__—7 ROBOTICS &
=7 PERCEPTION
7 GROUP

£l University of
> Zurich™

ETHzurich

Institute of Informatics — Insticuie ui IvcuruUIL

Lecture 09
Multiple View Geometry 3

Davide Scaramuzza
http://rpg.ifi.uzh.ch/

http://rpg.ifi.uzh.ch/

Lab Exercise 7 - Today

» Room ETH HG E 1.1 from 13:15 to 15:00
» Work description: P3P algorithm and RANSAC

Outline

[- Bundle Adjustment

e SFM with n views

Bundle Adjustment (BA) — More in depth in Exercise 9

« Non-linear, simultaneous refinement of structure P! and motionC = R, T
* Itis used after linear estimation of R and T (e.g., after 8-point algorithm)

« Computes C, P' by minimizing the Sum of Squared Reprojection Errors:
i - i i 2 i i 2
(P',C,)=argmin,, . . > [p}-m,(P',C))| +|p5 -7, (P'.C,)|
i=1

NB: here, by C;, C, we denote the pose of each camera in the world frame

 Can be minimized using Levenberg—Marquardt (more robust than Gauss-Newton
to local minima)

* In order to not get stuck in local minima, the initialization should be close the
minimum 4

; : s Reprojected point
Reprojected pojnt ™1 (P ’c],)/’ proj P

® Obsefved point

Bundle Adjustment (BA) for n Views

Minimizes the Sum of Squared Reprojection Errors over each view k

(P',C) =argmin, . 33 [pl -7 (P',C,)[
k i

Reprojected ppint 77, (P, C_;)

Reprojected pojnt .
b (PG,
®q p;

T, (P,C)

Huber and Tukey Norms

To prevent that large reprojection errors can negatively influence the optimization, a
more robust norm p() is used instead of the L,:

(P'.C)=argmin,, . > > plp} -7, (P'.C,))

p() is a robust cost function (Huber or Tukey) to penalize wrong matches:

> Huber norm:

x? if |x] <k | y
xX) = — 'UKEY | HUBE i
P JLk(zlxl —k) iflx| >k - o //
| //
» Tukey norm: % L
| \\ // X
o if |x| >« o =1
p(x) = , A2\
a (1 B (1 B (&))) if |x]<a These formulas are not asked at the exam

but their plots and meaning is asked ©
7

Outline

* Bundle Adjustment

[' SFM with n views

Structure From Motion with n Views

 Compute initial structure and motion
{ Hierarchical SFM]
— Sequential SFM

e Refine simultaneously structure and motion through BA

Hierarchical SFM

1. Extract and match features between nearby frames

10

Hierarchical SFM

1. Extract and match features between nearby frames
2. ldentify clusters consisting of 3 nearby frames:

3. Compute SFM for 3 views:

1. Compute SFM between
1 and 2 and build point cloud

2. Then merge 3 view by
running 3-point RANSAC :
between point cloud and L!
3" view

Hierarchical SFM

Extract and match features between nearby frames
Identify clusters consisting of 3 nearby frames:

Compute SFM for 3 views:

1. Compute SFM between
1 and 2 and build point cloud

2. Then merge 3™ view by
running 3-point RANSAC
between point cloud and
3" view

4. Merge clusters pairwise and refine (BA) both structure and motion

How do you merge
clusters?

12

Hierarchical SFM: Example

» Reconstruction from 150,000 images from Flickr associated with the tags “Rome”
> 4m 3D points. Cloud of 496 computers. 21 hours of computation!

> Paper: “Building Rome in a Day”, ICCV’09:
University of Washington, 2009 — Most influential paper of 2009 (link)

13

http://grail.cs.washington.edu/rome/
https://news.cs.washington.edu/2019/11/07/allen-school-researchers-build-rome-in-a-day-receive-helmholtz-prize-at-iccv-2019/

Structure From Motion with n Views

 Compute initial structure and motion
— Hierarchical SFM
{Sequential SFM]

e Refine simultaneously structure and motion through BA

14

Sequential SFM - also called Visual Odometry (VO)

» Initialize structure and motion from 2 views (bootstrapping)
» For each additional view

» Determine pose (localization)
» Extend structure, i.e., extract and triangulate new features (mapping)
» Refine structure and motion through Bundle Adjustment (BA) (optimization)

15

A Brief history of VO

» 1980: First known VO real-time implementation on a robot by PhD
thesis (Stanforfd/NASA/JPL) for Mars rovers using one sliding camera (sliding
stereo).

https://frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/index.html

A Brief history of VO

» 1980: First known VO real-time implementation on a robot by Hans Moraveck PhD
thesis (Stanforfd/NASA/JPL) for Mars rovers using one sliding camera (sliding
stereo).

