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Lab Exercise 6 - Today afternoon
 Room ETH HG E 1.1 from 13:15 to 15:00

 Work description: 8-point algorithm

Estimated poses and 3D structure
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Our student projects on Robotics, ML, and Perception

• http://rpg.ifi.uzh.ch/student_projects.php
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 Depth from stereo (i.e., stereo vision)

• Assumptions: K, T and R are known. 

• Goal: Recover the 3D structure from images

 2-view Structure From Motion: 

• Assumptions: none (K, T,  and R are unknown). 

• Goal: Recover simultaneously 3D scene structure, camera poses (up to scale), and 
intrinsic parameters from two different views of the scene

2-View Geometry: Recap

𝐾1, 𝑅1,𝑇1
𝐾2, 𝑅2,𝑇2

𝐾𝑖 , 𝑅𝑖,𝑇𝑖

𝑃𝑖 =?

𝐾1, 𝑅1,𝑇1 =?
𝐾2, 𝑅2,𝑇2 =?

𝐾𝑖 , 𝑅𝑖,𝑇𝑖=?

𝑃𝑖 =?
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Outline

• Two-View Structure from Motion

• Robust Structure from Motion
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• Problem formulation: Given 𝑛 point correspondences between two images, 

{𝑝𝑖1 = (𝑢𝑖1, 𝑣
𝑖
1),  𝑝

𝑖
2 = (𝑢𝑖2, 𝑣

𝑖
2)}, simultaneously estimate the 3D points 𝑷𝑖, 

the camera relative-motion parameters (𝑹, 𝑻), and the camera intrinsics 𝑲1, 𝑲2

that satisfy: 

𝑅, 𝑇 = ?

𝑷𝑖 = ?

𝐶1

𝐶2

Structure from Motion (SFM)
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• Two variants exist:

– Calibrated camera(s) ֜𝑲𝟏, 𝑲𝟐 are known

– Uncalibrated camera(s) ֜𝑲𝟏, 𝑲𝟐 are unknown

𝑅, 𝑇 = ?

𝑷𝑖 = ?

𝐶1

𝐶2

Structure from Motion (SFM)
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• Let’s study the case in which the cameras are calibrated

• For convenience, let’s use normalized image coordinates

• Thus, we want to find 𝑹, 𝑻, 𝑷𝑖 that satisfy

Structure from Motion (SFM)
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Scale Ambiguity

If we rescale the entire scene and camera views by a constant factor (i.e., 
similarity transformation), the projections (in pixels) of the scene points in 
both images remain exactly the same:
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Scale Ambiguity

• In monocular vision, it is therefore not possible to recover the absolute scale of the 
scene!

• Stereo vision?

• Thus, only 5 degrees of freedom are measurable:

• 3 parameters to describe the rotation

• 2 parameters for the translation up to a scale (we can only compute the direction of 
translation but not its length)
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Structure From Motion (SFM)
• How many knowns and unknowns?

– 𝟒𝒏 knowns:

• 𝑛 correspondences; each one (𝑢𝑖
1
, 𝑣𝑖1) and (𝑢𝑖

2
, 𝑣𝑖2), 𝑖 = 1…𝑛

– 𝟓 + 𝟑𝒏 unknowns

• 5 for the motion up to a scale (3 for rotation, 2 for translation)

• 3𝑛 = number of coordinates of the 𝑛 3D points

• Does a solution exist?

– If and only if the number of independent equations ≥ number of unknowns
֜ 4𝑛 ≥ 5 + 3𝑛 ֜ n ≥ 𝟓

– First attempt to identify the solutions by Kruppa in 1913 (see slide 17).

E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspektiven mit Innerer Orientierung, Sitz.-Ber. Akad. Wiss., Wien,
Math. Naturw. Kl., Abt. IIa., 1913. – English Translation plus original paper by Guillermo Gallego, Arxiv, 2017 11

https://arxiv.org/pdf/1801.01454


Cross Product (or Vector Product)

• Vector cross product takes two vectors and returns a third vector that is 
perpendicular to both inputs, with a direction given by the right-hand rule and a 
magnitude equal to the area of the parallelogram that the vectors span:

• So 𝒄 is perpendicular to both 𝒂 and 𝒃 (which means that the dot product is 0)
• Also, recall that the cross product of two parallel vectors is 0
• The cross product between a and b can also be expressed in matrix form as the 

product between the skew-symmetric matrix of a and a vector b
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Can we solve the estimation of relative motion (R,T) independently 
of the estimation of the structure (3D points)?

