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Lab Exercise 6 - Today afternoon

» Room ETH HG E 1.1 from 13:15 to 15:00
» Work description: 8-point algorithm

Estimated poses and 3D structure
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To acply. please send your CV, your Ms and Bs transcripts by emai to all the contacts indicated beiow the project Sesention
Do not apply on SIROP . Since Prof. Davide Scaramuzza is affiliated with ETH, there is no organizational overhead for ETH
students. Cusiom pro;ects 3re 0CCaSONaly avaIatie I yOu WOUIC ke 10 CO 3 DrOEct Wth US but CoUld not fnd an advertzed
Sroject 3t suts you. please contact Prof. Davice Scaramuzza Grecty 1o 35k for 3 tailored project (scavide at & uzh on

Upon successil completion of 3 project in our 10, students may 3130 have the Gportunty 1o get an internship at one of our
numerous industrial and academic partners worldwide (e .. NASALPL. Universty of Pennsyhvana. UCLA. MIT. Stanfors. )

Exploring Adaptive Control Methods for High-Performance Quadrotor
Control - Available

— Description: Standard control aigorthms require a very accurate model of the
system 1o be controlied in order to take full advantage of system dynamic
capabiities. However, such an accurate model is oflen not available (e g, due to

J time-varying parameters of due 10 hard-1o-model effects such as aerodynamic
8 drag) One method to overcome this problem s to apply adaptive nonlinear control
where model uncertainties and unknowns are concurrently learned while controling
the system The goal of this project is 1o explore both vintage and recent adaptive control methods for the in-fight
identification of 3 quadrotor's physical parameters (e g . mass. inertia, thrust coefficients, drag) and adaptation of its
controller

Contact Details: Piease send your CV and transcript to: Dario Brescianini, brescianini (at) ifi (dot) uzh (dot) ch

Thesis Type: Semester Project / Master Thesis
See project ROP

An Open-Source Real-Time Event Camera Simulator for Robot
Applications - Available

— — Description: Event cameras are revoluionary sensors that work radically
differently from standard cameras. Instead of capturing intensity images at a foced
rate, event cameras measure per-pixel intensity changes asynchronously at the
time they occur [1). Since these sensors are not readity available and expensive
we have recently published an open source event camera simulator 2] that alows
simulating arbitrary 3D camera motions in 3D scenes. The goal of this project is 10
close the Ioop and integrate the event camera simulator in 3 reak-time robol simulation framewvork such that different
robotic platforms with event camera sensors can be simulated and react based upon the measured events. (1) D
Scaramuzza, Tutorial on Event-based Vision for High-Speed Robotics,

http: /A it % D$2015-WASROP-Invited-04-siides pdf [2]: H. Rebeca. D. Gehrig. D
Scaramuzza. ESIM: an Open Event Camera Simulator, Conference on Robot Leaming, 2018

Contact Details: Piease send your CV and transcript to: Dario Brescianini, brescianini (at) ifi (dot) uzh (dot) ch

Thesis Type: Semester Project / Bachelor Thesis
See project on SIROP

Implementation of Feature Detector, Tracker, Matcher on CUDA -

Available

Description: The goal of this thesis is to implement 3 Feature Detector (ex. Haris,
Fast. SUSAN, LoG. DoG). Descriptor (SURF. BRISK, BRIEF. ORB, FREAK) and
Matcher/Tracker using the nVidia Cuda Framework for high-efficiency real-time
execution on a nVidia Jetson TX2 computer. Focus should be 13id on exploting
new computational architectures arising from Machine Leaming, such as fast

and GPL

Goal: The thesis should provide 3 comparison of execution speed with respect to execution on an ARM CPU. The end
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http://rpg.ifi.uzh.ch/student_projects.php

2-View Geometry: Recap

Pi =?
= Depth from stereo (i.e., stereo vision)

e Assumptions: K, T and R are known. u
* Goal: Recover the 3D structure from images ‘\,% &

. . K1, Rq,T
= 2-view Structure From Motion: v K,,R,,T,

* Assumptions: none (K, T, and R are unknown).

* Goal: Recover simultaneously 3D scene structure, camera poses (up to scale), and
intrinsic parameters from two different views of the scene

Pi =?