» 1980 to 2000: The VO research was dominated by NASA/JPL in preparation of the
2004 mission to Mars

» 2004: VO was used on a robot on another planet: Mars rovers Spirit and Opportunity
(see seminal paper from NASA/JPL, 2007)

» 2004. VO was revived in the academic environment
by David Nister’s «Visual Odometry» paper.
The term VO became popular.

Davide Scaramuzza — University of Zurich — Robotics and Perceptices

https://frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/index.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi8_ufr-6DPAhURkRQKHclVCfcQFggcMAA&url=https://www-robotics.jpl.nasa.gov/publications/Mark_Maimone/rob-06-0081.R4.pdf&usg=AFQjCNESCPJ04fnuKuoGvk2N1QnUwr-Z4w&sig2=JweSv5bBU1U7w6kanVTxpw&bvm=bv.133387755,d.bGg

More about VO history and tutorials

»Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part | - The First 30 Years and
Fundamentals, IEEE Robotics and Automation Magazine, Volume 18, issue 4, 2011.

» Fraundorfer, F., Scaramuzza, D., Visual Odometry: Part Il - Matching, Robustness, and
Applications, IEEE Robotics and Automation Magazine, Volume 19, issue 1, 2012.

»C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I.D. Reid, J.J. Leonard,
Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-
Perception Age, IEEE Transactions on Robotics, Vol. 32, Issue 6, 2016.

http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/VO_Part_II_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_cadena.pdf

VO Flow Chart

VO computes the camera path incrementally (pose after pose)

Image sequence

Feature detection Front-end

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization
Back-end

VO Flow Chart

VO computes the camera path incrementally (pose after pose)

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Example features tracks

2D-2D 3D-3D 3D-2D

Local optimization

20

VO Flow Chart

VO computes the camera path incrementally (pose after pose)

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

21

VO Flow Chart

VO computes the camera path incrementally (pose after pose)

Image sequence

Feature detection Front-end

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization (back-end) | |
B aC k_e n d m — poses windowed bundle adjustment

22

2D-t0-2D (already seen: Lecture 08) s

Motion from Image Feature Correspondences
» Both feature points f_; and f; are specified in 2D
» The minimal-case solution involves 5-point correspondences

» The solution is found by minimizing the reprojection error:

Ryp—1 trk-
Tk:[kgl k-1

= argmin C—pi I
| = areminY 1o} |

» Popular algorithms: 5- and 8-point algorithms [Hartley’97, Nister’06]

Motion estimation

3D-to-2D (already seen: Lecture 03) B ES

Motion from 3D Structure and Image Correspondences
» fr—q is specified in 3D and f} in 2D
» This problem is known as camera resection or PnP (Perspective from n Points)

» The minimal-case solution involves 3 correspondences (+1 for disambiguating the 4
solutions)

» The solution is found by minimizing the reprojection error:

Ry k-1 trk-1 : i i 2
T; = ’ ’ = are min —o(X'.C
=[] = amin Xl e ol

Motion estimation
3D-to-3D

Motion from 3D-3D Point Correspondences (point cloud registration)

» Both fj,_1 and f; are specified in 3D. To do this, it is necessary to triangulate 3D points
(e.g. use a stereo camera)

» The minimal-case solution involves 3 non-collinear correspondences

» The solution is found by minimizing the 3D-3D Euclidean distance:

_ [Rik-1 trpe-1] _ are min X - T.X!
T = 0 1= g I ;H ¢ — DXyl

» Popular algorithm: [Arun’87] for global registration plus local refinement with Bundle
Adjustment (BA)

- — Z
Z4 - 4;4 2
— Y2
Y1
X1 T — X

m

Arun, Huang, Blostein, “Least-squares fitting of two 3-d point sets,” PAMI’87.

