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Lab Exercise 3 - Today afternoon

 Room ETH HG E 1.1 from 13:15 to 15:00

 Work description: implement the Harris corner detector and tracker
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Outline

• Filters for Feature detection

• Point-feature extraction: today and next lecture

3



Filters for Feature Detection

• In the last lecture, we used filters to reduce noise or 
enhance contours

• However, filters can also be used to detect “features”

– Goal: reduce amount of data to process in later 
stages, discard redundancy to preserve only what 
is useful (leads to lower bandwidth and memory 
storage)

• Edge detection (we have seen this already; 
edges can enable line or shape detection)

• Template matching

• Keypoint detection
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Template

• Find locations in an image that are similar to a template

• If we look at filters as templates, we can use correlation (like convolution but 
without flipping the filter) to detect these locations

Filters for Template Matching
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Detected template

• Find locations in an image that are similar to a template

• If we look at filters as templates, we can use correlation (like convolution but 
without flipping the filter) to detect these locations

Correlation map

Filters for Template Matching
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Scene

Template

Where’s Waldo?
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Scene

Template

Where’s Waldo?
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Scene

Template

Where’s Waldo?
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Summary of filters
• Smoothing filter:

– has positive values

– sums to 1  preserve brightness of constant regions

– removes “high-frequency” components: “low-pass” filter

• Derivative filter:
– has opposite signs used to get high response in regions of high 

contrast

– sums to 0  no response in constant regions

– highlights “high-frequency” components: “high-pass” filter

• Filters as templates
• Highest response for regions that “look similar to the filter”
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Scene Template

Template Matching
• What if the template is not identical to the object we want to detect?

• Template Matching will only work if scale, orientation, illumination, and, in 
general, the appearance of the template and the object to detect are very 
similar. What about the pixels in template background (object-background 
problem)?

Scene

Template
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• Consider images H and F as vectors, their correlation is:

• In Normalized Cross Correlation (NCC), we consider the unit vectors of H

and F , hence we measure their similarity based on the angle     . If H and 
F are identical, then NCC = 1. 

𝐹

H



Correlation as Scalar Product

cos, FHFH 



FH

FH ,
cos 





  

 
k

ku

k

kv

k

ku

k

kv

k

ku

k

kv

vuFvuH

vuFvuH

22 ),(),(

),(),(

12



Other Similarity measures

• Normalized Cross Correlation (NCC): takes values between -1 and +1 (+1 = 
identical)

• Sum of Squared Differences (SSD)

• Sum of Absolute Differences (SAD) (used in optical mice)
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Zero-mean SAD, SSD, NCC
To account for the difference in the average intensity of two images (typically 
caused by additive illumination changes), we subtract the mean value of each 
image:

• Zero-mean Normalized Cross Correlation (ZNCC)

• Zero-mean Sum of Squared Differences (ZSSD)

• Zero-mean Sum of Absolute Differences (ZSAD) (used in optical mice)
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ZNCC is invariant to 
affine intensity changes:
𝐼′(𝑥, 𝑦) = 𝛼𝐼 𝑥, 𝑦 + 𝛽

Are these invariant to affine 
illumination changes?
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Census Transform
• Maps an image patch to a bit string:

– if a pixel is greater than the center pixel its corresponding bit is set to 1, else 
to 0

– For a 𝑤 × 𝑤 window the string will be 𝒘𝟐 − 𝟏 bits long

• The two bit strings are compared using the Hamming distance, which is the 
number of bits that are different. This can be computed by counting the number 
of 1s in the Exclusive-OR (XOR) of the two bit strings

Advantages

• No square roots or divisions are required, 
thus very efficient to implement, especially 
on FPGA

• Intensities are considered relative to the center 
pixel of the patch making it invariant to monotonic
intensity changes
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Outline

• Filters for feature extraction

• Point-feature (or keypoint) extraction: today and next lecture
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Keypoint extraction and matching - Example

Video from “Forster, Pizzoli, Scaramuzza, SVO: Semi-Direct Visual Odometry, ICRA’14”
https://www.youtube.com/watch?v=2YnIMfw6bJY 17

https://www.youtube.com/watch?v=2YnIMfw6bJY


Why do we need keypoints?