The next couple of slides prove that this is possible. Once R,T are 
known, the 3D points can be triangulated using the triangulation 

algorithms from Lecture 7 (slides 30-36)
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Epipolar Geometry
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0  
12
pEp

T

Epipolar constraint or Longuet-Higgins equation (1981)

RT


 ][ E Essential matrix

Normalized image coordinates

Epipolar Geometry
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• The Essential Matrix can be decomposed into 𝑅 and 𝑇 recalling that 
Four distinct solutions for R and T are possible.

RT


 ][ E

H. Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two 

projections, Nature, 1981, PDF. 15

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf


Exercise

• Compute the Essential matrix for the case of two rectified stereo images

Rectified case

T =
−𝑏
0
0

՜ T × =
0 0 0
0 0 𝑏
0 −𝑏 0

T

՜𝐸 =
0 0 0
0 0 𝑏
0 −𝑏 0
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How to compute the Essential Matrix?

 If we don’t know R and T, can we estimate E from two images?

 Yes, given at least 5 correspondences

Image 1 Image 2
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How to compute the Essential Matrix?

• Kruppa showed in 1913 that 5 image correspondences is the minimal case and 
that there can be at up to 11 solutions.

• However, in 1988, Demazure showed that there are actually at most 10 distinct 
solutions. 

• In 1996, Philipp proposed an iterative algorithm to find these solutions.

• Only in 2004, the first efficient and non iterative solution was proposed. It uses 
Groebner basis decomposition [Nister, CVPR’2004].

• The first popular solution uses 8 points and is called the 8-point algorithm or 
Longuet-Higgins algorithm (1981). Because of its ease of implementation, it is 
still used today (e.g., NASA rovers).

H. Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two 

projections, Nature, 1981, PDF.

D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, PAMI, 2004, PDF
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• The Essential matrix E is defined by

• Each pair of point correspondences
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• For 𝑛 points, we can write 

The 8-point algorithm
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Q (this matrix is known)                              

ത𝐸 (this matrix is unknown)
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Minimal solution

• 𝑄(𝑛×9) should have rank 8 to have a unique (up to a scale) non-trivial solution ത𝐸

• Each point correspondence provides 1 independent equation
• Thus, 8  point correspondences are needed

Over-determined solution

• n > 8 points

• A solution is to minimize | 𝑄 ത𝐸 |2 subject to the constraint | ത𝐸 |2 = 1.
The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix 
𝑄𝑇𝑄 (because it is the unit vector 𝑥 that minimizes | 𝑄𝑥 |2 = 𝑥𝑇𝑄𝑇𝑄𝑥). 

• It can be solved through Singular Value Decomposition (SVD). Matlab instructions:

• [U,S,V] = svd(Q);

• Ev = V(:,9);

• E = reshape(Ev,3,3)';

• Degenerate Configurations
• The solution of the eight-point algorithm is degenerate when the 3D points are 

coplanar. Conversely, the five-point algorithm works also for coplanar points

The 8-point algorithm

0EQ 
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8-point algorithm: Matlab code

• A few lines of code. Go to the exercise this 
afternoon to learn how to implement it 

22



8-point algorithm: Matlab code

• function E = calibrated_eightpoint( p1, p2)
•

• p1 = p1'; % 3xN vector; each column = [u;v;1]
• p2 = p2'; % 3xN vector; each column = [u;v;1]
•

• Q = [p1(:,1).*p2(:,1) , ...
• p1(:,2).*p2(:,1) , ...
• p1(:,3).*p2(:,1) , ...
• p1(:,1).*p2(:,2) , ...
• p1(:,2).*p2(:,2) , ...
• p1(:,3).*p2(:,2) , ...
• p1(:,1).*p2(:,3) , ...
• p1(:,2).*p2(:,3) , ...
• p1(:,3).*p2(:,3) ] ;
•

