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Lab Exercise 7 - Today
 Room ETH HG E 1.1 from 13:15 to 15:00

 Work description: P3P algorithm and RANSAC
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Outline

• Bundle Adjustment

• SFM with 𝑛 views
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Bundle Adjustment (BA) – More in depth in Exercise 9

• Non-linear, simultaneous refinement of structure 𝑃𝑖 and motion 𝐶 = 𝑅, 𝑇

• It is used after linear estimation of R and T (e.g., after 8-point algorithm)

• Computes 𝐶, 𝑃𝑖 by minimizing the Sum of Squared Reprojection Errors:

NB: here, by 𝐶1, 𝐶2 we denote the pose of each camera in the world frame

• Can be minimized using Levenberg–Marquardt (more robust than Gauss-Newton 
to local minima)

• In order to not get stuck in local minima, the initialization should be close the 
minimum
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Minimizes the Sum of Squared Reprojection Errors over each view 𝒌

...
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Bundle Adjustment (BA) for 𝑛 Views
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 Huber norm:

 Tukey norm:

To prevent that large reprojection errors can negatively influence the optimization, a 
more robust norm 𝜌() is used instead of the 𝐿2:
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Huber and Tukey Norms
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𝜌() is a robust cost function (Huber or Tukey) to penalize wrong matches:

α2 if 𝑥 ≥ α

α2 1 − 1 −
𝑥

α

2 3

if   𝑥 ≤ α
ρ 𝑥 =

These formulas are not asked at the exam 
but their plots and meaning is asked 

𝑥2 if 𝑥 ≤ 𝑘
𝑘 2 𝑥 − 𝑘 if 𝑥 ≥ 𝑘

ρ 𝑥 =



Outline

• Bundle Adjustment

• SFM with 𝑛 views
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Structure From Motion with 𝑛 Views

• Compute initial structure and motion
– Hierarchical SFM

– Sequential SFM

• Refine simultaneously structure and motion through BA
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Hierarchical SFM

1. Extract and match features between nearby frames
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Hierarchical SFM

1. Extract and match features between nearby frames

2. Identify clusters consisting of 3 nearby frames:

3. Compute SFM for 3 views:
1. Compute SFM between 

1 and 2 and build point cloud

2. Then merge 3rd view by 
running 3-point RANSAC 
between point cloud and 
3rd view
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Hierarchical SFM

1. Extract and match features between nearby frames

2. Identify clusters consisting of 3 nearby frames:

3. Compute SFM for 3 views:
1. Compute SFM between 

1 and 2 and build point cloud

2. Then merge 3rd view by 
running 3-point RANSAC 
between point cloud and 
3rd view

4. Merge clusters pairwise and refine (BA) both structure and motion

12

How do you merge 
clusters?



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Reconstruction from 150,000 images from Flickr associated with the tags “Rome”

 4m 3D points. Cloud of 496 computers. 21 hours of computation!

 Paper: “Building Rome in a Day”, ICCV’09: http://grail.cs.washington.edu/rome/
University of Washington, 2009 – Most influential paper of 2009 (link)

Hierarchical SFM: Example
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http://grail.cs.washington.edu/rome/
https://news.cs.washington.edu/2019/11/07/allen-school-researchers-build-rome-in-a-day-receive-helmholtz-prize-at-iccv-2019/


Structure From Motion with 𝑛 Views

• Compute initial structure and motion
– Hierarchical SFM

– Sequential SFM

• Refine simultaneously structure and motion through BA
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Sequential SFM - also called Visual Odometry (VO)

 Initialize structure and motion from 2 views (bootstrapping)

 For each additional view
 Determine pose (localization)

 Extend structure, i.e., extract and triangulate new features (mapping)

 Refine structure and motion through Bundle Adjustment (BA) (optimization)
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Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 1980: First known VO real-time implementation on a robot by Hans Moraveck PhD 

thesis (Stanforfd/NASA/JPL) for Mars rovers using one sliding camera (sliding 

stereo).

https://frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/index.html
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 1980: First known VO real-time implementation on a robot by Hans Moraveck PhD 

thesis (Stanforfd/NASA/JPL) for Mars rovers using one sliding camera (sliding 

stereo).

 1980 to 2000: The VO research was dominated by NASA/JPL in preparation of the

2004 mission to Mars

 2004: VO was used on a robot on another planet: Mars rovers Spirit and Opportunity

(see seminal paper from NASA/JPL, 2007)

 2004. VO was revived in the academic environment 

by David Nister’s «Visual Odometry» paper. 