)

Ky{,R{,T; =?
v K>, Ry, T, =7



Outline

[- Two-View Structure from Motion ]

e Robust Structure from Motion



Structure from Motion (SFM)

Problem formulation: Given n point correspondences between two images,
{p', = (U'y,v'1), v, = (u'y, v',)}, simultaneously estimate the 3D points P*,
the camera relative-motion parameters (R, T), and the camera intrinsics K, K,
that satisfy:
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Structure from Motion (SFM)

e Two variants exist:

[

— Calibrated camera(s) = K4, K, are known ]

— Uncalibrated camera(s) = K4, K, are unknown

N
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Structure from Motion (SFM)

e Let’s study the case in which the cameras are calibrated
* For convenience, let’s use normalized image coordinates
e Thus, we want to find R, T, P* that satisfy
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Scale Ambiguity

If we rescale the entire scene and camera views by a constant factor (i.e.,
similarity transformation), the projections (in pixels) of the scene points in
both images remain exactly the same:

Similarity



Scale Ambiguity

* In monocular vision, it is therefore not possible to recover the absolute scale of the
scene!

e Stereo vision?
* Thus, only 5 degrees of freedom are measurable:
* 3 parameters to describe the rotation

* 2 parameters for the translation up to a scale (we can only compute the direction of
translation but not its length)

10



Structure From Motion (SFM)

* How many knowns and unknowns?
— 4n knowns:
* n correspondences; each one (uil,vil) and (uiz,viz), i=1..n
— 5+ 3n unknowns
e 5for the motion up to a scale (3 for rotation, 2 for translation)

* 3n = number of coordinates of the n 3D points

e Does a solution exist?

— If and only if the number of independent equations = number of unknowns
S an >S5+ 3n

— First attempt to identify the solutions by Kruppa in 1913 (see slide 17).

E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspektiven mit Innerer Orientierung, Sitz.-Ber. Akad. Wiss., Wien,
Math. Naturw. Kl., Abt. lla., 1913. — English Translation plus original paper by Guillermo Gallego, Arxiv, 2017 11



https://arxiv.org/pdf/1801.01454

Cross Product (or Vector Product)

axb=c

* Vector cross product takes two vectors and returns a third vector that is
perpendicular to both inputs, with a direction given by the right-hand rule and a
magnitude equal to the area of the parallelogram that the vectors span:

axb

b

el =&

sin( @)

* So cis perpendicular to both a and b (which means that the dot product is 0)

* Also, recall that the cross product of two parallel vectors is O

* The cross product between a and b can also be expressed in matrix form as the
product between the skew-symmetric matrix of a and a vector b

| i~
| 15|
-3, a0 o b 12



Can we solve the estimation of relative motion (R,T) independently
of the estimation of the structure (3D points)?

The next couple of slides prove that this is possible. Once R,T are
known, the 3D points can be triangulated using the triangulation
algorithms from Lecture 7 (slides 30-36)

13



Epipolar Geometry

p1, D, T are coplanar:

prn=0= P, - (Txpy))=0 =P, (Tx(RP,))=0

= p, [TI.LRp,=0 :‘ﬁg E p, =0 epipolar constmint‘

‘ E=[T].R essential matrix ‘

14



Epipolar Geometry

0, | a0,
P.=|V1| P, =V, | Normalized image coordinates
L 1 - L 1 -
P, EP. =0  Epipolar constraint or Longuet-Higgins equation (1981)
E=[T]LR Essential matrix

The Essential Matrix can be decomposed into R and T recalling that E =[T] R
Four distinct solutions for R and T are possible.

H. Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two
projections, Nature, 1981, PDF.

15


https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf

Exercise

 Compute the Essential matrix for the case of two rectified stereo images

Rectified case

=

T
R:IBXB
—b O 0 O O 0 O
T=|0|~-[Tlxk=(0 0 b -E=|0 0 b
0 0O —b O 0O —b O

16



How to compute the Essential Matrix?

Image 1 Image 2

» If we don’t know R and T, can we estimate E from two images?
» Yes, given at least 5 correspondences

17



How to compute the Essential Matrix?

* Kruppa showed in 1913 that 5 image correspondences is the minimal case and
that there can be at up to 11 solutions.

* However, in 1988, Demazure showed that there are actually at most 10 distinct
solutions.

* 1In 1996, Philipp proposed an iterative algorithm to find these solutions.

 Onlyin 2004, the first efficient and non iterative solution was proposed. It uses
Groebner basis decomposition [Nister, CVPR’2004].

* The first popular solution uses 8 points and is called the 8-point algorithm or
Longuet-Higgins algorithm (1981). Because of its ease of implementation, it is
still used today (e.g., NASA rovers).

H. Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two
projections, Nature, 1981, PDF.
D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, PAMI, 2004, PDF

18


https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.8769&rep=rep1&type=pdf

The 8-point algorithm

* The Essential matrix E is defined by
5; E 51 =0
* Each pair of point correspondences p, = (0,,v,,1)", p, =(0,,V,,1)’

provides a linear equation:

5; E 51 =0 €1 € €4
E = €1 €xn €y
| €3 €3 €y

19



The 8-point algorithm

* Forn points, we can write

ell
€15
_ -l e
— 11 — 11 — 1 —1—1 —1—-1 — 1 —1 —1 1 13
u2 ul u2 Vl u2 V2 u1 V2 Vl V2 ul Vl e
_2_2 _—_2_2 _—2 _2_2 _2_2 _2 2 _2 21
u, u, u, v, 2 Vo Uy Vo Vy Vs 1 Vi 1 _
. €y (=0
€23
— N—nNn — N—n n — N—nN — N—nN — N n — N l
U, U u, v, u, vV, Uy Vo Vy Vs, u, vy _
€a
\ )
\( €3
Q (this matrix is known) | €33
H_J

E (this matrix is unknowab



The 8-point algorithm

Q-E=0

Minimal solution

Q(nx9) should have rank 8 to have a unique (up to a scale) non-trivial solution E

Each point correspondence provides 1 independent equation
Thus, 8 point correspondences are needed

Over-determined solution

n > 8 points

A solution is to minimize ||QE||? subject to the constraint ||E]|? = 1.
The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix
QT Q (because it is the unit vector x that minimizes ||Qx||? = xTQT Qx).

It can be solved through Singular Value Decomposition (SVD). Matlab instructions:

* [U,S,V] = svd(Q);
* Ev =V (:,9);
* E = reshape(Ev,3,3)"';

Degenerate Configurations
* The solution of the eight-point algorithm is degenerate when the 3D points are

coplanar. Conversely, the five-point algorithm works also for coplanar points
21



8-point algorithm: Matlab code

* Afew lines of code. Go to the exercise this
afternoon to learn how to implement it ©

22



8-point algorithm: Matlab code

function E = calibrated_eightpoint( p1, p2)

pl =pl'; % 3xN vector; each column = [u;v;1]
p2 = p2'; % 3xN vector; each column = [u;v;1]

Q=[pl(:1).*p2(:,1), ...
pl(:,2).*p2(:,1), ...
pl(:,3).*p2(:,1), ...
pl(:,1).*p2(:,2), ...
pl(:,2).*p2(:,2), ...
pl(:,3).*p2(:,2), ...
pl(:,1).*p2(:,3), ...
pl1(:,2).*p2(:,3), ...
p1(:,3).*p2(:,3) ];

[U,S,V] = svd(Q);
Eh =V(:,9);

E = reshape(Eh,3,3)';

23



Interpretation of the 8-point algorithm

The 8-point algorithm seeks to minimize the following algebraic error

Using the definition of dot product, it can be observed that
p; - EP, = ||P; [[IIEP |lcos(6)

We can see that this product depends on the angle 8 betweenp; and the normal
n = Ep,to the epipolar plane. It is non zero when p,,p,, and T are not coplanar.

epipolarplane P'17: Rpq

D
d“
.
o
.

24



Extract Rand T from E

(this slide will not be asked at the exam)

e Singular Value Decomposition: E =U ZVT

* Enforcing rank-2 constraint: set smallest singular value of > to O:

o, 0 0] [0, 0O O
>=10 o, 0;=0 o, O
0 0 X | [0 0 0]

o o —un] Ty
T=Uj+1 0 03V’ T={t, 0 t[=>f=t
O 0 L_ty t OJ LtzJ
[0 F1 0] t=K,t
R=Uj£t1 0 O0OV' A
0 0 1 R = K,RK;




4 possible solutionsof Rand T

!
!
!
!
/
! !
F !
! |
— -
/ 7
! /
! ¢
! !
‘ ’
!
!
!
!
!
!