• [U,S,V] = svd(Q);
• Eh = V(:,9);
•

• E = reshape(Eh,3,3)';
23



Interpretation of the 8-point algorithm

The 8-point algorithm seeks to minimize the following algebraic error

Using the definition of dot product, it can be observed that 

ഥ𝒑𝟐
⊤ ∙ 𝑬ഥ𝒑1 = ഥ𝒑𝟐 𝑬ഥ𝒑1 cos(𝜃)

We can see that this product depends on the angle 𝜃 betweenഥ𝒑1 and the normal 
𝑛 = 𝑬𝒑1 to the epipolar plane. It is non zero when ഥ𝒑1,ഥ𝒑2, and 𝑻 are not coplanar.
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Extract R and T from E 
(this slide will not be asked at the exam)

• Singular Value Decomposition:

• Enforcing rank-2 constraint: set smallest singular value of      to 0:
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Only one solution where points are in front of both cameras

4 possible solutions of R and T

These two views are flipped by 180 ͦ around the optical axis
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• Two variants exist:

– Calibrated camera(s) ֜𝑲𝟏, 𝑲𝟐 are known

• Uses the Essential Matrix

– Uncalibrated camera(s) ֜𝑲𝟏, 𝑲𝟐 are unknown

• Uses the Fundamental Matrix

Structure from Motion (SFM)

𝑅, 𝑇 = ?

𝑷𝑖 = ?

𝐶1

𝐶227
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The Fundamental Matrix
• Before, we assumed to know the camera intrinsic parameters and we used normalized 

image coordinates to get the epipolar constraint for calibrated cameras:



The Fundamental Matrix
• By substituting the definition of normalized coordinates into the epipolar constraint, 

we get the epipolar constraint for uncalibrated cameras:
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The 8-point Algorithm for the Fundamental Matrix

• The same 8-point algorithm to compute the essential matrix from a 
set of normalized image coordinates can also be used to determine 
the Fundamental matrix:

• Advantage: we work directly in pixel coordinates
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Problem with 8-point algorithm
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Problem with 8-point algorithm

• Poor numerical conditioning, which makes results very sensitive to noise

• Can be fixed by rescaling the data: Normalized 8-point algorithm [Hartley, PAMI’97]
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Normalized 8-point algorithm (1/3)
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• This can be fixed using a normalized 8-point algorithm [Hartley’97], which 
estimates the Fundamental matrix on a set of Normalized correspondences (with 
better numerical properties) and then unnormalizes the result to obtain the 
fundamental matrix for the given (unnormalized) correspondences

• Idea: Transform image coordinates so that they are in the range ~[−1,1] × [−1,1]

• One way is to apply the following rescaling and shift
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Normalized 8-point algorithm (2/3)
• In the original 1997 paper, Hartley proposed to rescale the two point sets such 

that the centroid of each set is 0 and the mean standard deviation 2, so that the 

“average” point is equal to [0, 0, 1]T (in homogeneous coordinates).

• This can be done for every point as follows:

where 𝜇 = (𝜇𝑥, 𝜇𝑦) =
1

𝑁
σ𝑖=1
𝑛 𝑝𝑖 is the centroid and  𝜎 =

1

𝑁
σ𝑖=1
𝑛 𝑝𝑖 − 𝜇

2
is the  

mean standard deviation of the point set.

• This transformation can be expressed in matrix form using homogeneous 
coordinates:
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The Normalized 8-point algorithm can be summarized in three steps:

1. Normalize point correspondences:  ෞ𝑝1 = 𝐵1𝑝1 ,    ෞ𝑝2 = 𝐵2𝑝2
2. Estimate normalized ෠𝐹 with 8-p. algorithm using normalized coordinates ෞ𝑝1, ෞ𝑝2

3. Compute unnormalized F from ෠𝐹:    

Normalized 8-point algorithm (3/3)

ෝ𝑝2
𝑇 ෠F ෞ𝑝1 = 0

F = B2
⊤෠F B1

𝑝2
⊤𝐵2

⊤ 𝐵1𝑝1

F = B2
⊤෠F B1

෠F
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Can 𝑅, 𝑇, 𝐾1, 𝐾2 be extracted from F?

