
Lecture 09
Multiple View Geometry 3
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Institute of Informatics – Institute of Neuroinformatics
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Lab Exercise 7 - Today
 Room ETH HG E 1.1 from 13:15 to 15:00

 Work description: P3P algorithm and RANSAC
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Outline

• Bundle Adjustment

• SFM with 𝑛 views
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Bundle Adjustment (BA) – More in depth in Exercise 9

• Non-linear, simultaneous refinement of structure 𝑃𝑖 and motion 𝐶 = 𝑅, 𝑇

• It is used after linear estimation of R and T (e.g., after 8-point algorithm)

• Computes 𝐶, 𝑃𝑖 by minimizing the Sum of Squared Reprojection Errors:

NB: here, by 𝐶1, 𝐶2 we denote the pose of each camera in the world frame

• Can be minimized using Levenberg–Marquardt (more robust than Gauss-Newton 
to local minima)

• In order to not get stuck in local minima, the initialization should be close the 
minimum
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Minimizes the Sum of Squared Reprojection Errors over each view 𝒌

...
𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏
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Bundle Adjustment (BA) for 𝑛 Views
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𝐩𝟑



 Huber norm:

 Tukey norm:

To prevent that large reprojection errors can negatively influence the optimization, a 
more robust norm 𝜌() is used instead of the 𝐿2:
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Huber and Tukey Norms
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𝜌() is a robust cost function (Huber or Tukey) to penalize wrong matches:

α2 if 𝑥 ≥ α

α2 1 − 1 −
𝑥

α

2 3

if   𝑥 ≤ α
ρ 𝑥 =

These formulas are not asked at the exam 
but their plots and meaning is asked 

𝑥2 if 𝑥 ≤ 𝑘
𝑘 2 𝑥 − 𝑘 if 𝑥 ≥ 𝑘

ρ 𝑥 =



Outline

• Bundle Adjustment

• SFM with 𝑛 views
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Structure From Motion with 𝑛 Views

• Compute initial structure and motion
– Hierarchical SFM

– Sequential SFM

• Refine simultaneously structure and motion through BA
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Hierarchical SFM

1. Extract and match features between nearby frames
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Hierarchical SFM

1. Extract and match features between nearby frames

2. Identify clusters consisting of 3 nearby frames:

3. Compute SFM for 3 views:
1. Compute SFM between 

1 and 2 and build point cloud

2. Then merge 3rd view by 
running 3-point RANSAC 
between point cloud and 
3rd view
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Hierarchical SFM

1. Extract and match features between nearby frames

2. Identify clusters consisting of 3 nearby frames:

3. Compute SFM for 3 views:
1. Compute SFM between 

1 and 2 and build point cloud

2. Then merge 3rd view by 
running 3-point RANSAC 
between point cloud and 
3rd view

4. Merge clusters pairwise and refine (BA) both structure and motion

12

How do you merge 
clusters?
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 Reconstruction from 150,000 images from Flickr associated with the tags “Rome”

 4m 3D points. Cloud of 496 computers. 21 hours of computation!

 Paper: “Building Rome in a Day”, ICCV’09: http://grail.cs.washington.edu/rome/
University of Washington, 2009 – Most influential paper of 2009 (link)

Hierarchical SFM: Example
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http://grail.cs.washington.edu/rome/
https://news.cs.washington.edu/2019/11/07/allen-school-researchers-build-rome-in-a-day-receive-helmholtz-prize-at-iccv-2019/


Structure From Motion with 𝑛 Views

• Compute initial structure and motion
– Hierarchical SFM

– Sequential SFM

• Refine simultaneously structure and motion through BA

14



Sequential SFM - also called Visual Odometry (VO)

 Initialize structure and motion from 2 views (bootstrapping)

 For each additional view
 Determine pose (localization)

 Extend structure, i.e., extract and triangulate new features (mapping)

 Refine structure and motion through Bundle Adjustment (BA) (optimization)

15



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 1980: First known VO real-time implementation on a robot by Hans Moraveck PhD 

thesis (Stanforfd/NASA/JPL) for Mars rovers using one sliding camera (sliding 

stereo).

https://frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/index.html
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 1980: First known VO real-time implementation on a robot by Hans Moraveck PhD 

thesis (Stanforfd/NASA/JPL) for Mars rovers using one sliding camera (sliding 

stereo).

 1980 to 2000: The VO research was dominated by NASA/JPL in preparation of the

2004 mission to Mars

 2004: VO was used on a robot on another planet: Mars rovers Spirit and Opportunity

(see seminal paper from NASA/JPL, 2007)

 2004. VO was revived in the academic environment 

by David Nister’s «Visual Odometry» paper. 