/ (a) (b)

Only one solution where points are in front of both cameras

N/

These two views are flipped by 180° around the optical axis
(c) (d)

26



Structure from Motion (SFM)

e Two variants exist:

— Calibrated camera(s) = K4, K, are known

e Uses the Essential Matrix

[

— Uncalibrated camera(s) = K4, K, are unknown ]

e Uses the Fundamental Matrix

N

Pi

Il
-9




The Fundamental Matrix

* Before, we assumed to know the camera intrinsic parameters and we used normalized
image coordinates to get the epipolar constraint for calibrated cameras:

\71i :Kl_l Vli \72| :Kz_l V;
1 1 1 1
5; E p, =0
- T - -
u, U,




The Fundamental Matrix

* By substituting the definition of normalized coordinates into the epipolar constraint,
we get the epipolar constraint for uncalibrated cameras:

_ i_T __ I_
u2 ul
v, | KJE K] v, | =0
1 1
_ i_T _ i_

u2 ul

v, [ [Fljvi| =0

1 1

1
1T:F=K;ULRKf

29



The 8-point Algorithm for the Fundamental Matrix

 The same 8-point algorithm to compute the essential matrix from a
set of normalized image coordinates can also be used to determine
the Fundamental matrix:

U |y
v, | Flv,|=0
1 1

* Advantage: we work directly in pixel coordinates

30



Problem with 8-point algorithm

=
=

=
N

=
w

N
=

N
w

w
ey

w
N

—h = =k =h =h  =h = =R =—h
N
N

w
w

33



Problem with 8-point algorithm

~10000 ~10000 ~100  ~10000 ~10000 ~100 ~100 ~100 1

w
N

fll
f12
f13
250906, 36| 133269.57 921.81) £00%931.10| 146766.13 T3g.21 272,19 133.81 1.00
2692.28) 1531633.03 176,27 6196.73| 30Z975.59 405.71 15,27 746,79 1.00 f21
416374, 23 §71684. 30 935.47) 4058110.39| 5543584, 92 91a6.90 445, 10 931.81 1.00
1 191183.60) 1717559.40 410.27) 416435.62| 3741:25.90 §93.65 465,99 413.65 1.00 f22 — O
45935.86) 30401.76 57.89 295604, 57 185309, 58 35Z.87 Gda. 22 SZ5.15 1.00 f
164756.04) 546559.67 §13.17 1933, 37 BEZE. 15 9.6 20Z.685 B7Z.14 1.00 23
11e407.01 2T27.75 133.89) 165941.27 3982, 21 20Z.77 §33. 12 159,64 1.00 f31
135384, 58] 7T5411.13 198.7Z) 411350.03| 229127.75 603. 79 651,28 379,48 1.00
f
f

w
w

Orders of magnitude difference
between column of data matrix
— least-squares yields poor results

* Poor numerical conditioning, which makes results very sensitive to noise

* Can be fixed by rescaling the data: Normalized 8-point algorithm [Hartley, PAMI’97]
34



Normalized 8-point algorithm (1/3)

* This can be fixed using a normalized 8-point algorithm [Hartley’97], which
estimates the Fundamental matrix on a set of Normalized correspondences (with
better numerical properties) and then unnormalizes the result to obtain the
fundamental matrix for the given (unnormalized) correspondences

* Idea: Transform image coordinates so that they are in the range ~[-1,1] x [-1,1]
* One way is to apply the following rescaling and shift

(0,0) (700,0) _ _ (-1,-1) (1,-1)

> 2 0 -1
700
l 0o = 1
500
0 0 1
((10)
: —»

(0,500) (700,500) (-1,1) (1,1)

Hartley, In defense of the eight-point algorithm, PAMI'97, PDE 35


https://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf

Normalized 8-point algorithm (2/3)

* Inthe original 1997 paper, Hartley proposed to rescale the two point sets such
that the centroid of each set is 0 and the mean standard deviation /2, so that the
“average” pointis equal to [0, O, 1]T (in homogeneous coordinates).

* This can be done for every point as follows:

~ 2 .
pt=—0@0 —n

. : 2
where u = (Uy, ) = % i1 pisthe centroid and o = % ™ot — || is the

mean standard deviation of the point set.

* This transformation can be expressed in matrix form using homogeneous
coordinates:

2 V2
N e
= V2 N2 |P
O T
L 0 0 1

Hartley, In defense of the eight-point algorithm, PAMI'97, PDE 36


https://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf

Normalized 8-point algorithm (3/3)

The Normalized 8-point algorithm can be summarized in three steps:

1. Normalize point correspondences: p; = B1p; , 1, = Bop,

2. Estimate normalized F with 8-p. algorithm using normalized coordinates D1, D7
3. Compute unnormalized F from F: F = B;—F B4

/\TA o~

py Fpr=0
PzTBzT F Bip,

F=BJFB,

37



Can R, T, K¢, K, be extracted from F?