http://post.queensu.ca/~sdb2/PAPERS/PAMI-3DLS-1987.pdf

Motion Estimation: Summary

Type of Monocular
correspondences
2D-2D X
3D-2D X X
3D-3D X

Davide Scaramuzza — University of Zurich — Robotics and Perception Group - rpg.ifi.uzh.ch

Case Study:
Monocular Visual Odometry

Case study: Monocular VO

Keyframe 1 Keyframe 2 C f
Y Y Hrren er\?vrﬂgyframe

L]
&l
",
LY Py

O
¢ ® o°® % o © ©
° ® o © o0 °
°
. . O
Initial pointcloud New triangulated points

This pipeline was initially proposed in
PTAM (Parallel Tracking & Mapping) [Klein, ISMAR’07]

Monocular VO (i.e., with a single camera)

» Bootstrapping (i.e., initialization)
» Initialize structure and motion from 2 views: e.g., 5- or 8-point RANSAC
» Refine structure and motion (Bundle Adjustment)
» How far should the two frames (i.e., keyframes) be?

Keyframe 1 Keyframe 2

Initial pointcloud

29

Skipping frames (Keyframe Selection)

> When frames are taken at nearby positions compared to the scene distance, 3D
points will exibit large uncertainty

¢ o

Small baseline — large depth uncertainty Large baseline — small depth uncertainty

30

Skipping frames (Keyframe Selection)

> When frames are taken at nearby positions compared to the scene distance, 3D
points will exibit large uncertainty

» One way to avoid this consists of skipping frames until the average uncertainty of
the 3D points decreases below a certain threshold. The selected frames are
called keyframes

> Rule of the thumb: add a keyframe when keyframe distance ., . (~10-20 %)
average-depth

¢ X X

31

Monocular VO (i.e., with a single camera)

> Localization

» Given a 3D point cloud (map), determine the pose of each additional view
» How?

» How long can | do that?

Keyframe 1 Keyframe 2 Current frame

Initial pointcloud
32

Monocular VO (i.e., with a single camera)

> Localization

» Given a 3D point cloud (map), determine the pose of each additional view
» How?

» How long can | do that?

Recall:
 PnP problem (Perspective from n Points)

* What’s the minimal number of required point correspondences?
»Lecture 3:
» 6 for DLT algorithm (linear solution)
»3 (+1) for P3P algorithm (non-linear solution)

33

Monocular VO (i.e., with a single camera)

> Localization

» Given a 3D point cloud (map), determine the pose of each additional view

Video of Oculus Insight (the VIO used in Oculus Quest): built by former Zurich-Eye team, today Oculus
Zurich. Dr. Christian Forster (Oculus Zurich & co-founder of Zurich-Eye) will give a lecture on Nov. 28 34

https://www.youtube.com/watch?v=nrj3JE-NHMw
https://www.blick.ch/news/wirtschaft/virtual-reality-facebook-kauft-10-forscher-der-eth-zuerich-id5733517.html

Extend Structure (i.e., mapping)

» Extract and triangulate new features
» ls it necessary to do this for every frame or can we just do it for keyframes?
» What are the pros and cons?

Keyf 1 Keyf 2
eyframe eyframe New keyframe

L]
&l
"a
.....

o
¢ “ o % o © ©
° ® o © o0 °
°
o
Initial pointcloud New triangulated points

35

Monocular Visual Odometry: putting all pieces together
* Let the relative motion T}, from images I,,_; to image I,

[Rk,k—l i k—1
0

Tk k-1 = 1

* Concatenate adjacent transformations to recover the current pose:

Cn — Lln—1 Tn,n— 1

* Optimize over the last m poses to refine the trajectory (Pose-Graph or
Bundle Adjustment)

> time

Y
Sliding-window bundle adjustment 26

Pose-Graph Optimization

> So far we assumed that the transformations are between consecutive frames

» Transformations can be computed also between non-adjacent frames T;j (e.g., when

features from previous keyframes are still observed). They can be used as additional
constraints to improve cameras poses by minimizing the following:

l

Cr = argminck,z |c; - CjTij”2
J

Y

For efficiency, only the last m keyframes are used

Y

Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs,
efficient open-source tools: g2o, GTSAM, SLAM++, Google Ceres