The term VO became popular.

https://frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/index.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi8_ufr-6DPAhURkRQKHclVCfcQFggcMAA&url=https://www-robotics.jpl.nasa.gov/publications/Mark_Maimone/rob-06-0081.R4.pdf&usg=AFQjCNESCPJ04fnuKuoGvk2N1QnUwr-Z4w&sig2=JweSv5bBU1U7w6kanVTxpw&bvm=bv.133387755,d.bGg
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Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 Years and 
Fundamentals, IEEE Robotics and Automation Magazine, Volume 18, issue 4, 2011. PDF

Fraundorfer, F., Scaramuzza, D., Visual Odometry: Part II - Matching, Robustness, and 
Applications, IEEE Robotics and Automation Magazine, Volume 19, issue 1, 2012. PDF

C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I.D. Reid, J.J. Leonard, 
Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-
Perception Age, IEEE Transactions on Robotics, Vol. 32, Issue 6, 2016. PDF

http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/VO_Part_II_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_cadena.pdf
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Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

VO computes the camera path incrementally (pose after pose)

Front-end

Back-end

19
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Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

VO computes the camera path incrementally (pose after pose)

Example features tracks

20
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Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

VO computes the camera path incrementally (pose after pose)

Tk,k-1

Tk+1,k

Ck-1

Ck

Ck+1
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Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization (back-end)

VO computes the camera path incrementally (pose after pose)

...
𝑪𝟎 𝑪𝟏 𝑪𝟑 𝑪𝟒 𝑪𝒏−𝟏 𝑪𝒏

Front-end

Back-end
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Motion from Image Feature Correspondences 

 Both feature points 𝑓𝑘−1 and 𝑓𝑘 are specified in 2D

 The minimal-case solution involves 5-point correspondences

 The solution is found by minimizing the reprojection error:

 Popular algorithms: 5- and 8-point algorithms [Hartley’97, Nister’06]

Motion estimation

2D-2D 3D-2D 3D-3D
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Motion from 3D Structure and Image Correspondences

 𝑓𝑘−1 is specified in 3D and 𝑓𝑘 in 2D

 This problem is known as camera resection or PnP (Perspective from n Points)

 The minimal-case solution involves 3 correspondences (+1 for disambiguating the 4 
solutions)

 The solution is found by minimizing the reprojection error:

 Popular algorithms: P3P [Gao’03, Kneip’11]

Motion estimation

2D-2D 3D-2D 3D-3D
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Motion estimation

2D-2D 3D-2D 3D-3D

Motion from 3D-3D Point Correspondences (point cloud registration)

 Both 𝑓𝑘−1 and 𝑓𝑘 are specified in 3D. To do this, it is necessary to triangulate 3D points 
(e.g. use a stereo camera)

 The minimal-case solution involves 3 non-collinear correspondences

 The solution is found by minimizing the 3D-3D Euclidean distance:

 Popular algorithm: [Arun’87] for global registration plus local refinement with Bundle 
Adjustment (BA)

Arun, Huang, Blostein, “Least-squares fitting of two 3-d point sets,” PAMI’87. PDF

http://post.queensu.ca/~sdb2/PAPERS/PAMI-3DLS-1987.pdf
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Type of 
correspondences

Monocular Stereo

2D-2D X

3D-2D X X

3D-3D X
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Case study: Monocular VO

Keyframe 1 Keyframe 2

Initial pointcloud New triangulated points

Current frame
New keyframe

This pipeline was initially proposed in 
PTAM (Parallel Tracking & Mapping) [Klein, ISMAR’07]



Monocular VO (i.e., with a single camera)

 Bootstrapping (i.e., initialization)
 Initialize structure and motion from 2 views: e.g., 5- or 8-point RANSAC

 Refine structure and motion (Bundle Adjustment)

 How far should the two frames (i.e., keyframes) be?

Keyframe 1 Keyframe 2

Initial pointcloud

29



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty

Small baseline → large depth uncertainty Large baseline → small depth uncertainty

30
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 When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty

 One way to avoid this consists of skipping frames until the average uncertainty of 
the 3D points decreases below a certain threshold. The selected frames are 
called keyframes

 Rule of the thumb: add a keyframe when 

. . . 

average-depth

keyframe distance
> threshold (~10-20 %)
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Monocular VO (i.e., with a single camera)

 Localization
 Given a 3D point cloud (map), determine the pose of each additional view

 How?

 How long can I do that?

Keyframe 1 Keyframe 2

Initial pointcloud

Current frame

32



Monocular VO (i.e., with a single camera)

 Localization
 Given a 3D point cloud (map), determine the pose of each additional view

 How?