* In general no: infinite solutions exist

* However, if the coordinates of the principal points of each camera are known and
the two cameras have the same focal length f in pixels, then R, T, f can
determined uniquely

38



Comparison between Normalized and non-normalized algorithm

8-point

Normalized 8-point

Nonlinear refinement

Avg. Ep. Line Distance 1

2.33 pixels

0.92 pixel

0.86 pixel

39



Error Measures

» The quality of the estimated Essential matrix can be measured using different
error metrics.

» The first one is the algebraic error that is defined directly by the Epipolar
Constraint:

N
—iT —i
err = Z (p'z E p'l)z Remember Slide 24 for the geometrical
1 interpretation of this error
1=

What is the drawback with this error measure?

» This error will exactly be 0 if E is computed from just 8 points (because in this case
a non-overdetermined solution exists). For more than 8 points, it may not be O
(due to image noise or outliers (overdetermined system)).

» There are alternative error functions that can be used to measure the quality of
the estimated Fundamental matrix: the Directional Error, the Epipolar Line
Distance, or the Reprojection Error.

40



Directional Error

» Sum of squared cosines of the angle from the epipolar plane: err = 2(cos(8i))2
i

p', Ep,
lp, |l Ep4l

SNy
\/ —

| = ET D, Epipolar plane
P1

> From slide 24, we obtain: cos(8) =

P>

2 41



Epipolar Line Distance

» Sum of Squared Epipolar-Line-to-point Distances

N
err = d*(p,, 1) +d*(p, 13)
i=1

» Cheaper than reprojection error because does not require point triangulation

| = T D, epipolar plane




Reprojection Error

» Sum of the Squared Reprojection Errors
N 12 . . 2
err =Y oy -2, (P +|p} -7, (PR T)|
i=1

» Computation is expensive because requires point triangulation
» However it is the most popular because more accurate

How to compute P? See Slides
30-36 of Lecture 07

R jected point
Reprojected po eprojected poin

T i Observed point

rved point eQ P,

R, T 2 43



Outline

e Two-View Structure from Motion

[- Robust Structure from Motion

44



Robust Estimation

» Matched points are usually contaminated by outliers (i.e., wrong image matches)
» Causes of outliers are:

= changes in view point (including scale) and illumination

" jmage noise

= occlusions

= blur
» For the camera motion to be estimated accurately, outliers must be removed

> This is the task of Robust Estimation

B
‘
"

Image 1 Image 2



Robust Estimation

» Matched points are usually contaminated by outliers (i.e., wrong image matches)

» Causes of outliers are:
= changes in view point (including scale) and illumination
" jmage noise
= occlusions

= blur
» For the camera motion to be estimated accurately, outliers must be removed

> This is the task of Robust Estimation

Image 2

Image 1



Influence of Outliers on Motion Estimation

» Error at the loop closure: 6.5 m
» Error in orientation: 5 deg
> Trajectory length: 400 m

y (meters)

-60 |

= Before removing the outliers

0 L : : After removing the outliers

0 20 40 60 80 100 120 140
x (meters)

Outliers can be removed using RANSAC [Fishler & Bolles, 1981]

Davide Scaramuzza — University of Zurich — Robotics and Perception Group - rpg.ifi.uzh.ch



RANSAC (RAndom SAmple Consensus)

* RANSAC is the standard method for model fitting in the presence of outliers
(very noisy points or wrong data)

* |t can be applied to all sorts of problems where the goal is to estimate the
parameters of a model from the data (e.g., camera calibration, Structure from
Motion, DLT, PnP, P3P, Homography, etc.)

* Let’s review RANSAC for line fitting and see how we can use it to do Structure
from Motion

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with applications to image
analysis and automated cartography. Graphics and Image Processing, 1981.

48



RANSAC



RANSAC

e Select sample of 2 points at

? . . sig” random
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RANSAC

e Select sample of 2 points at
random

e Calculate model
parameters that fit the data
in the sample




RANSAC
' e Select sample of 2 points at
\ » , 0 e P random

\ 2 ] ’,
hd "an e Calculate model parameters
. \\ . # that fit the data in the sample
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RANSAC

e Select sample of 2 points at

‘. . . random
s e Calculate model parameters
: & o ) that fit the data in the sample
. o * ..

e Calculate error function for

. each data point
. e Select data that support
. current hypothesis
. ®
L 4 .’
* L ]
’ [ ]



RANSAC

e Select sample of 2 points at

* . . .o random
" e Calculate model parameters
: d @ o ) that fit the data in the sample
® o’ ..
.:'0. . . e Calculate error function for
* ; ., - . each data point
oy
o ) . e Select data that support
. . ¢ current hypothesis
* L ]
® . * Repeat
% ¢ .
’ [ ]



RANSAC

e Select sample of 2 points at

e * o, random
e e Calculate model parameters
: P that fit the data in the sample
. ¢ * ..
< .
— e A . . e Calculate error function for

1\ S, = . each data point
. e \ e Select data that support

. * ° current hypothesis

ee 3 o * Repeat



RANSAC

2 - e ¢ Select the set with the maximum
o o / number of inliers obtained within k
# iterations
[ ]
| ] L ]
»
. / ™
L J . [ ] / . -
| ] [
% / * - .
. | ]
| ]
. [ ]
bt °



RANSAC

How many iterations does RANSAC need?