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

Example of feature tracks

Recall the Visual-Odometry flow chart:
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Why do we need keypoints?

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

𝑇𝑘,𝑘−1 = ?

𝒑𝑖

𝒖′𝑖𝒖𝑖

Keypoint extraction is the key ingredient of motion estimation!
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Keypoints are also used for:

• Panorama stitching

• Object recognition

• 3D reconstruction

• Place recognition

• Indexing and database retrieval (e.g., Google Images or http://tineye.com)
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These problems go under the name of 
Image Matching problem:

finding similar keypoints between two images of the same scene 
taken under different conditions

http://tineye.com/


Image matching: why is it challenging?
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NASA Mars Rover images

Image matching: why is it challenging?
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NASA Mars Rover images with SIFT feature matches

Image matching: why is it challenging?
Answer below
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Example: panorama stitching

This panorama was generated using AUTOSTITCH: 
http://matthewalunbrown.com/autostitch/autostitch.html
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How does it work?

http://matthewalunbrown.com/autostitch/autostitch.html


• We need to align images

• How would you do it?

Local features and alignment
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• Detect point features in both images

Local features and alignment
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• Detect point features in both images

• Find corresponding pairs

Local features and alignment
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• Detect point features in both images

• Find corresponding pairs

• Use these pairs to align the images

Local features and alignment
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Matching with Features

• Problem 1:

– Detect the same points independently in both images

We need a repeatable feature detector. Repeatable means that the detector should be 
able to re-detect the same feature in different images of the same scene.

This property is called Repeatability of a feature detector.

no chance to match!
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Matching with Features

• Problem 2:

– For each point, identify its correct correspondence in the other 
image(s)

We need a distinctive feature descriptor. A descriptor is a “description” of the pixel 
information around a feature (e.g., patch intensity values, gradient values, etc.). 

Distinctive means that the descriptor uniquely identifies a feature from its surrounding 
without ambiguity. 

This property is called Distinctiveness of a feature descriptor.

The descriptor must also be robust to geometric and illumination changes. 

?
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Geometric changes

• Rotation

• Scale (i.e., zoom)

• View point (i.e, perspective changes)
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Illumination changes

32

Typically, small illumination changes are modelled with an affine transformation 
(so called affine illumination changes): 

𝐼′(𝑥, 𝑦) = 𝛼𝐼 𝑥, 𝑦 + 𝛽



Subset of local feature types designed to be invariant to common 
geometric and photometric transformations.

Basic steps:

1) Detect repeatable and distinctive interest points 

2) Extract invariant descriptors

Invariant local features
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Main questions

• What features are repeatable and distinctive?

• How to describe a feature?

• How to establish correspondences, i.e., compute matches?
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What is a Repeatable & Distinctive feature?

• Consider the image pair below with extracted patches
• Notice how some patches can be localized or matched with higher accuracy 

than others

Image 1 Image 2

35



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 A corner is defined as the intersection of one or more edges
 Corner have high localization accuracy

→ Corners are good for VO

 Corners are less distinctive than blobs

 E.g., Harris, Shi-Tomasi, SUSAN, FAST

 A blob is any other image pattern that is not a corner and differs 
significantly from its neighbors (e.g., a connected region of pixels 
with similar color, a circle, etc.)
 Blobs have less localization accuracy than corners

 Blobs are more distinctive than a corner

→ blobs are better for place recognition 

 E.g., MSER, LOG, DOG (SIFT), SURF, CenSurE, 
BRIEF, BRISK, ORB, FREAK, etc.



Corner detection
• Key observation: in the region around a corner, image gradient 

has two or more dominant directions

• Corners are repeatable and distinctive
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The Moravec Corner detector (1980)

38H. Moravec, Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, PhD thesis, Chapter 5, 
Stanford University, Computer Science Department, 1980.

• How do we identify corners?