 How long can I do that?

33

Recall: 
• PnP problem (Perspective from n Points)
• What’s the minimal number of required point correspondences?

Lecture 3:
6 for DLT algorithm (linear solution)
3 (+1) for P3P algorithm (non-linear solution)



Monocular VO (i.e., with a single camera)

 Localization
 Given a 3D point cloud (map), determine the pose of each additional view

34

Video of Oculus Insight (the VIO used in Oculus Quest): built by former Zurich-Eye team, today Oculus 
Zurich. Dr. Christian Forster (Oculus Zurich & co-founder of Zurich-Eye) will give a lecture on Nov. 28

https://www.youtube.com/watch?v=nrj3JE-NHMw
https://www.blick.ch/news/wirtschaft/virtual-reality-facebook-kauft-10-forscher-der-eth-zuerich-id5733517.html


Extend Structure (i.e., mapping)

 Extract and triangulate new features
 Is it necessary to do this for every frame or can we just do it for keyframes?

 What are the pros and cons?

Keyframe 1 Keyframe 2

Initial pointcloud New triangulated points

New keyframe

35



Monocular Visual Odometry: putting all pieces together

time

• Let the relative motion 𝑇𝑘 from images 𝐼𝑘−1 to image 𝐼𝑘

𝑇𝑘,𝑘−1 =
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1
0 1

• Concatenate adjacent transformations to recover the current pose: 

𝐶𝑛 = 𝐶𝑛−1𝑇𝑛,𝑛−1

• Optimize over the last m poses to refine the trajectory (Pose-Graph or 
Bundle Adjustment)

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏

Sliding-window bundle adjustment
36



 So far we assumed that the transformations are between consecutive frames

 Transformations can be computed also between non-adjacent frames 𝑻𝒊𝒋 (e.g., when 

features from previous keyframes are still observed). They can be used as additional 
constraints to improve cameras poses by minimizing the following:

 For efficiency, only the last 𝑚 keyframes are used

 Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs, 
efficient open-source tools: g2o, GTSAM, SLAM++, Google Ceres

Pose-Graph Optimization

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏

𝑻𝟐,𝟎
𝑻𝟑,𝟎 𝑻𝒏−𝟏,𝟐

𝐶𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐶𝑘,
𝑖



𝑗

𝐶𝑖 − 𝐶𝑗𝑇𝑖𝑗
2

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjPvtCoqYjYAhWEmBoKHVP-BjMQFggoMAA&url=https://github.com/RainerKuemmerle/g2o&usg=AOvVaw3y-4PBhdQSQuCxLfEjdyTi
https://research.cc.gatech.edu/borg/download
https://sourceforge.net/p/slam-plus-plus/wiki/Home/
http://ceres-solver.org/


 Similar to pose-graph optimization but it also optimizes 3D points

 𝜌𝐻() is a robust cost function (e.g., Huber or Tukey cost) to penalize wrong matches

 In order to not get stuck in local minima, the initialization should be close to the minimum

 Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs, 
efficient open-source tools: g2o, GTSAM, SLAM++, Google Ceres

Bundle Adjustment (BA)

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏

𝑻𝟐,𝟎
𝑻𝟑,𝟎 𝑻𝒏−𝟏,𝟐

𝑋𝑖 , 𝐶𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋𝑖,𝐶𝑘,

𝑖



𝑘

𝜌 𝑝𝑘
𝑖 − 𝜋 𝑋𝑖 , 𝐶𝑘

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjPvtCoqYjYAhWEmBoKHVP-BjMQFggoMAA&url=https://github.com/RainerKuemmerle/g2o&usg=AOvVaw3y-4PBhdQSQuCxLfEjdyTi
https://research.cc.gatech.edu/borg/download
https://sourceforge.net/p/slam-plus-plus/wiki/Home/
http://ceres-solver.org/
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 BA is more precise than pose-graph optimization because it adds additional 
constraints (landmark constraints)

 But more costly: 𝑂 𝑞𝑀 + 𝑙𝑁 3 with 𝑀 and 𝑁 being the number of points 

and cameras poses and 𝑞 and 𝑙 the number of parameters for points and 
camera poses. Workarounds: 

 A small window size limits the number of parameters for the optimization and thus 
makes real-time bundle adjustment possible. 