The term VO became popular.

https://frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/index.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi8_ufr-6DPAhURkRQKHclVCfcQFggcMAA&url=https://www-robotics.jpl.nasa.gov/publications/Mark_Maimone/rob-06-0081.R4.pdf&usg=AFQjCNESCPJ04fnuKuoGvk2N1QnUwr-Z4w&sig2=JweSv5bBU1U7w6kanVTxpw&bvm=bv.133387755,d.bGg
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Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 Years and 
Fundamentals, IEEE Robotics and Automation Magazine, Volume 18, issue 4, 2011. PDF

Fraundorfer, F., Scaramuzza, D., Visual Odometry: Part II - Matching, Robustness, and 
Applications, IEEE Robotics and Automation Magazine, Volume 19, issue 1, 2012. PDF

C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I.D. Reid, J.J. Leonard, 
Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-
Perception Age, IEEE Transactions on Robotics, Vol. 32, Issue 6, 2016. PDF

http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/VO_Part_II_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_cadena.pdf


Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

VO computes the camera path incrementally (pose after pose)

Front-end

Back-end
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Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

VO computes the camera path incrementally (pose after pose)

Example features tracks
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Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

VO computes the camera path incrementally (pose after pose)

Tk,k-1

Tk+1,k

Ck-1

Ck

Ck+1

21
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Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization (back-end)

VO computes the camera path incrementally (pose after pose)

...
𝑪𝟎 𝑪𝟏 𝑪𝟑 𝑪𝟒 𝑪𝒏−𝟏 𝑪𝒏

Front-end

Back-end
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Motion from Image Feature Correspondences 

 Both feature points 𝑓𝑘−1 and 𝑓𝑘 are specified in 2D

 The minimal-case solution involves 5-point correspondences

 The solution is found by minimizing the reprojection error:

 Popular algorithms: 5- and 8-point algorithms [Hartley’97, Nister’06]

Motion estimation

2D-2D 3D-2D 3D-3D
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Motion from 3D Structure and Image Correspondences

 𝑓𝑘−1 is specified in 3D and 𝑓𝑘 in 2D

 This problem is known as camera resection or PnP (Perspective from n Points)

 The minimal-case solution involves 3 correspondences (+1 for disambiguating the 4 
solutions)

 The solution is found by minimizing the reprojection error:

 Popular algorithms: P3P [Gao’03, Kneip’11]

Motion estimation

2D-2D 3D-2D 3D-3D
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Motion estimation

2D-2D 3D-2D 3D-3D

Motion from 3D-3D Point Correspondences (point cloud registration)

 Both 𝑓𝑘−1 and 𝑓𝑘 are specified in 3D. To do this, it is necessary to triangulate 3D points 
(e.g. use a stereo camera)

 The minimal-case solution involves 3 non-collinear correspondences

 The solution is found by minimizing the 3D-3D Euclidean distance:

 Popular algorithm: [Arun’87] for global registration plus local refinement with Bundle 
Adjustment (BA)

Arun, Huang, Blostein, “Least-squares fitting of two 3-d point sets,” PAMI’87. PDF

http://post.queensu.ca/~sdb2/PAPERS/PAMI-3DLS-1987.pdf
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Type of 
correspondences

Monocular Stereo

2D-2D X

3D-2D X X

3D-3D X
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Case study: Monocular VO

Keyframe 1 Keyframe 2

Initial pointcloud New triangulated points

Current frame
New keyframe

This pipeline was initially proposed in 
PTAM (Parallel Tracking & Mapping) [Klein, ISMAR’07]



Monocular VO (i.e., with a single camera)

 Bootstrapping (i.e., initialization)
 Initialize structure and motion from 2 views: e.g., 5- or 8-point RANSAC

 Refine structure and motion (Bundle Adjustment)

 How far should the two frames (i.e., keyframes) be?

Keyframe 1 Keyframe 2

Initial pointcloud

29
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 When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty

Small baseline → large depth uncertainty Large baseline → small depth uncertainty

30
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 When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty

 One way to avoid this consists of skipping frames until the average uncertainty of 
the 3D points decreases below a certain threshold. The selected frames are 
called keyframes

 Rule of the thumb: add a keyframe when 

. . . 

average-depth

keyframe distance
> threshold (~10-20 %)

31



Monocular VO (i.e., with a single camera)

 Localization
 Given a 3D point cloud (map), determine the pose of each additional view

 How?

 How long can I do that?

Keyframe 1 Keyframe 2

Initial pointcloud

Current frame

32



Monocular VO (i.e., with a single camera)

 Localization
 Given a 3D point cloud (map), determine the pose of each additional view

 How?

 How long can I do that?

33

Recall: 
• PnP problem (Perspective from n Points)
• What’s the minimal number of required point correspondences?