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjPvtCoqYjYAhWEmBoKHVP-BjMQFggoMAA&url=https://github.com/RainerKuemmerle/g2o&usg=AOvVaw3y-4PBhdQSQuCxLfEjdyTi
https://research.cc.gatech.edu/borg/download
https://sourceforge.net/p/slam-plus-plus/wiki/Home/
http://ceres-solver.org/

Bundle Adjustment (BA)

» Similar to pose-graph optimization but it also optimizes 3D points

XL ¢ = argminy . z z p (pllc - m(X", Ck))
ik

» py() is a robust cost function (e.g., Huber or Tukey cost) to penalize wrong matches
» In order to not get stuck in local minima, the initialization should be close to the minimum

» Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs,
efficient open-source tools: g2o, GTSAM, SLAM++, Google Ceres

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjPvtCoqYjYAhWEmBoKHVP-BjMQFggoMAA&url=https://github.com/RainerKuemmerle/g2o&usg=AOvVaw3y-4PBhdQSQuCxLfEjdyTi
https://research.cc.gatech.edu/borg/download
https://sourceforge.net/p/slam-plus-plus/wiki/Home/
http://ceres-solver.org/

Bundle Adjustment vs Pose-graph Optimization

> BA is more precise than pose-graph optimization because it adds additional
constraints (landmark constraints)

» But more costly: 0((qM + lN)3) with M and N being the number of points

and cameras poses and g and [the number of parameters for points and
camera poses. Workarounds:

= A small window size limits the number of parameters for the optimization and thus
makes real-time bundle adjustment possible.

= |tis possible to reduce the computational complexity by just optimizing over the
camera parameters and keeping the 3-D landmarks fixed, e.g., (motion-only BA)

Loop Closure Detection (i.e., Place Recognition)

» Relocalization problem:

= During VO, tracking can be lost (due to occlusions, low
texture, quick motion, illumination change)

» Solution: Re-localize camera pose and continue

» Loop closing problem
= When you go back to a previously mapped area:
= Loop detection: to avoid map duplication
= Loop correction: to compensate the accumulated drift
=" |n both cases you need a place recognition technique

We will address place recognition in Lecture 12
40

Recall: VO vs. Visual SLAM

> Visual SLAM = visual odometry + loop detection +
graph optimization

Visual SLAM

41

Open Source Monocular VO and SLAM algorithms

» PTAM [Klein, 2007] -> Oxford, Murray’s lab

» ORB-SLAM [Mur-Artal, T-RO, 15] -> Zaragoza, Tardos’ lab
» LSD-SLAM [Engel, ECCV’14] -> Munich, Cremers’ lab

» DSO [Engel’16] -> Munich, Cremers’ lab

» SVO [Forster, ICRA’14, TRO’17] -> Zurich, Scaramuzza’s lab

42

PTAM: Parallel Tracking and Mapping for Small AR Workspaces

Parallel Tracking and Mapping
for Small AR Workspaces

ISMAR 2007 video results

Georg Klein and David Murray
Active Vision Laboratory
University of Oxford

43

ORB-SLAM [Mur-Artal, TRO15]

> Feature based

= FAST corners + ORB descriptors
= ORB: binary descriptor, very fast to compute and match (Hamming distance)

= Minimizes reprojection error

> Includes:
= Loop closing
= Relocalization
= Final optimization

> Real-time (30Hz)

[Mur-Artal, Montiel, Tardos, ORB-SLAM:

Download from

ORB-SLAM

Raul Mur-Artal, J. M. M. Montiel and Juan D. Tardos

{raulmur, josemari, tardos} @unizar.es

« Instituto Universitario de Investigacién

&= enlingenieria de Arag6n
R o -
#s® Universidad Zaragoza

Large-scale Feature-based SLAM, TRO’15]

Universidad
Zaragoza

http://webdiis.unizar.es/~raulmur/orbslam/

Feature-based methods

Tip-1="7
1. Extract & match features + RANSAC {A\
H |
e "n i 7 v DD
2. Bundle Adjust by minimizing the i O o
Reprojection Error \
Ty -1 = arg m%nZ”u'i —u; I
. P.
l l
where u'; = (P, Ty r—1)
Direct methods (photometric methods) -
kk—1
1. No feature extraction & no RANSAC. Instead, A
directly minimize Photometric Error: =1 o \\ IIk
l
\ ;

g = argmin > ') = Ly (up)13
i

where u'; = (P, Ty x—1)

