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Lab Exercise 4 - Today afternoon

 Room ETH HG E 1.1 from 13:15 to 15:00

 Work description: implement the SIFT blob detector and tracker
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Outline

• Automatic Scale Selection

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors
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Image 2

Scale changes

• How can we match image patches corresponding to the same feature but 
belonging to images taken at different scales?

– Possible solution: rescale the patch
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Scale changes

• Scale search is time consuming (needs to be done individually for all 
patches in one image)

– Complexity would be (𝑵𝑺)𝟐 (assuming that we have 𝑁 features per 
image and 𝑆 scale levels for each image). 

• Alternative solution: assign each feature its own “scale” (i.e., size).

– What’s the optimal scale (i.e., size) of the patch?
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• Solution:

– Design a function on the image patch, which is “scale 
invariant” (i.e., which has the same value for corresponding 
patches, even if they are at different scales)

Automatic Scale Selection

scale = 1/2
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patch size

Image 1 f

patch size

Image 2
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• Approach:

scale = 1/2

f

patch size

Image 1 f

patch size

Image 2

• Take a local maximum or minimum of this function

• The patch size for which the maximum or minimum is 
achieved should be invariant to image rescaling.

s1 s2

Important: this scale invariant patch size is 
found in each image independently!

Automatic Scale Selection
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 
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Automatic Scale Selection
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Automatic Scale Selection

• When the right scale is found, the patches must be normalized 
so that they can be compared by SSD, for example.
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Automatic Scale Selection

• A “good” function for scale detection should have a single & sharp peak

• What if there are multiple peaks? Is it really a problem?

• Sharp, local intensity changes are good regions to monitor in order to 
identify the scale

 Blobs and corners are the ideal locations!

I

region size

bad

I

region size

Good or Bad?

I

region size

Very good!
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Automatic Scale Selection
• The ideal function for determining the scale is one that highlights sharp discontinuities

• Solution: convolve image with a kernel that highlights edges

• It has been shown that the Laplacian of Gaussian kernel is optimal under certain 
assumptions [Lindeberg’94]:

• Correct scale is found as local maxima or minima across consecutive smoothed images

Kernel Imagef  

Scale

19Lindeberg, Scale-space theory: A basic tool for analysing structures at different scales, Journal of Applied Statistics, 1994
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Main questions

• What points are distinctive (i.e., features, keypoints, salient points), such
that they are repeatable? (i.e., can be re-detected from other views)

• How to describe a local region?

• How to establish correspondences, i.e., compute matches?
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• We know how to detect points
• Next question:

How to describe them for matching?

?

• Simplest descriptor: patch intensity values (also called patch descriptor)

• Alternative: Census Transform or Histograms of Oriented Gradients (like in SIFT, see later)

• Then, descriptor matching can be done using (Z)SSD, (Z)SAD, or (Z)NCC, or Hamming Distance 
(NB: hamming distance can only be used for binary descriptors, like Census transform, or ORB, 
BRIEF, BRISK, FREAK)

Feature descriptors
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Feature descriptors

• We’d like to find a feature descriptor that is invariant to:

– geometric changes: rotation, scale, view point

– photometric changes: illumination

• Most feature methods are designed to be invariant to 

• 2D translation, 

• 2D rotation, 

• Scale

– Some of them can also handle

• View-point changes (e.g., SIFT & LIFT work with up to 50 degrees 
of viewpoint changes)

• Affine illumination changes
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How to achieve invariance with Patch descriptors

8 pixels

Step 1: Re-scaling and De-rotation

• Find correct scale using LoG operator

• Rescale the patch to a default size (e.g., 8×8 pixels)

• Find local orientation

– Dominant direction of gradient for the image patch (e.g., Harris eigenvectors)

• De-rotate patch through “patch warping”

– This puts the patches into a canonical orientation
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How to warp a patch?

• Start with an “empty” canonical patch (all pixels set to 0)

• For each pixel (𝑥, 𝑦) in the empty patch, apply the warping function 
𝑾(𝒙, 𝒚) to compute the corresponding position in the source image. It 
will be in floating point and will fall between the image pixels.