 It is possible to reduce the computational complexity by just optimizing over the 
camera parameters and keeping the 3-D landmarks fixed, e.g., (motion-only BA)
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 Relocalization problem: 

 During VO, tracking can be lost (due to occlusions, low 
texture, quick motion, illumination change)

 Solution: Re-localize camera pose and continue

 Loop closing problem

 When you go back to a previously mapped area:

 Loop detection: to avoid map duplication

 Loop correction: to compensate the accumulated drift

 In both cases you need a place recognition technique

We will address place recognition in Lecture 12

40
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 Visual SLAM = visual odometry + loop detection + 
graph optimization

Visual odometry

Visual SLAM

41



Open Source Monocular VO and SLAM algorithms

 PTAM [Klein, 2007] -> Oxford, Murray’s lab

 ORB-SLAM [Mur-Artal, T-RO, 15] -> Zaragoza, Tardos’ lab

 LSD-SLAM [Engel, ECCV’14] -> Munich, Cremers’ lab

 DSO [Engel’16] -> Munich, Cremers’ lab

 SVO [Forster, ICRA’14, TRO’17]  -> Zurich, Scaramuzza’s lab

42



PTAM: Parallel Tracking and Mapping for Small AR Workspaces

43
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 Feature based
 FAST corners + ORB descriptors

 ORB: binary descriptor, very fast to compute and match (Hamming distance)

 Minimizes reprojection error

 Includes:
 Loop closing

 Relocalization

 Final optimization

 Real-time (30Hz)

[Mur-Artal, Montiel, Tardos, ORB-SLAM: Large-scale Feature-based SLAM, TRO’15]

Download from 
http://webdiis.unizar.es/~raulmur/orbslam/

http://webdiis.unizar.es/~raulmur/orbslam/
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Feature-based methods

1. Extract & match features + RANSAC

2. Bundle Adjust by minimizing the 
Reprojection Error

𝑇𝑘,𝑘−1 = argmin
𝑇



𝑖

𝒖′𝑖 − 𝒖𝑖 Σ
2

where   𝒖′𝑖 = 𝜋 𝑷𝑖 , 𝑇𝑘,𝑘−1

Direct methods (photometric methods)

1. No feature extraction & no RANSAC. Instead, 
directly minimize Photometric Error:

𝑇𝑘,𝑘−1 = ?

𝑷𝑖

𝒖′𝑖𝒖𝑖

𝑇𝑘,𝑘−1 = argmin
𝑇



𝑖

𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎
2

where   𝒖′𝑖 = 𝜋 𝑷𝑖 , 𝑇𝑘,𝑘−1

𝑇𝑘,𝑘−1

𝐼𝑘
𝒖′𝑖

𝑷𝑖

𝒖𝑖
𝐼𝑘−1

Irani, Anandau, All about direct methods, Springer’99. PDF

http://pages.cs.wisc.edu/~dyer/ai-qual/irani-visalg00.pdf
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Feature-based methods

1. Extract & match features + RANSAC

2. Bundle Adjust by minimizing the 
Reprojection Error

𝑇𝑘,𝑘−1 = argmin
𝑇



𝑖

𝒖′𝑖 − 𝒖𝑖 Σ
2

where   𝒖′𝑖 = 𝜋 𝑷𝑖 , 𝑇𝑘,𝑘−1

Direct methods (photometric methods)

1. No feature extraction & no RANSAC. Instead, 
directly minimize Photometric Error:

𝑇𝑘,𝑘−1 = argmin
𝑇



𝑖

𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎
2

where   𝒖′𝑖 = 𝜋 𝑷𝑖 , 𝑇𝑘,𝑘−1

Irani, Anandau, All about direct methods, Springer’99. PDF

 Large frame-to-frame motions

 Accuracy: Efficient optimization of 
structure and motion (Bundle Adjustment) 

 Slow due to costly feature extraction 
and matching

 Matching Outliers (RANSAC)

 All information in the image can be 
exploited (precision, robustness)

 Increasing camera frame-rate 
reduces computational cost per 
frame

 Limited frame-to-frame motion

 Joint optimization of dense structure 
and motion too expensive

http://pages.cs.wisc.edu/~dyer/ai-qual/irani-visalg00.pdf
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SVO [Forster’14]
100-200  x   4x4 patches ≅ 2,000 pixels

Direct Methods: Dense vs Semi-dense vs Sparse [TRO’16] 

DTAM [Newcombe ‘11] REMODE [Pizzoli’14]
300’000+ pixels

LSD-SLAM  [Engel’14]
~10,000 pixels

Dense Semi-Dense Sparse

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]
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SVO [Forster’14] DSO [Engel’17]
100-200  x   4x4 patches ≅ 2,000 pixels

Direct Methods: Dense vs Semi-dense vs Sparse [TRO’16] 

DTAM [Newcombe ‘11] REMODE [Pizzoli’14]
300’000+ pixels

LSD-SLAM  [Engel’14]
~10,000 pixels

Dense Semi-Dense Sparse

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]
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Direct Methods: Dense vs Semi-dense vs Sparse [TRO’16] 