Irani, Anandau, All about direct methods, Springer’99. PDF 45

http://pages.cs.wisc.edu/~dyer/ai-qual/irani-visalg00.pdf

Feature-based methods
v’ Large frame-to-frame motions

1. Extract & match features + RANSAC v’ Accuracy: Efficient optimization of

structure and motion (Bundle Adjustment)
2. Bundle Adjust by minimizing the

.. X Slow due to costly feature extraction
Reprojection Error

and matching
Ty -1 = arg m,IinZ”u’i —u; |3 X Matching Outliers (RANSAC)
:

where u'; = (P, Ty r—1)

Direct methods (photometric me v Allinformation in the image can be
exploited (precision, robustness)

1. No feature extraction & no RANSAC. Insf v

. L i Increasing camera frame-rate
directly minimize Photometric Error:

reduces computational cost per

_ , . frame
Tk -1 = arngmZIIIk(u i) — 1 (u)ll5
i X Limited frame-to-frame motion

I — .
where 'y = (P, Tipe-1) X Joint optimization of dense structure

Irani, Anandau, All about direct methods, Springer’99. PDF and motion too expensive 46

http://pages.cs.wisc.edu/~dyer/ai-qual/irani-visalg00.pdf

Direct Methods: Dense vs Semi-dense vs Sparse [Tro'16]

Dense Semi-Dense Sparse

DTAM [Newcombe ‘11] REMODE [Pizzoli’14] LSD-SLAM [Engel’14] SVO [Forster’14]
300’000+ pixels ~10,000 pixels 100-200 x 4x4 patches = 2,000 pixels

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]
47

Direct Methods: Dense vs Semi-dense vs Sparse [Tro'16]

Dense Semi-Dense Sparse

00:00:00.040 N . .
SVO with a single camera on Euroc dataset

Live incremental reconstruction of a large scene

Texture mapped model Inverse depth solution
oo
DTAM [Newcombe ‘11] REMODE [Pizzoli’14] LSD-SLAM [Engel’14] SVO [Forster’14] DSO [Engel’17]
300’000+ pixels ~10,000 pixels 100-200 x 4x4 patches = 2,000 pixels

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]
48

Direct Methods: Dense vs Semi-dense vs Sparse [Tro'16]

Robustness to motion baseline (computed from 1,000 Blender simulations)

A e Dense
100 — O€MIi dense
30% Sparse

overlap

(a) Synthetic scene (b) Depth of the scene

o

Convergence [%)]

v

Distance between frames

(c) Sparse (d) Semi-Dense (e) Dense

Images from the synthetic

. . . Multi-FOV Zurich Urban Dataset
» Dense and Semi-dense behave similarly

= weak gradients are not informative for the optimization)
» Dense only useful with motion blur and defocus
» Sparse methods behave equally well for image overlaps up to 30%

» [Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO17]
= Multi-FOV Zurich Urban Dataset: http://rpg.ifi.uzh.ch/fov.html

http://rpg.ifi.uzh.ch/fov.html

LSD-SLAM (Engel, Eccv’14]

> Direct (photometric error) + Semi-Dense formulation
= 3D geometry represented as semi-dense depth maps
= Minimizes photometric error
= Separateley optimizes poses & structure

Download from

> Includes:
= Loop closing
= Relocalization
= Final optimization

> Real-time (30Hz)

[Engel, Schoeps, Cremers, LSD-SLAM: Large-scale Semi-Dense SLAM, ECCV’14]

https://vision.in.tum.de/research/vslam/lsdslam

Download from

DSO (Engel, PAMI'17]

> Direct (photometric error) + Sparse formulation
= 3D geometry represented as sparse large gradients
= Minimizes photometric error
= Jointly optimizes poses & structure (sliding window)
" |ncorporate photometric correction to compensate exposure time change

E]Jj = Z ?.L-‘P

PEN,

fjﬁai"

(Z;[p"]=b;) — tcas

(L‘[P]_bi))

Direct Sparse Odometry

Jakob Engel,” Vladlen Koltun? Daniel Cremers’
July 2016

> Real-time (30Hz)

'‘Computer Vision Group
Technical University Munich

[Engel, Koltun, Cremers, DSO: Direct Sparse Odometry, PAMI’17]