* I|deally: check all possible combinations of 2 points in a dataset of N points.

* Number of all pairwise combinations: N(N-1)/2

= computationally unfeasible if N is too large.
example: 1000 points = need to check all 1000*999/2 = 500’000 possibilities!

* Do we really need to check all possibilities or can we stop RANSAC after some iterations?
Checking a subset of combinations is enough if we have a rough estimate of the
percentage of inliers in our dataset

e This can be done in a probabilistic way



RANSAC

How many iterations does RANSAC need?

* W :=number of inliers/N
N :=total number of data points

= W : fraction of inliers in the dataset = W = P(selecting an inlier-point out of the dataset)

* Assumption: the 2 points necessary to estimate a line are selected independently
= w2 =P(both selected points are inliers)
= 1-w 2 = P(at least one of these two points is an outlier)

* Let K := no. RANSAC iterations executed so far

. o (1-w?) k = P(RANSAC never selected two points that are both inliers)

* Let p :=P(probability of success)

« o 1-p=(1-w?)kand therefore :

« — 109(1-p)
log(1—w?)



RANSAC

How many iterations does RANSAC need?

The number of iterations K is

. log(1- p)
log(1—w?)

« o knowing the fraction of inliers W, after K RANSAC iterations we will have a probability P of
finding a set of points free of outliers

* Example: if we want a probability of success P=99% and we know that W=50% = k=16 iterations
* these are significantly fewer than the number of all possible combinations!
* Notice: number of points does not influence minimum number of iterations k, only w does!

* In practice we only need a rough estimate of W. More advanced variants of RANSAC estimate the
fraction of inliers and adaptively update it at every iteration (how?)



RANSAC applied to Line Fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 2 points from A

4, Fit a line through the 2 points

5. Compute the distances of all other points to this line

6. Construct the inlier set (i.e. count the number of points whose distance < d)

7. Store these inliers
8. until maximum number of iterations k reached
9. The set with the maximum number of inliers is chosen as a solution to the problem
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RANSAC applied to general model fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of s points from A

4, Fit a model from the s points

5. Compute the distances of all other points from this model

6. Construct the inlier set (i.e. count the number of points whose distance < d)
7. Store these inliers

8. until maximum number of iterations k reached

9. The set with the maximum number of inliers is chosen as a solution to the problem

( )
~_ log(1- p)
log(1-w")

g J
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The Three Key Ingredients of RANSAC

In order to implement RANSAC for Structure From Motion (SFM), we need three key
ingredients:

1. What’s the model in SFM?
2. What’s the minimum number of points to estimate the model?

3. How do we compute the distance of a point from the model? In other words, can
we define a distance metric that measures how well a point fits the model?
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Answers

1. What’s the model in SFM?

— The Essential Matrix (for calibrated cameras) or the Fundamental Matrix (for
uncalibrated cameras)

— Alternatively, Rand T

2. What'’s the minimum number of points to estimate the model?
1. We know that 5 points is the theoretical minimum number of points
2. However, if we use the 8-point algorithm, then 8 is the minimum

3. How do we compute the distance of a point from the model?

1. Algebraic error (p, Ep; = 0 or p, Fp; = 0) (Slide 40)
2. Directional error (Slide 41)

3. Epipolar line distance (Slide 42)

4. Reprojection error (Slide 43)
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Example: 8-point RANSAC applied to StM

Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

|

VHIIERE

\
I
|

L

vl ol

{1\

Image 1
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Example: 8-point RANSAC applied to StM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image on the first image
and use arrows to denote the motion vectors of the features
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Example: 8-point RANSAC applied to StM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image on the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences
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Example: 8-point RANSAC applied to StM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image on the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers
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Example: 8-point RANSAC applied to StM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image on the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

3. Repeat from 1
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Example: 8-point RANSAC applied to StM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image on the first image
and use arrows to denote the motion vectors of the features
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Example: 8-point RANSAC applied to StM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image on the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences
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Example: 8-point RANSAC applied to StM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image on the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers
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Example: 8-point RANSAC applied to StM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image on the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