• Interpolate the intensity values of the 4 closest pixels in the detected 
image. You can use:

– Nearest neighbor interpolation

– Bilinear interpolation

– Bicubic interpolation
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Example 1: Roto-Translational warping

Empty canonical patch

Patch detected in the image

𝑥’ = 𝑥 cos𝜃 – 𝑦 sin𝜃 + 𝑎
𝑦’ = 𝑥 sin𝜃 + 𝑦 cos𝜃 + 𝑏𝑊

𝑊

counterclockwise rotation plus translation

(𝑥, 𝑦)

(𝑥’, 𝑦’)
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Example 2: Affine Warping
Affine warping (to achieve slight view-point invariance)
• The second moment matrix M can be used to identify the two directions of fastest and 

slowest change of intensity around the feature.

• Out of these two directions, an elliptic patch is extracted at the scale computed by with 
the LoG operator.

• The region inside the ellipse is normalized to a circular one
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Example: de-rotation, re-scaling, and affine un-warping
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Bilinear Interpolation

• It is an extension of linear interpolation for interpolating functions of two 
variables (e.g., 𝑥 and 𝑦) on a rectilinear 2D grid.

• The key idea is to perform linear interpolation first in one direction, and then 
again in the other direction. Although each step is linear in the sampled values 
and in the position, the interpolation as a whole is not linear but rather quadratic 
in the sample location.

In this geometric visualization, the value at the black spot is the sum of the value at each colored spot multiplied by 
the area of the rectangle of the same color.

𝐼(0,0) 𝐼(1,0)

𝐼(0,1) 𝐼(1,1)

𝑥

𝑦
𝐼 𝑥, 𝑦 =
𝐼 0,0 1 − 𝑥 1 − 𝑦 +
𝐼 0,1 1 − 𝑥 𝑦 +
𝐼 1,0 𝑥 1 − 𝑦 +
𝐼 1,1 𝑥 𝑦



Nearest Neighbor vs Bilinear vs Bicubic Interpolation
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Feature descriptors

• Disadvantage of patches descriptors: 

– If warping not accurately estimated, very small errors in rotation, 
scale, and view-point will affect matching score significantly

– Computationally expensive (need to unwarp every patch)

• Best descriptor solution nowadays: build descriptors from Histograms of 
Oriented Gradients (HOGs). 

– No need to warp the patch (based on the observation that HOGs are 
only little affected by viewpoint changes up to 50 degrees)
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HOG descriptor (Histogram of Oriented Gradients)

• First, multiply the patch by a Gaussian kernel to make the shape circular rather than square
• Then, compute gradients vectors at each pixel
• Build a histogram of gradient orientations, weighted by the gradient magnitudes. The 

histogram represents the HOG descriptor
• Extract all local maxima of HOG. 

– Each local maximum above a threshold is a candidate dominant orientation. In this case, 
construct a different keypoint descriptor (with different dominant orientation) for each

• To make the descriptor rotation invariant, apply circular shift to the descriptor elements such 
that the dominant orientation coincides with 0 radians
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Outline

• Automatic Scale Selection

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors
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• Scale Invariant Feature Transform

• Invented by David Lowe [IJCV, 2004] (now at Google)

SIFT descriptor
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• Scale Invariant Feature Transform

• Invented by David Lowe [IJCV, 2004] (now at Google)

• Descriptor computation:

– Multiply the patch by a Gaussian filter

– Divide patch into 4×4 sub-patches = 16 cells

– Compute HOG (8 bins, i.e., 8 directions) for all pixels inside each sub-patch

– Concatenate all HOGs into a single 1D vector:

• Resulting SIFT descriptor: 4×4×8 = 128 values

– Descriptor Matching: SSD (i.e., Euclidean-distance)

SIFT descriptor
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Intensity Normalization

• The descriptor vector 𝒗 is then normalized such that its 𝑙2 norm is 1:

ഥ𝒗 =
𝒗

σ𝑖
𝑛 𝑣𝑖

2

• This guarantees that the descriptor is invariant to linear illumination 
changes (the descriptor is already invariant to additive illumination 
because it is based on gradients; so, overall, the SIFT descriptor is 
invariant to affine illumination changes).
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SIFT matching robustness
• Can handle severe viewpoint changes (up to 50 degree out-of-plane rotation)

• Can handle even severe non affine changes in illumination (low to bright scenes) 