Lecture 3:
6 for DLT algorithm (linear solution)
3 (+1) for P3P algorithm (non-linear solution)



Monocular VO (i.e., with a single camera)

 Localization
 Given a 3D point cloud (map), determine the pose of each additional view

34

Video of Oculus Insight (the VIO used in Oculus Quest): built by former Zurich-Eye team, today Oculus 
Zurich. Dr. Christian Forster (Oculus Zurich & co-founder of Zurich-Eye) will give a lecture on Nov. 28

https://www.youtube.com/watch?v=nrj3JE-NHMw
https://www.blick.ch/news/wirtschaft/virtual-reality-facebook-kauft-10-forscher-der-eth-zuerich-id5733517.html


Extend Structure (i.e., mapping)

 Extract and triangulate new features
 Is it necessary to do this for every frame or can we just do it for keyframes?

 What are the pros and cons?

Keyframe 1 Keyframe 2

Initial pointcloud New triangulated points

New keyframe

35



Monocular Visual Odometry: putting all pieces together

time

• Let the relative motion 𝑇𝑘 from images 𝐼𝑘−1 to image 𝐼𝑘

𝑇𝑘,𝑘−1 =
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1
0 1

• Concatenate adjacent transformations to recover the current pose: 

𝐶𝑛 = 𝐶𝑛−1𝑇𝑛,𝑛−1

• Optimize over the last m poses to refine the trajectory (Pose-Graph or 
Bundle Adjustment)

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏

Sliding-window bundle adjustment
36



 So far we assumed that the transformations are between consecutive frames

 Transformations can be computed also between non-adjacent frames 𝑻𝒊𝒋 (e.g., when 

features from previous keyframes are still observed). They can be used as additional 
constraints to improve cameras poses by minimizing the following:

 For efficiency, only the last 𝑚 keyframes are used

 Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs, 
efficient open-source tools: g2o, GTSAM, SLAM++, Google Ceres

Pose-Graph Optimization

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏

𝑻𝟐,𝟎
𝑻𝟑,𝟎 𝑻𝒏−𝟏,𝟐

𝐶𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐶𝑘,෍
𝑖

෍

𝑗

𝐶𝑖 − 𝐶𝑗𝑇𝑖𝑗
2

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjPvtCoqYjYAhWEmBoKHVP-BjMQFggoMAA&url=https://github.com/RainerKuemmerle/g2o&usg=AOvVaw3y-4PBhdQSQuCxLfEjdyTi
https://research.cc.gatech.edu/borg/download
https://sourceforge.net/p/slam-plus-plus/wiki/Home/
http://ceres-solver.org/


 Similar to pose-graph optimization but it also optimizes 3D points

 𝜌𝐻() is a robust cost function (e.g., Huber or Tukey cost) to penalize wrong matches

 In order to not get stuck in local minima, the initialization should be close to the minimum

 Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs, 
efficient open-source tools: g2o, GTSAM, SLAM++, Google Ceres

Bundle Adjustment (BA)

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏

𝑻𝟐,𝟎
𝑻𝟑,𝟎 𝑻𝒏−𝟏,𝟐

𝑋𝑖 , 𝐶𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋𝑖,𝐶𝑘,෍

𝑖

෍

𝑘

𝜌 𝑝𝑘
𝑖 − 𝜋 𝑋𝑖 , 𝐶𝑘

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjPvtCoqYjYAhWEmBoKHVP-BjMQFggoMAA&url=https://github.com/RainerKuemmerle/g2o&usg=AOvVaw3y-4PBhdQSQuCxLfEjdyTi
https://research.cc.gatech.edu/borg/download
https://sourceforge.net/p/slam-plus-plus/wiki/Home/
http://ceres-solver.org/
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 BA is more precise than pose-graph optimization because it adds additional 
constraints (landmark constraints)

 But more costly: 𝑂 𝑞𝑀 + 𝑙𝑁 3 with 𝑀 and 𝑁 being the number of points 

and cameras poses and 𝑞 and 𝑙 the number of parameters for points and 
camera poses. Workarounds: 

 A small window size limits the number of parameters for the optimization and thus 
makes real-time bundle adjustment possible. 