• In general no: infinite solutions exist

• However, if the coordinates of the principal points of each camera are known and 
the two cameras have the same focal length 𝑓 in pixels, then 𝑅, 𝑇, 𝑓 can 
determined uniquely
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Comparison between Normalized and non-normalized algorithm

8-point Normalized 8-point Nonlinear refinement

Avg. Ep. Line Distance 1 2.33 pixels 0.92 pixel 0.86 pixel
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Error Measures

 The quality of the estimated Essential matrix can be measured using different 
error metrics.

 The first one is the algebraic error that is defined directly by the Epipolar 
Constraint:

 This error will exactly be 0 if E is computed from just 8 points (because in this case 
a non-overdetermined solution exists). For more than 8 points, it may not be 0 
(due to image noise or outliers (overdetermined system)).

 There are alternative error functions that can be used to measure the quality of 
the estimated Fundamental matrix: the Directional Error, the Epipolar Line 
Distance, or the Reprojection Error.
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 Remember Slide 24 for the geometrical 
interpretation of this error
What is the drawback with this error measure?
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Directional Error

 Sum of squared cosines of the angle from the epipolar plane:

 From slide 24, we obtain:
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epipolar plane

Epipolar Line Distance

 Sum of Squared Epipolar-Line-to-point Distances

 Cheaper than reprojection error because does not require point triangulation
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Reprojection Error

 Sum of the Squared Reprojection Errors

 Computation is expensive because requires point triangulation

 However it is the most popular because more accurate
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How to compute P? See Slides 
30-36 of Lecture 07
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Outline

• Two-View Structure from Motion

• Robust Structure from Motion
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Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Matched points are usually contaminated by outliers (i.e., wrong image matches)
 Causes of outliers are:
 changes in view point (including scale) and illumination 
 image noise
 occlusions
 blur

 For the camera motion to be estimated accurately, outliers must be removed 
 This is the task of Robust Estimation

Image 1 Image 2 45
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Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Error at the loop closure: 6.5 m
 Error in orientation:         5 deg
 Trajectory length:            400 m

Outliers can be removed using RANSAC [Fishler & Bolles, 1981]
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RANSAC (RAndom SAmple Consensus)

• RANSAC is the standard method for model fitting in the presence of outliers
(very noisy points or wrong data)

• It can be applied to all sorts of problems where the goal is to estimate the 
parameters of a model from the data (e.g., camera calibration, Structure from 
Motion, DLT, PnP, P3P, Homography, etc.)

• Let’s review RANSAC for line fitting and see how we can use it to do Structure 
from Motion

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with applications to image 
analysis and automated cartography. Graphics and Image Processing, 1981.
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RANSAC
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RANSAC
• Select sample of 2 points at 
random
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RANSAC
• Select sample of 2 points at 
random

• Calculate model 
parameters that fit the data 
in the sample
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RANSAC
• Select sample of 2 points at 
random

• Calculate model parameters 
that fit the data in the sample

• Calculate error function for 
each data point
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RANSAC
• Select sample of 2 points at 
random

• Calculate model parameters 
that fit the data in the sample

• Calculate error function for 
each data point

• Select data that support 
current hypothesis
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RANSAC
• Select sample of 2 points at 
random

• Calculate model parameters 
that fit the data in the sample

• Calculate error function for 
each data point

• Select data that support 
current hypothesis

• Repeat
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RANSAC
• Select sample of 2 points at 
random

• Calculate model parameters 
that fit the data in the sample

• Calculate error function for 
each data point

• Select data that support 
current hypothesis

• Repeat
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RANSAC

Select the set with the maximum 
number of inliers obtained within 𝑘

iterations
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How many iterations does RANSAC need? 

• Ideally: check all possible combinations of 2 points in a dataset of N points. 

• Number of all pairwise combinations: N(N-1)/2 

 computationally unfeasible if N is too large. 
example: 1000 points  need to check all 1000*999/2 ≅ 500’000 possibilities!

• Do we really need to check all possibilities or can we stop RANSAC after some iterations? 
Checking a subset of combinations is enough if we have a rough estimate of the 
percentage of inliers in our dataset

• This can be done in a probabilistic way

RANSAC
57



How many iterations does RANSAC need?