• Computationally expensive: 10 frames per second (fps) on an i7 processor

• Original SIFT binary files: http://people.cs.ubc.ca/~lowe/keypoints

• OpenCV C/C++ implementation: 
https://docs.opencv.org/master/da/df5/tutorial_py_sift_intro.html
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SIFT detector
Difference of Gaussian (DoG) kernel instead of Laplacian of Gaussian (computationally 
cheaper)

),(),(),(),( yxGyxGyxDoGyxLOG k  
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SIFT detector (location + scale)
SIFT keypoints: local extrema (i.e., maxima and minima) in both space and scale 
of the DoG images

• Detect maxima and minima of 
difference-of-Gaussian in scale space

• Each point is compared to its 8 
neighbors in the current image and 9 
neighbours in each of the two 
adjacent scales (above and below)

For each max or min found, output 
is the location (𝑥, 𝑦) and the scale.

40
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1. Build a Space-Scale Pyramid:
• The initial image is incrementally convolved 

with Gaussians G(𝑘𝑖𝜎) to produce blurred 
images separated by a constant factor 𝑘 in scale 
space (shown stacked in the left column). 

• The initial Gaussian G(𝜎) has 𝜎 = 1.6

• 𝑘 is chosen: 𝑘 = 2 Τ1 𝑠, where 𝑠 is the 
number of intervals into which each 
octave of scale space is divided 

• For efficiency reasons, when 𝑘𝑖 equals 2, 
the image is downsampled by a factor of 2 
and then the procedure is repeated again 
up to 5 octaves (pyramid levels)

• Adjacent blurred images are then subtracted to 
produce the Difference-of-Gaussian (DoG) 
images

2. Scale-Space extrema detection
• Detect local maxima and minima in space-scales 

(see previous slide)

How it is implemented in practice



DoG:

Scale (Gaussian blurring: G(𝑘𝜎))

O
ct

av
es

DoG images



Scale-space detection: Example

43



DoG Images example
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𝐺(𝑘𝜎) − 𝐺(𝜎) | 𝑠 = 4; 𝜎 = 1.6 |



DoG Images example
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𝐺(𝑘2𝜎) − 𝐺 𝑘𝜎 | 𝑠 = 4; 𝜎 = 1.6 |



DoG Images example
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𝐺(𝑘3𝜎) − 𝐺 𝑘2𝜎 | 𝑠 = 4; 𝜎 = 1.6 |



DoG Images example
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𝐺(𝑘4𝜎) − 𝐺(𝑘3𝜎) | 𝑠 = 4; 𝜎 = 1.6 |



DoG Images example
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𝐺(𝑘5𝜎) − 𝐺(𝑘4𝜎) | 𝑠 = 4; 𝜎 = 1.6 | 
(second octave shown at the input resolution for convenience)



DoG Images example
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𝐺(𝑘6𝜎) − 𝐺(𝑘5𝜎) | 𝑠 = 4; 𝜎 = 1.6 |
(second octave shown at the input resolution for convenience)



DoG Images example
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𝐺(𝑘7𝜎) − 𝐺(𝑘6𝜎) | 𝑠 = 4; 𝜎 = 1.6 |
(second octave shown at the input resolution for convenience)



DoG Images example
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𝐺(𝑘8𝜎) − 𝐺(𝑘7𝜎) | 𝑠 = 4; 𝜎 = 1.6 |
(second octave shown at the input resolution for convenience)



DoG Images example
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𝐺(𝑘9𝜎) − 𝐺(𝑘8𝜎) | 𝑠 = 4; 𝜎 = 1.6 |
(third octave shown at the input resolution for convenience)



DoG local maxima and minima
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SIFT Features: Summary
 SIFT: Scale Invariant Feature Transform [Lowe, IJCV 2004]

 An approach to detect and describe regions of interest in an image. 