 It is possible to reduce the computational complexity by just optimizing over the 
camera parameters and keeping the 3-D landmarks fixed, e.g., (motion-only BA)
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 Relocalization problem: 

 During VO, tracking can be lost (due to occlusions, low 
texture, quick motion, illumination change)

 Solution: Re-localize camera pose and continue

 Loop closing problem

 When you go back to a previously mapped area:

 Loop detection: to avoid map duplication

 Loop correction: to compensate the accumulated drift

 In both cases you need a place recognition technique

We will address place recognition in Lecture 12

40
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 Visual SLAM = visual odometry + loop detection + 
graph optimization

Visual odometry

Visual SLAM

41



Open Source Monocular VO and SLAM algorithms

 PTAM [Klein, 2007] -> Oxford, Murray’s lab

 ORB-SLAM [Mur-Artal, T-RO, 15] -> Zaragoza, Tardos’ lab

 LSD-SLAM [Engel, ECCV’14] -> Munich, Cremers’ lab

 DSO [Engel’16] -> Munich, Cremers’ lab

 SVO [Forster, ICRA’14, TRO’17]  -> Zurich, Scaramuzza’s lab

42



PTAM: Parallel Tracking and Mapping for Small AR Workspaces

43
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 Feature based
 FAST corners + ORB descriptors

 ORB: binary descriptor, very fast to compute and match (Hamming distance)

 Minimizes reprojection error

 Includes:
 Loop closing

 Relocalization

 Final optimization

 Real-time (30Hz)

[Mur-Artal, Montiel, Tardos, ORB-SLAM: Large-scale Feature-based SLAM, TRO’15]

Download from 
http://webdiis.unizar.es/~raulmur/orbslam/

http://webdiis.unizar.es/~raulmur/orbslam/
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Feature-based methods

1. Extract & match features + RANSAC

2. Bundle Adjust by minimizing the 
Reprojection Error

𝑇𝑘,𝑘−1 = argmin
𝑇

෍

𝑖

𝒖′𝑖 − 𝒖𝑖 Σ
2

where   𝒖′𝑖 = 𝜋 𝑷𝑖 , 𝑇𝑘,𝑘−1

Direct methods (photometric methods)

1. No feature extraction & no RANSAC. Instead, 
directly minimize Photometric Error:

𝑇𝑘,𝑘−1 = ?

𝑷𝑖

𝒖′𝑖𝒖𝑖

𝑇𝑘,𝑘−1 = argmin
𝑇

෍

𝑖

𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎
2

where   𝒖′𝑖 = 𝜋 𝑷𝑖 , 𝑇𝑘,𝑘−1

𝑇𝑘,𝑘−1

𝐼𝑘
𝒖′𝑖

𝑷𝑖

𝒖𝑖
𝐼𝑘−1

Irani, Anandau, All about direct methods, Springer’99. PDF

http://pages.cs.wisc.edu/~dyer/ai-qual/irani-visalg00.pdf
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Feature-based methods

1. Extract & match features + RANSAC

2. Bundle Adjust by minimizing the 
Reprojection Error

𝑇𝑘,𝑘−1 = argmin
𝑇

෍

𝑖

𝒖′𝑖 − 𝒖𝑖 Σ
2

where   𝒖′𝑖 = 𝜋 𝑷𝑖 , 𝑇𝑘,𝑘−1

Direct methods (photometric methods)

1. No feature extraction & no RANSAC. Instead, 
directly minimize Photometric Error:

𝑇𝑘,𝑘−1 = argmin
𝑇

෍

𝑖

𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎
2

where   𝒖′𝑖 = 𝜋 𝑷𝑖 , 𝑇𝑘,𝑘−1

Irani, Anandau, All about direct methods, Springer’99. PDF

 Large frame-to-frame motions

 Accuracy: Efficient optimization of 
structure and motion (Bundle Adjustment) 

 Slow due to costly feature extraction 
and matching

 Matching Outliers (RANSAC)

 All information in the image can be 
exploited (precision, robustness)

 Increasing camera frame-rate 
reduces computational cost per 
frame

 Limited frame-to-frame motion

 Joint optimization of dense structure 
and motion too expensive

http://pages.cs.wisc.edu/~dyer/ai-qual/irani-visalg00.pdf
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SVO [Forster’14]
100-200  x   4x4 patches ≅ 2,000 pixels

Direct Methods: Dense vs Semi-dense vs Sparse [TRO’16] 

DTAM [Newcombe ‘11] REMODE [Pizzoli’14]
300’000+ pixels

LSD-SLAM  [Engel’14]
~10,000 pixels

Dense Semi-Dense Sparse

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]
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SVO [Forster’14] DSO [Engel’17]
100-200  x   4x4 patches ≅ 2,000 pixels

Direct Methods: Dense vs Semi-dense vs Sparse [TRO’16] 

DTAM [Newcombe ‘11] REMODE [Pizzoli’14]
300’000+ pixels

LSD-SLAM  [Engel’14]
~10,000 pixels

Dense Semi-Dense Sparse

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]
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Direct Methods: Dense vs Semi-dense vs Sparse [TRO’16] 