’Intel Labs

https://vision.in.tum.de/research/vslam/dso

SV O [Forster, ICRA’14, TRO’17]

» Direct (minimizes photometric error)

= Corners and edgelets

= Frame-to-frame motion estimation

> Feature-based (minimizes reprojection error)
= Frame-to-Keyframe pose refinement

» Mapping

= Probabilistic depth estimation

» SVO 2.0 includes
= Fish-eye & Omni cameras
= Multi-camera systems

(IVIeant for high speed!
= 400 fps on i7 laptops

_

= 100 fps on smartphone PC| | ™4
J R

Edgelet Corner

Download from http://rpg.ifi.uzh.ch/svo2.html

SVO with a single camera on Euroc dataset

[Forster, Pizzoli, Scaramuzza, SVO: Fast, Semi-Direct Visual Odometry ICRA’14, TRO’17]

http://rpg.ifi.uzh.ch/svo2.html

Processing times of SVO, LSD-SLAM, ORB-SLAM

Mean St.D. CPU @20 fps

SVO Mono 2.93 042 55 +10%

ORB Mono SLAM (No loop closure) 29.81 5.67 187 +32%
LSD Mono SLAM (No loop closure) 23.23 587 236 =37%

DSO 20.12 4.03 181 +27%

TABLE II: The first and second column report mean and standard devitation
of the processing time in milliseconds on a laptop with an Intel Core 17 (2.80
GHz) processor. Since all algorithms use multi-threading, the third column

reports the average CPU load when providing new images at a constant rate
of 20 Hz.

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]

Processing Times of SVO

* Laptop (Intel i7, 2.8 GHz): up to 400 fps
* Smartphone, ARM Cortex-A9, 1.7 GHz (Odroid): Up to 100 fps

Timing results on an Intel Core i7 (2.80 GHz) laptop processor:

Thread Intel 17 [ms]
0.66

Sparse image alignment 1

Feature alignment 1 1.04
Optimize pose & landmarks 1 0.42
Extract features 2 1.64
Update depth filters 2 1.80

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]

Applications of SVO

55

Position error: 5 mm, height: 1.5 m — Down-looking camera Speed: 4 m/s, height: 3 m — Down-looking camera

|
lView from the onboard cam
L

[ICRA10-17, AURO12, RAM’14, JFR’15, RAL'17]

Parrot: Autonomous Inspection of Bridges and Power Masts

NgT \,\)'
y Insel:ly Albris drone
Parrot »

Ultrasonic sensor

5\

5 - s

Dacuda 3D (now Magic Leap Zurich)

» Fully immersive VR (running on iPhone) T Dacuda s » ‘ . A nagic
» Powered by SVO 3D divison

eap

Zurich-Eye, first Wyss Zurich project, now Facebook-Oculus Zurich

» Vision-based Localization and Mapping Solutions for Mobile Robots
» Created in Sep. 2015, became Facebook-Oculus Zurich in Sep. 2016
» The Zurich Eye team is behind the new Oculus Quest

CoFounder, Engineer

nce, PhD. in Experimental Physics, ETH Defended Ph.D. in Rebotics, ETH
Zurich, 2012

Prof. Dr. Davide Scaramuzza Prof. Dr. Roland Siegwart
Achisor Aeveze

http://www.wysszurich.uzh.ch/
https://youtu.be/xwW-1mbemGc

Zurich-Eye, first Wyss Zurich project, now Facebook-Oculus Zurich

» Vision-based Localization and Mapping Solutions for Mobile Robots
» Created in Sep. 2015, became Facebook-Oculus Zurich in Sep. 2016
» The Zurich Eye team is behind the new Oculus Quest

F Inside-out tracking

http://www.wysszurich.uzh.ch/
https://youtu.be/xwW-1mbemGc

Understanding Check

Are you able to answer the following questions:

>

YV V V V

A\

Are you able to define Bundle Adjustment (via mathematical expression and
illustration)?

Are you able to describe hierarchical and sequential SFM for monocular VO?
What are keyframes? Why do we need them and how can we select them?
Are you able to define loop closure detection? Why do we need loops?

Are you able to provide a list of the most popular open source VO and VSLAM
algorithms?

Are you able to describe the differences between feature-based methods and
direct methods?