 NB: SIFT detector = DoG detector

 SIFT features are invariant to 2D rotation, and reasonably invariant to
rescaling, viewpoint changes (up to 50 degrees), and illumination

 It runs in real-time but still slow (10 Hz on an i7 laptop)

 The expensive steps are the scale detection and descriptor extraction
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SIFT Demo
• Download original SIFT binaries and Matlab function from : 

http://people.cs.ubc.ca/~lowe/keypoints

>>[image1, descriptor1s, locs1] = sift('scene.pgm'); 

>>showkeys(image1, locs1); 

>>[image2, descriptors2, locs2] = sift('book.pgm'); 

>>showkeys(image2, locs2); 

>>match('scene.pgm','book.pgm');
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SIFT Repeatability with Viewpoint Changes

Repeatability=

# correspondences detected

# correspondences present
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SIFT Repeatability with Rescaling

Repeatability=

# correspondences detected

# correspondences present
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The highest repeatability is obtained when sampling 3 scales per octave!



Influence of Number of Orientations and Number of 
Sub-patches
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The graph shows that a single orientation histogram (n = 1) is very poor at 
discriminating. The results improve with a 4x4 array of histograms with 8 
orientations. 



What’s the output of SIFT?

• Descriptor: 4x4x8 = 128-element 1D vector

• Location (pixel coordinates of the center of the patch): 2D vector

• Scale (i.e., size) of the patch: 1 scalar value (high scale corresponds to 

high blur in the space-scale pyramid)

• Orientation (i.e., angle of the patch): 1 scalar value
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SIFT for Object recognition

60

• Can be implemented easily by returning object with the largest number of 
correspondences with the template

• For planar objects, 4 point RANSAC can be used to remove outliers (see next lectures).
• For rigid 3D objects, 5 point RANSAC (see Lecture 08).



SIFT for Panorama Stitching

[M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003]

AutoStitch: http://matthewalunbrown.com/autostitch/autostitch.html
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Main questions

• What points are distinctive (i.e., features, keypoints, salient points), such
that they are repeatable? (i.e., can be re-detected from other views)

• How to describe a local region?

• How to establish correspondences, i.e., compute matches?
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Feature matching

?
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Feature matching

• Given a feature in 𝐼1, how to find the best match in 𝐼2?

1. Define distance function that compares two descriptors (SSD, SAD, NCC or 
Hamming distance for binary descriptors (e.g., Census, BRIEF, BRISK)

2. Brute-force matching: 

1. Test all the features in 𝐼2
2. Take the one at min distance, i.e. the closest descriptor

• Issues with closest descriptor: can give good scores to very ambiguous (bad) 
matches (curse of dimensionality)

• Better approach:  compute ratio of distances to 1st to 2nd closest descriptor 

𝑑1
𝑑2

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑢𝑠𝑢𝑎𝑙𝑙𝑦 0.8)

• 𝑑1 is the distance of the closest neighbor

• 𝑑2 is the distance of the 2nd closest neighbor
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Distance ratio: Explanation

• In SIFT, the nearest neighbor is defined as the keypoint with minimum Euclidean 
distance. However, many features from an Image 1 may not have any correct 
match in Image 2 because they arise from background clutter or were not 
detected in the Image 1.

• An effective measure is obtained by comparing the distance of the closest 
neighbor to that of the second-closest neighbor. This measure performs well 
because correct matches need to have the closest neighbor significantly closer 
than the closest incorrect match to achieve reliable matching. 

• For false matches, there will likely be a number of other false matches within 
similar distances due to the high dimensionality of the feature space (this 
problem is known as curse of dimensionality). We can think of the second-
closest match as providing an estimate of the density of false matches within this 
portion of the feature space and at the same time identifying specific instances 
of feature ambiguity.
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SIFT Feature matching: distance ratio

The SIFT paper recommends to use a threshold on 0.8. Where does this 
come from?

“A threshold of 0.8 eliminates 
90% of the false matches while 
discarding less than 5% of the 
correct matches.”

“This figure was generated by 
matching images following 
random scale and orientation 
change, a depth rotation of 30 
degrees, and addition of 2% 
image noise, against a database 
of 40,000 keypoints.”
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Outline

• Automatic Scale Selection

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors
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SURF

• Speeded Up Robust Features

• Based on ideas similar to SIFT

• Approximated computation for 
detection and descriptor

• Results comparable with SIFT, plus:

– Faster computation

– Generally shorter descriptors

[Bay et al., ECCV 2006]

Bay, Tuytelaars, Van Gool, " Speeded Up Robust Features ", European Conference on Computer Vision 
(ECCV) 2006 68