3. Repeat from 1 for k times

__ log(1-p)
log(1-(1-¢)")

K
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RANSAC iterations k vs. s

k is exponential in the number of points s necessary to estimate the model:

. 3'P<Zi“t 'RANSAC - k= 199=P) _ 1177 iterations
- ssum}l:i os log(1-(1—- 5)5)

&€ =50% (fraction of outliers)
s = 8 points (8-point algorithm)

= 145 iterations

* 5-point RANSAC - k:| I(Zg(l(l_ IC)))S)
og(l-U1-¢

— Assuming
P =99%,
&€ =50% (fraction of outliers)

s = 5 points (5-point algorithm of David Nister (2004))

e 2-point RANSAC (e.g., line fitting) loa(1
_ Ass.uming - k = |0g(1gf (1_p3)s) = 16 iterations

P =99%,
& =50% (fraction of outliers)

s = 2 points
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RANSAC iterations k vs. &

k is increases exponentially with the fraction of outliers &

Mumber of RANSAL iterations

1200

1000

800

&00

400

200

Mumber of RAMNSAL iterations vs fraction of outliers

T T T
2-point :
S-paint : :
L. B [ s e e bndhodt s e
i N i T 1 1 i
10 20 =0 40 &0 &0 70 a0 90 100

Fraction of outliers
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RANSAC iterations

* Asobserved, k is exponential in the number of points s necessary to estimate the
model

* The 8-point algorithm is extremely simple and was very successful; however, it
requires more than 1177 iterations

* Because of this, there has been a large interest by the research community in
using smaller motion parameterizations (i.e., smaller s)

* The first efficient solution to the minimal-case solution (5-point algorithm) took
almost a century (Kruppa 1913 - Nister 2004)

* The 5-point RANSAC (Nister 2004) only requires 145 iterations; however:
— The 5-point algorithm can return up to 10 solutions of E (worst case scenario)
— The 8-point algorithm only returns a unique solution of E

Can we use less than 5 points?

Yes, if you use motion constraints!
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Planar Motion

Planar motion is described by three parameters: U, ¢, p

[cos® —sind O] [ pcos @
R=;sin@ <cosd O T=psing
0 0 1 0

Let’s compute the Epipolar Geometry

E=[T]R Essential matrix

5; E 51 =0 Epipolar constraint
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Planar Motion

Planar motion is described by three parameters: U, ¢, p

[ cos @

sin @
0

—sind 0]
cosd O
0 1

[ pCOS @ |
psin @

0

Let’s compute the Epipolar Geometry

[0
= o

L—psinga
E=[T].R

0
0

p COS @

0

psing |
~pos g |

0 0 psing |
0 0 — pCOS @ |-
|—psSing  pcose 0

[ cos @
sin @
0

—sin &

cos ¢
0

0
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Planar Motion

Planar motion is described by three parameters: U, ¢, p

[cos® —sind O] [ pcos @
R=;sin@ <cosd O T=psing
0 0 1 0

Let’s compute the Epipolar Geometry

0 0 psing |
[T1, 0 0 —pCOS g |

[
4
L—psingo P COS @ 0 J

| 0 0 psin(p)
E=[T].R= 0 0 — pcos(p)
—psin(p-60) pcos(p-0) 0 28



Planar Motion

Planar motion is described by three parameters: U, ¢, p

[ cos 0
R=,siné@
0

Observe that E has 2DoF (8, ¢, because p is the scale factor); thus, 2

—sind 0] [ pCOS @ |
cosd 0O T=psing
0 1_ 0

correspondences are sufficient to estimate 0 and ¢ [“2-Point RANSAC”, Ortin, 2001]

E=[T]R

0 0
= 0 0
- psin(p-0) pcos(p-06)

psin(p)
- peos(p)
0
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Can we use less than 2 point correspondences?

Yes, if we exploit wheeled vehicles with non-holonomic constraints
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Planar & Circular Motion (e.g., cars)

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

. . .
r I X ICR
vy OV | i

R\CR "

Example of Ackerman steering principle Locally-planar circular motion




Planar & Circular Motion (e.g., cars)

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

r I Y N ICR
vy OV i

R\CR "!