• w := number of inliers/N 
N := total number of data points 

w : fraction of inliers in the dataset w = P(selecting an inlier-point out of the dataset)

• Assumption: the 2 points necessary to estimate a line are selected independently

w 2 = P(both selected points are inliers)

1-w 2 = P(at least one of these two points is an outlier)

• Let k := no. RANSAC iterations executed so far

•  ( 1-w 2 ) k = P(RANSAC never selected two points that are both inliers) 

• Let  p := P(probability of success) 

•  1-p = ( 1-w 2 ) k and therefore :

RANSAC
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How many iterations does RANSAC need?

• The number of iterations k is

•  knowing the fraction of inliers w, after k RANSAC iterations we will have a probability  p of 
finding a set of points free of outliers

• Example: if we want a probability of success p=99% and we know that w=50%  k=16 iterations

• these are significantly fewer than the number of all possible combinations! 

• Notice: number of points does not influence minimum number of iterations k, only w does!

• In practice we only need a rough estimate of w. More advanced variants of RANSAC estimate the 
fraction of inliers and adaptively update it at every iteration (how?)

RANSAC
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RANSAC applied to Line Fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 2 points from A

4. Fit a line through the 2 points

5. Compute the distances of all other points to this line

6. Construct the inlier set (i.e. count the number of points whose distance < d)

7. Store these inliers

8. until maximum number of iterations k reached

9. The set with the maximum number of inliers is chosen as a solution to the problem
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RANSAC applied to general model fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 𝒔 points from A

4. Fit a model from the 𝒔 points

5. Compute the distances of all other points from this model

6. Construct the inlier set (i.e. count the number of points whose distance < d)

7. Store these inliers

8. until maximum number of iterations k reached

9. The set with the maximum number of inliers is chosen as a solution to the problem
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The Three Key Ingredients of RANSAC

In order to implement RANSAC for Structure From Motion (SFM), we need three key 
ingredients:

1. What’s the model in SFM?

2. What’s the minimum number of points to estimate the model?

3. How do we compute the distance of a point from the model? In other words, can 
we define a distance metric that measures how well a point fits the model?

62



Answers

1. What’s the model in SFM?

– The Essential Matrix (for calibrated cameras) or the Fundamental Matrix (for 
uncalibrated cameras)

– Alternatively, R and T

2. What’s the minimum number of points to estimate the model?

1. We know that 5 points is the theoretical minimum number of points

2. However, if we use the 8-point algorithm, then 8 is the minimum

3. How do we compute the distance of a point from the model?

1. Algebraic error ( ҧ𝑝2
⊤𝐸 ҧ𝑝1 = 0 or  𝑝2

⊤𝐹𝑝1 = 0) (Slide 40)

2. Directional error (Slide 41)

3. Epipolar line distance (Slide 42)

4. Reprojection error (Slide 43)
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Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows

Image 1 Image 2
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Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image on the first image 
and use arrows to denote the motion vectors of the features

Image 1
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Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image on the first image 
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point 
correspondences
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Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image on the first image 
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point 
correspondences

2. Fit the model to all other points and 
count the inliers
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Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image on the first image 
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point 
correspondences

2. Fit the model to all other points and 
count the inliers

3. Repeat from 1
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Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image on the first image 
and use arrows to denote the motion vectors of the features

Image 1
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Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image on the first image 
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point 
correspondences
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Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image on the first image 
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point 
correspondences

2. Fit the model to all other points and 
count the inliers
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Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image on the first image 
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point 
correspondences

2. Fit the model to all other points and 
count the inliers

3. Repeat from 1 for 𝒌 times
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RANSAC iterations 𝒌 vs. 𝒔

• 8-point RANSAC 
– Assuming 

• 𝒑 = 99%, 

• 𝜺 = 50% (fraction of outliers) 

• 𝒔 = 8 points (8-point algorithm)

• 5-point RANSAC 
– Assuming 

• 𝒑 = 99%, 

• 𝜺 = 50% (fraction of outliers) 

• 𝒔 = 5 points (5-point algorithm of David Nister (2004))

• 2-point RANSAC (e.g., line fitting)
– Assuming 

• 𝒑 = 99%, 

• 𝜺 = 50% (fraction of outliers) 