Original second order partial derivatives of 
a Gaussian

SURF Approximation using box filter

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjX-vfW24zXAhUKcRQKHSxgANgQFgg3MAE&url=http://www.vision.ee.ethz.ch/~surf/eccv06.pdf&usg=AOvVaw28hygEk-vM5KUqWVEYerq2


FAST detector [Rosten et al., ICCV’05] 

• FAST: Features from Accelerated Segment Test 
• Studies intensity of pixels on circle around candidate pixel 𝑪
• 𝑪 is a FAST corner if a set of N contiguous pixels on circle are: 

• all brighter than 𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚_𝒐𝒇(𝑪) + 𝒕𝒉𝒆𝒔𝒉𝒐𝒍𝒅, or 
• all darker than 𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚_𝒐𝒇(𝑪) + 𝒕𝒉𝒆𝒔𝒉𝒐𝒍𝒅

• Typically tests for 9 contiguous pixels in a 16-pixel circumference 
• Very fast detector - in the order of 100 Mega-pixel/second 

Rosten, Drummond, Fusing points and lines for high performance tracking, International Conference on 
Computer Vision (ICCV), 2005 69

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiqtOft24zXAhXHWhQKHT3PD_UQFggoMAA&url=http://citeseerx.ist.psu.edu/viewdoc/download?doi%3D10.1.1.451.4631%26rep%3Drep1%26type%3Dpdf&usg=AOvVaw3bqh0ilyVWZw-vDDiSpgJv


BRIEF descriptor [Calonder et. al, ECCV 2010] 

Pattern for intensity pair samples –
generated randomly 

• Binary Robust Independent Elementary Features 
• Goal: high speed (in description and matching) 

• Binary descriptor formation: 
• Smooth image 
• for each detected keypoint (e.g. FAST), 

• sample 256 intensity pairs (𝑝1
𝑖 , 𝑝2

𝑖) (𝑖 = 1,… , 256) 
within a squared patch around the keypoint 

• Create an empty 256-element descriptor
• for each 𝑖𝑡ℎpair

• if 𝐼𝑝1𝑖 < 𝐼𝑝2𝑖 then set 𝑖𝑡ℎ bit of descriptor to 1 

• else to 0 

• The pattern is generated randomly (or by machine 
learning) only once; then, the same pattern is used for all 
patches

• Pros: Binary descriptor: allows very fast Hamming 
distance matching (count of the number of bits that are 
different in the descriptors matched)

• Cons: Not scale/rotation invariant 

Calonder, Lepetit, Strecha, Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV’10 70

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiN0daO3IzXAhWGthQKHc7LC4cQFggrMAA&url=https://www.cs.ubc.ca/~lowe/525/papers/calonder_eccv10.pdf&usg=AOvVaw3dZQ_4wdKEof-9tuIO68uB


• Oriented FAST and Rotated BRIEF

• Keypoint detector based on FAST

• BRIEF descriptors are steered
according to keypoint orientation (to 
provide rotation invariance)

• Good Binary features are learned by 
minimizing the correlation on a set 
of training patches.  

ORB descriptor [Rublee et al., ICCV 2011]

71

Rublee,Rabaud, Konolige, Bradski, (2011). "ORB: an efficient alternative to SIFT or SURF" (PDF). IEEE 
International Conference on Computer Vision (ICCV).

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjtuZL-2ozXAhWGOhQKHZebCZsQFggtMAA&url=http://www.willowgarage.com/sites/default/files/orb_final.pdf&usg=AOvVaw0Yb_J6CBTTEnYbvdJcdmbV


BRISK descriptor
• Binary Robust Invariant Scalable Keypoints
• Detect corners in scale-space using FAST 
• Rotation and scale invariant 

• Binary, formed by pairwise intensity 
comparisons (like BRIEF) 

• Pattern defines intensity comparisons in 
the keypoint neighborhood 

• Red circles: size of the smoothing kernel 
applied 

• Blue circles: smoothed pixel value used 
• Compare short- and long-distance pairs 

for orientation assignment & descriptor 
formation 

• Detection and descriptor speed:  ~10 
times faster than SURF

• Slower than BRIEF, but scale- and 
rotation- invariant 

72

[Leutenegger, Chli, Siegwart, ICCV 2011]

Leutenegger, Chli, Siegwart. BRISK: Binary Robust invariant scalable keypoints, ICCV 2011

http://www.margaritachli.com/papers/ICCV2011paper.pdf


FREAK descriptor
• Fast Retina Keypoint
• Rotation and scale invariant 

• Fast, compact and robust keypoint descriptor
• Sampling pattern inspired by the human retina: 

higher density of points near the center.
• Pairwise intensity comparisons form binary strings.
• Pairs are learned (as in ORB).
• Circles indicate size of smoothing kernel.
• Orientation mechanism similar to BRISK.
• Coarse-to-fine matching (cascaded approach): first 

compare the first 128 bits; if distance smaller than 
threshold, proceed to compare the next bits, etc.

