Fundamental Matrix Estimation - Training

- Symmetric epipolar distance as residual function:

- Training loss:

g(x): Solves weighted LS problem (8-pt LS problem)
and extracts the estimated fundamental matrix F.

γ: Stabilize training by clamping the residual
D: Number of iterations (usually 5)
N: Number of correspondences

p: homogeneous coordinate of left 
image
p’: homogeneous coordinate of 
right image

Deep Fundamental Matrix Estimation. R. Ranftl et al. ECCV 2018 54



Deep Fundamental Matrix Estimation - Results

- Ratio test refers to David Lowe’s ratio test introduces with SIFT
- Better results in noisy case (no ratio test)

Deep Fundamental Matrix Estimation. R. Ranftl et al. ECCV 2018 55



Applications to Computer Vision
Place Recognition

Image representation space

f(     )

f(     )

f(     )
f(     )

f(     )
f(     )

f(     )
Query

Design an “image 

representation” extractor 

𝑓(𝐼, 𝜃)

Geotagged image database
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NetVlad
Mimic the classical pipeline with deep learning

Convolutional layers from
AlexNet or VGGNet

Trainable pooling layer

Extract local 
features (SIFT)

2
0
0
1
0
1
…

F(I)Aggregate 
(BoW, VLAD, FV)

Image I

Slide adapted from NetVLAD presentation, CVPR 2017 
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• Triplet loss formulation

NetVlad Loss

Disclaimer: The actual NetVlad loss is a slightly more complicated version of the one above

Matching 
samples

Non matching 
samples

margin
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NetVlad Results
• Code, dataset and trained network online: give it a try!

• http://www.di.ens.fr/willow/research/netvlad/ the link is in the 

Query Top result

Green: 
Correct

Red: IncorrectSlide adapted from NetVLAD presentation, CVPR 2017 59

http://www.di.ens.fr/willow/research/netvlad/


Deep Visual Odometry (DeepVO)

DeepVO End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks, S. Wang et al. ICRA 2017

- End-to-end trained method that computes the camera pose from images directly

- Encodes image pairs to geometric features using a convolutional neural network (CNN)

- Feeds these features to a recurrent neural network (RNN) which outputs the 6-DOF pose

60



Deep Visual Odometry (DeepVO) - Training

- The network is trained on the KITTI VO/SLAM [1] benchmark with 7410 samples. To deal with the small
amount of data they use a network pretrained on FlowNet [2]

- During training DeepVO tries to minimize the difference between ground-truth and predicted position and 
orientation (in euler angles):

- The network is later tested on sequences of KITTI which were not seen during training

[1] Are we ready for autonomous driving? the KITTI vision benchmark suite, A. Geiger et al. CVPR 2012.
[2] FlowNet: Learning Optical Flow with Convolutional Networks, A. Dosovitskiy et al. ICCV 2017. 61



Deep Visual Odometry (DeepVO) - Results

- DeepVO is compared to VISO2 [1] (Monocular and Stereo setup) in terms of rotation and translation error for 
different subtrajectory lengths and speeds.

- While DeepVO outperforms the monocular setup for VISO2 (VISO2_M) it is still outperformed by the stereo setup 
(VISO2_S)

- An important thing to note is that learning based visual odometry is not yet solved since many of these method 
overfit to the driving scenario (2D motion). However, this field is growing rapidly. 

[1] Are we ready for autonomous driving? the KITTI vision benchmark suite, A. Geiger et al. CVPR 2012
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FlowNet

- The task here is to predict dense correspondences between two image, also called optical flow

- This is particularly challenging for model based methods  if there are large displacements, textureless regions or 
repetitive patterns

- FlowNet shows how a Convolutional Neural Network (CNN) can solve this task

FlowNet: Learning Optical Flow with Convolutional Networks, A. Dosovitskiy et al. ICCV 2017.
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- FlowNet takes a stack of two images as input and consists of two modules: 

- an Encoder which convolves and downsamples the feature maps
with learnt weights

- a Decoder which convolves and upsamples the feature maps. In addtion, 
intermediate flow predictions at lower resolution are generated that help learning 
flow across different scales

FlowNet - Architecture

Encoder Decoder

FlowNet: Learning Optical Flow with Convolutional Networks, A. Dosovitskiy et al. ICCV 2017. 64



- Training is performed on a simulated dataset call the Flying Chairs Dataset.  This dataset features pairs of images 
of flying chairs with random backgrounds and ground truth optical flow.

- Care was taken to move the chairs in a way to mimic the distribution of optical flow in real data

- During training the average end point error (AEE) between predicted and ground truth optical flow is minimized 
for all different scales

FlowNet - Training

FlowNet: Learning Optical Flow with Convolutional Networks, A. Dosovitskiy et al. ICCV 2017. 65



- Although the training data for FlowNet was very crude and only consisted of chairs it generalizes surprisingly well. 
This is because optical flow is a low level task, i.e the network does not need to know about high level features 
like chairs to solve it.

- FlowNet outperforms model based methods on all benchmark datasets 

FlowNet - Results

variations 
of FlowNet

model based 
methods

FlowNet: Learning Optical Flow with Convolutional Networks, A. Dosovitskiy et al. ICCV 2017. 66



Conclusion
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Deep Learning Limitations

• Require lots of data to learn

• Difficult debugging and finetuning

• Poor generalization across similar tasks

Neural Networks
Practitioners
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Things to remember

• Deep Learning is able to extract meaningful 
patterns from data. 

• It can be applied to a wide range of tasks.

• Artificial Intelligence ≠ Deep Learning
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Come over for projects in DL!

http://rpg.ifi.uzh.ch/student_projects.php

Visit our webpage for projects!
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Additional Readings

• Neural Networks and Deep Learning,  by Michael 
Nielsen [Chapter 2]

• Practical Recommendations for Gradient-Based 
Training of Deep Architectures, Y. Bengio

• Deep Learning, I. Goodfellow, Y. Bengio, A. Courville

• All the references above!
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