• 𝒔 = 2 points

iterations
p

k
s
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𝒌 is exponential in the number of points 𝒔 necessary to estimate the model:
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RANSAC iterations 𝒌 vs. 𝜺

• 𝒌 is increases exponentially with the fraction of outliers 𝜺
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RANSAC iterations

• As observed, 𝒌 is exponential in the number of points 𝒔 necessary to estimate the 
model

• The 8-point algorithm is extremely simple and was very successful; however, it 
requires more than 1177 iterations

• Because of this, there has been a large interest by the research community in 
using smaller motion parameterizations (i.e., smaller s)

• The first efficient solution to the minimal-case solution (5-point algorithm) took 
almost a century (Kruppa 1913 → Nister 2004)

• The 5-point RANSAC (Nister 2004) only requires 145 iterations; however:
– The 5-point algorithm can return up to 10 solutions of E (worst case scenario)

– The 8-point algorithm only returns a unique solution of E

Can we use less than 5 points?

Yes, if you use motion constraints!
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Planar Motion
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Planar Motion
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Planar Motion
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Planar Motion
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Observe that 𝐸 has 2DoF (θ, φ, because ρ is the scale factor); thus, 2 

correspondences are sufficient to estimate  and φ [“2-Point RANSAC”, Ortin, 2001]
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Can we use less than 2 point correspondences?

Yes, if we exploit wheeled vehicles with non-holonomic constraints
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Planar & Circular Motion (e.g., cars)
Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

Example of Ackerman steering principle Locally-planar circular motion
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Planar & Circular Motion (e.g., cars)

Example of Ackerman steering principle Locally-planar circular motion

φ = θ/2 => only 1 DoF (θ); 

thus, only 1 point correspondence is needed [Scaramuzza, IJCV’11]

This is the smallest parameterization possible and results in 

the most efficient algorithm for removing outliers

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic
Constraints, International Journal of Computer Vision, 2011

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)
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1-Point RANSAC algorithm

Only 1 iteration!

The most efficient algorithm for 

removing outliers (<1ms)

Compute θ for 

every point 

correspondence

1-Point RANSAC is ONLY used to find the inliers.

Motion is then estimated from them in 6DOF
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Comparison of RANSAC algorithms

8-Point RANSAC
[Longuet-Higgins’81]

5-Point RANSAC
[Nister’04]

2-Point RANSAC
[Ortin’01]

1-Point RANSAC
[Scaramuzza’11]
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Visual Odometry with 1-Point RANSAC 

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic
Constraints, International Journal of Computer Vision, 2011 88



Things to remember

• SFM from 2 view
– Calibrated and uncalibrated case

– Proof of Epipolar Constraint

– 8-point algorithm and algebraic error

– Normalized 8-point algorithm

– Algebraic, directional, Epipolar line distance, Reprojection error

– RANSAC and its application to SFM

– 8 vs 5 vs 1 point RANSAC, pros and cons

• Readings:
– Ch. 14.2 of Corke book

– CH. 7.2 of Szeliski book
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Understanding Check
Are you able to answer the following questions?

• What's the minimum number of correspondences required for calibrated SFM and why?

• Are you able to derive the epipolar constraint?

• Are you able to define the essential matrix?

• Are you able to derive the 8-point algorithm?

• How many rotation-translation combinations can the essential matrix be decomposed into?

• Are you able to provide a geometrical interpretation of the epipolar constraint?

• Are you able to describe the relation between the essential and the fundamental matrix?

• Why is it important to normalize the point coordinates in the 8-point algorithm?

• Describe one or more possible ways to achieve this normalization.

• Are you able to describe the normalized 8-point algorithm?

• Are you able to provide quality metrics for the essential matrix estimation?

• Why do we need RANSAC?

• What is the theoretical maximum number of combinations to explore?

• After how many iterations can RANSAC be stopped to guarantee a given success probability?

• What is the trend of RANSAC vs. iterations, vs. the fraction of outliers, vs. the number of points 
to estimate the model?

• How do we apply RANSAC to the 8-point algorithm, DLT, P3P?

• How can we reduce the number of RANSAC iterations for the SFM problem? 90