Example of Ackerman steering principle Locally-planar circular motion

¢ = 0/2 => only I DoF (0);

thus, only 1 point correspondence is needed [Scaramuzza, 1JCV’11]

This is the smallest parameterization possible and results in

the most efficient algorithm for removing outliers

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic
Constraints, International Journal of Computer Vision, 2011 82



Planar & Circular Motion (e.g., car

[ cos 0
R=,sind
0

0

_sin® 0] PSS
cosd 0, T-= psing
0 l_ 0 2

Let’s compute the Epipolar Geometry

E=[T] R Essential matrix

5; E 51 =0 Epipolar constraint

ICR

e .
s

s)
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Planar & Circular Motion (e.g., cars)

ICR
_ 97
_ _ _ 0 C0S —
cosd —-sinéd O 2
. .0
R=ysin@g <cos@é O T=|psin—
2
0 0 1 0
Let’s compute the Epipolar Geometry
0 0 psin o 0 0 o sin o
2 ([cos@ —-sing O] 2
E=[T].R= 0 0 —pcosg-Isine cos Oi: 0 0 pcosg
0 0 | o o 1] | ¢ 0
— psin — pcosg 0 psmg —pcosz 0
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Planar & Circular Motion (e.g., car

[ cos 0
R=,sind
0

—sin@ 0]
cosé O
0 1

Let’s compute the Epipolar Geometry

ICR

. (6 0
p; Ep=0 = Sln[zj-(uz+u1)+cos[Ej-(v2—vl):0

r

L

g = -2 tan 1[

V, -V

1
u, +u,

J

~\

J

i
Vs

=0/2

0 0
.0 0
sin —  —cos —
2 2

)

.0
sin —
2

0
COS —
2
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1-Point RANSAC algorithm

. o
o =
= =

(o]
o]
L]

of points

- ¢ 200

Compute 0 for 2
every point
correspondence 0
e o(Va, 80 60 40
= S EE | R =-2tan | —
Ov Z u, +u

2 1

1001

4 Only 1 iteration! A

The most efficient algorithm for

removing outliers (<1ms)

\ J

1-Point RANSAC is ONLY used to find the inliers.

Motion is then estimated from them in 6DOF




Comparison of RANSAC algorithms

1000

900

I
1

800 [~

700 5-point RANSAC

I

600

]

500

]

2-point RANSAC

I

400

Number of iterations, N

300 [~

I

200

100

]
1

1-point RANSAC

0 10 20 30 40 50 60 70 80 90 100
Fraction of outliers in the data (%)

_ log(1- p)
log(1- (1- £)°)

where we typically use p=99%

8-Point RANSAC 5-Point RANSAC  2-Point RANSAC 1-Point RANSAC
[Longuet-Higgins'81] [Nister’04] [Ortin’01] [Scaramuzza’11]

Numb. of >1177 >145 >16 =1
iterations
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Visual Odometry with 1-Point RANSAC

— estimated Work 1n different environments

@ current position

” E
/ N
/’/ Q\
"
%
L

%
/
N
N
W
'u"

J

PE—

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic
Constraints, International Journal of Computer Vision, 2011 88



Things to remember

SFM from 2 view
— Calibrated and uncalibrated case
— Proof of Epipolar Constraint
— 8-point algorithm and algebraic error
— Normalized 8-point algorithm
— Algebraic, directional, Epipolar line distance, Reprojection error
— RANSAC and its application to SFM
— 8 vs 5vs 1 point RANSAC, pros and cons

Readings:
— Ch. 14.2 of Corke book
— CH. 7.2 of Szeliski book
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Understanding Check

Are you able to answer the following questions?

What's the minimum number of correspondences required for calibrated SFM and why?
 Areyou able to derive the epipolar constraint?

* Areyou able to define the essential matrix?

 Areyou able to derive the 8-point algorithm?

 How many rotation-translation combinations can the essential matrix be decomposed into?
* Areyou able to provide a geometrical interpretation of the epipolar constraint?

 Areyou able to describe the relation between the essential and the fundamental matrix?
 Whyis it important to normalize the point coordinates in the 8-point algorithm?

* Describe one or more possible ways to achieve this normalization.

* Areyou able to describe the normalized 8-point algorithm?

* Are you able to provide quality metrics for the essential matrix estimation?

* Why do we need RANSAC?

 What is the theoretical maximum number of combinations to explore?

e After how many iterations can RANSAC be stopped to guarantee a given success probability?

 What s the trend of RANSAC vs. iterations, vs. the fraction of outliers, vs. the number of points
to estimate the model?

* How do we apply RANSAC to the 8-point algorithm, DLT, P3P?
* How can we reduce the number of RANSAC iterations for the SFM problem? 90