• Faster to compute, less memory and more robust 
than SIFT, SURF or BRISK.
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[Alahi, Ortiz, Vandergheynst, CVPR 2012]

Human retina

FREAK sampling patternAlexandre Alahi, Raphael Ortiz, Pierre Vandergheynst, 
FREAK: Fast Retina Keypoint, CVPR 2012

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.2005&rep=rep1&type=pdf


• Learned Invariant Feature Transform
• Rotation, scale, viewpoint and illumination invariant 

• Learning-based method which does both keypoint
detection (in scale space) and description.

• First a network predicts the patch orientation which 
is used to derotate the patch.

• Then another neural network is used to generate a 
patch descriptor (128 dimensional) from the 
derotated patch.

• Illumination invariance is achieved by randomizing 
illuminations during training.

• LIFT keypoints showed the best matching score and 
repeatability. Even better than SIFT.

74

[Yi, Trulls, Lepetit, Fua, ECCV 2016]

Keypoints with scales 
and orientations 

Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, Pascal Fua, 
LIFT: Learned Invariant Feature Transform, ECCV 2016

CNN

neural network 
predicts descriptor

LIFT descriptor

https://arxiv.org/abs/1603.09114


• Joint regression of keypoint location and descriptors
• Trained on synthetic images and refined on

homographies of real images
• Detector less accurate than SIFT, but descriptor

shown to outperform SIFT
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SuperPoint: Self-Supervised Interest Point Detection 
and Description

Detone, Malisiewicz, Rabinovich. SuperPoint: Self-Supervised Interest Point Detection and 
Description. CVPRW 2018

https://arxiv.org/abs/1712.07629
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Summary (things to remember)
• Similarity metrics: NCC (ZNCC), SSD (ZSSD), SAD (ZSAD), Census Transform
• Point feature detection

– Properties and invariance to transformations
• Challenges: rotation, scale, view-point, and illumination changes

– Extraction
• Moravec
• Harris and Shi-Tomasi

– Rotation invariance
– Automatic Scale selection
– Descriptor

• Intensity patches
– Canonical representation: how to make them invariant to transformations: rotation, 

scale, illumination, and view-point (affine)
• Better solution: Histogram of oriented gradients: SIFT descriptor

– Matching
• (Z)SSD, SAD, NCC, Hamming distance (last one only for binary descriptors)

ratio 1st /2nd closest descriptor
– Depending on the task, you may want to trade off repeatability and robustness for speed: 

approximated solutions, combinations of efficient detectors and descriptors.
• Fast corner detector: FAST; 
• Keypoint descriptors faster than SIFT: SURF, BRIEF, ORB, BRISK
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Reading

• Ch. 4.1 and Ch. 8.1 of Szeliski book

• Ch. 4 of Autonomous Mobile Robots book

• Ch. 13.3 of Peter Corke book
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Understanding Check

Are you able to answer:

• How does automatic scale selection work?

• What are the good and the bad properties that a function for automatic scale 
selection should have or not have?

• How can we implement scale invariant detection efficiently? (show that we can 
do this by resampling the image vs rescaling the kernel).

• What is a feature descriptor? (patch of intensity value vs histogram of oriented 
gradients). How do we match descriptors?

• How is the keypoint detection done in SIFT and how does this differ from Harris?

• How does SIFT achieve orientation invariance?

• How is the SIFT descriptor built?

• What is the repeatability of the SIFT detector after a rescaling of 2? And for a 50 
degrees viewpoint change?

• Illustrate the 1st to 2nd closest ratio of SIFT detection: what’s the intuitive 
reasoning behind it? Where does the 0.8 factor come from?
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