 [Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]

 Multi-FOV Zurich Urban Dataset: http://rpg.ifi.uzh.ch/fov.html

Robustness to motion baseline (computed from 1,000 Blender simulations)

 Dense and Semi-dense behave similarly
 weak gradients are not informative for the optimization)

 Dense only useful with motion blur and defocus
 Sparse methods behave equally well for image overlaps up to 30%

Images from the synthetic 

Multi-FOV Zurich Urban Dataset

http://rpg.ifi.uzh.ch/fov.html


Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Direct (photometric error) + Semi-Dense formulation
 3D geometry represented as semi-dense depth maps

 Minimizes photometric error

 Separateley optimizes poses & structure

 Includes:
 Loop closing

 Relocalization

 Final optimization

 Real-time (30Hz)

[Engel, Schoeps, Cremers, LSD-SLAM: Large-scale Semi-Dense SLAM, ECCV’14]

Download from 
https://vision.in.tum.de/research/vslam/lsdslam

https://vision.in.tum.de/research/vslam/lsdslam


Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Direct (photometric error) + Sparse formulation
 3D geometry represented as sparse large gradients

 Minimizes photometric error

 Jointly optimizes poses  & structure (sliding window)

 Incorporate photometric correction to compensate exposure time change

 Real-time (30Hz)

[Engel, Koltun, Cremers, DSO: Direct Sparse Odometry, PAMI’17]

Download from 
https://vision.in.tum.de/research/vslam/dso

https://vision.in.tum.de/research/vslam/dso


SVO [Forster, ICRA’14, TRO’17]

 Direct (minimizes photometric error)

 Corners and edgelets

 Frame-to-frame motion estimation

 Feature-based (minimizes reprojection error)
 Frame-to-Keyframe pose refinement

 Mapping
 Probabilistic depth estimation

 SVO 2.0 includes
 Fish-eye & Omni cameras
 Multi-camera systems

Meant for high speed!
 400 fps on i7 laptops
 100 fps on smartphone PC

Edgelet                          Corner     

[Forster, Pizzoli, Scaramuzza, SVO: Fast, Semi-Direct Visual Odometry ICRA’14, TRO’17]

Download from http://rpg.ifi.uzh.ch/svo2.html

http://rpg.ifi.uzh.ch/svo2.html


Processing times of SVO, LSD-SLAM, ORB-SLAM

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]
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Processing Times of SVO

[Forster, et al., SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, TRO’17]

• Laptop (Intel i7, 2.8 GHz): up to 400 fps

• Smartphone, ARM Cortex-A9, 1.7 GHz (Odroid): Up to 100 fps

Timing results on an Intel Core i7 (2.80 GHz) laptop processor:



Applications of SVO
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Position error: 5 mm, height: 1.5 m – Down-looking camera

[ICRA’10-17, AURO’12, RAM’14, JFR’15, RAL’17]

Automatic recovery from aggressive flight [ICRA’15]Robustness to dynamic scenes (down-looking camera)

Speed: 4 m/s, height: 3 m – Down-looking camera



Parrot: Autonomous Inspection of Bridges and Power Masts

Albris drone



Dacuda 3D (now Magic Leap Zurich)
 Fully immersive VR (running on iPhone)

 Powered by SVO

Dacuda’s 
3D divison



Zurich-Eye, first Wyss Zurich project, now Facebook-Oculus Zurich

 Vision-based Localization and Mapping Solutions for Mobile Robots 

 Created in Sep. 2015, became Facebook-Oculus Zurich in Sep. 2016

 The Zurich Eye team is behind the new Oculus Quest

http://www.wysszurich.uzh.ch/
https://youtu.be/xwW-1mbemGc


Zurich-Eye, first Wyss Zurich project, now Facebook-Oculus Zurich

 Vision-based Localization and Mapping Solutions for Mobile Robots 

 Created in Sep. 2015, became Facebook-Oculus Zurich in Sep. 2016

 The Zurich Eye team is behind the new Oculus Quest

http://www.wysszurich.uzh.ch/
https://youtu.be/xwW-1mbemGc




Understanding Check

Are you able to answer the following questions:

 Are you able to define Bundle Adjustment (via mathematical expression and 
illustration)?

 Are you able to describe hierarchical and sequential SFM for monocular VO?

 What are keyframes? Why do we need them and how can we select them?

 Are you able to define loop closure detection? Why do we need loops?

 Are you able to provide a list of the most popular open source VO and VSLAM 
algorithms?

 Are you able to describe the differences between feature-based methods and 
direct methods?