 [Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]

 Multi-FOV Zurich Urban Dataset: http://rpg.ifi.uzh.ch/fov.html

Robustness to motion baseline (computed from 1,000 Blender simulations)

 Dense and Semi-dense behave similarly
 weak gradients are not informative for the optimization)

 Dense only useful with motion blur and defocus
 Sparse methods behave equally well for image overlaps up to 30%

Images from the synthetic 

Multi-FOV Zurich Urban Dataset

http://rpg.ifi.uzh.ch/fov.html
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 Direct (photometric error) + Semi-Dense formulation
 3D geometry represented as semi-dense depth maps

 Minimizes photometric error

 Separateley optimizes poses & structure

 Includes:
 Loop closing

 Relocalization

 Final optimization

 Real-time (30Hz)

[Engel, Schoeps, Cremers, LSD-SLAM: Large-scale Semi-Dense SLAM, ECCV’14]

Download from 
https://vision.in.tum.de/research/vslam/lsdslam

https://vision.in.tum.de/research/vslam/lsdslam
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 Direct (photometric error) + Sparse formulation
 3D geometry represented as sparse large gradients

 Minimizes photometric error

 Jointly optimizes poses  & structure (sliding window)

 Incorporate photometric correction to compensate exposure time change

 Real-time (30Hz)

[Engel, Koltun, Cremers, DSO: Direct Sparse Odometry, PAMI’17]

Download from 
https://vision.in.tum.de/research/vslam/dso

https://vision.in.tum.de/research/vslam/dso


SVO [Forster, ICRA’14, TRO’17]

 Direct (minimizes photometric error)

 Corners and edgelets

 Frame-to-frame motion estimation

 Feature-based (minimizes reprojection error)
 Frame-to-Keyframe pose refinement

 Mapping
 Probabilistic depth estimation

 SVO 2.0 includes
 Fish-eye & Omni cameras
 Multi-camera systems

Meant for high speed!
 400 fps on i7 laptops
 100 fps on smartphone PC

Edgelet                          Corner     

[Forster, Pizzoli, Scaramuzza, SVO: Fast, Semi-Direct Visual Odometry ICRA’14, TRO’17]

Download from http://rpg.ifi.uzh.ch/svo2.html

http://rpg.ifi.uzh.ch/svo2.html


Processing times of SVO, LSD-SLAM, ORB-SLAM

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]
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Processing Times of SVO

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]

• Laptop (Intel i7, 2.8 GHz): up to 400 fps

• Smartphone, ARM Cortex-A9, 1.7 GHz (Odroid): Up to 100 fps

Timing results on an Intel Core i7 (2.80 GHz) laptop processor:



Applications of SVO
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Position error: 5 mm, height: 1.5 m – Down-looking camera

[ICRA’10-17, AURO’12, RAM’14, JFR’15, RAL’17]

Automatic recovery from aggressive flight [ICRA’15]Robustness to dynamic scenes (down-looking camera)

Speed: 4 m/s, height: 3 m – Down-looking camera



Parrot: Autonomous Inspection of Bridges and Power Masts

Albris drone



Dacuda 3D (now Magic Leap Zurich)
 Fully immersive VR (running on iPhone)

 Powered by SVO

Dacuda’s 
3D divison



Zurich-Eye, first Wyss Zurich project, now Facebook-Oculus Zurich

 Vision-based Localization and Mapping Solutions for Mobile Robots 

 Created in Sep. 2015, became Facebook-Oculus Zurich in Sep. 2016

 The Zurich Eye team is behind the new Oculus Quest

http://www.wysszurich.uzh.ch/
https://youtu.be/xwW-1mbemGc


Zurich-Eye, first Wyss Zurich project, now Facebook-Oculus Zurich

 Vision-based Localization and Mapping Solutions for Mobile Robots 

 Created in Sep. 2015, became Facebook-Oculus Zurich in Sep. 2016

 The Zurich Eye team is behind the new Oculus Quest

http://www.wysszurich.uzh.ch/
https://youtu.be/xwW-1mbemGc




Understanding Check

Are you able to answer the following questions:

 Are you able to define Bundle Adjustment (via mathematical expression and 
illustration)?

 Are you able to describe hierarchical and sequential SFM for monocular VO?

 What are keyframes? Why do we need them and how can we select them?

 Are you able to define loop closure detection? Why do we need loops?

 Are you able to provide a list of the most popular open source VO and VSLAM 
algorithms?

 Are you able to describe the differences between feature-based methods and 
direct methods?