• Look at a region of pixels through a small window

• Shifting a window in any direction should give a large intensity changes (e.g., in 
SSD) in at least 2 directions

“flat” region:
no intensity change 

(i.e., SSD ≈ 0 in all directions)

“corner”:
significant change in at least 2 

directions
(i.e., SSD ≫ 0 in all directions)

“edge”:
no change along the edge 

direction
(i.e., SSD ≈ 0 along edge but ≫

0 in other directions)

http://www.frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/p05.html


The Moravec Corner detector (1980)

39H. Moravec, Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, PhD thesis, Chapter 5, 
Stanford University, Computer Science Department, 1980.

“Sums of squares of differences of pixels adjacent in each of four directions (horizontal, 

vertical and two diagonals) over each window are calculated, and the window's interest 

measure is the minimum of these four sums. Features are chosen where the interest measure 

has local maxima.” [Moravec’80, PhD thesis, Chapter 5, link]
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Consider the reference patch centered at (𝑥, 𝑦) and the shifted window centered at 
(𝑥 + ∆𝑥, 𝑦 + ∆𝑦). The patch has size 𝑃. The Sum of Squared Differences between them is:

http://www.frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/p05.html
https://frc.ri.cmu.edu/~hpm/project.archive/robot.papers/1975.cart/1980.html.thesis/p05.html


The Harris Corner detector (1988)
• It implements the Moravec corner detector without having to physically 

shift the window but rather by just looking at the patch itself, by using 
differential calculus.

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ , 1988 Proceedings of the 4th Alvey Vision Conference: 
pages 147-151. 40

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf


• Consider the reference patch centered at (𝑥, 𝑦) and the shifted window centered at 
(𝑥 + ∆𝑥, 𝑦 + ∆𝑦). The patch has size 𝑃. 

• The Sum of Squared Differences between them is:

• Let                        and                        . Approximating with a 1st order Taylor expansion:

• This produces the approximation
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How do we implement this?

This is a simple quadratic function in two variables (Δ𝑥, Δ𝑦) 41



• This can be written in a matrix form as
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How do we implement this?
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• This can be written in a matrix form as
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How do we implement this?
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Alternative way to write M2nd moment matrix

Notice that these are 
NOT matrix products 

but pixel-wise
products!
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What does this matrix reveal?

Since M is symmetric, it can always be decomposed into RRM 



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• We can visualize as an ellipse with axis lengths determined 

by the eigenvalues and the two axes’ orientations determined by R (i.e., the 

eigenvectors of M)

• The two eigenvectors identify the directions of largest and smallest changes of SSD

direction of the slowest 
change of SSD

direction of the fastest 
change of SSD
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Example
• First, consider an edge or a flat region. 

• We can conclude that if at least one of the eigenvalues λ is close to 0, then this is not a corner.

• Now, let’s consider an axis-aligned corner:

• We can observe that the dominant gradient directions are at 45 degrees with 𝑥 and 𝑦 axes

• We can also conclude that if both two eigenvalues are much larger than 0, then this is a corner
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How to compute λ1, λ2, R from M 
Eigenvalue/eigenvector review

• You can easily prove that λ1, λ2 are the eigenvalues of M.  

• The eigenvectors and eigenvalues of a square matrix A are the vectors x and scalars 
λ that satisfy:

• The scalar  is the eigenvalue corresponding to x
– The eigenvalues are found by solving:

– In our case, A = M is a 2x2 matrix, so we have

– The solution is:

– Once you know , you find the two eigenvectors x (i.e., the two columns of R) by solving:
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Visualization of 2nd moment matrices

47



Visualization of 2nd moment matrices

NB: the ellipses here are plotted proportionally to the eigenvalues and not as iso-SSD ellipses 
as explained before. So small ellipses here denote a flat region, and big ones, a corner.



Interpreting the eigenvalues
• Classification of image points using eigenvalues of M

• A corner can then be identified by checking whether the minimum of 
the two eigenvalues of M is larger than a certain user-defined threshold

⇒ R = min(1,2)  >  threshold

• R is called “cornerness function”

• The corner detector using 
this criterion is called 
«Shi-Tomasi» detector

1

2
“Corner”

1 and 2 are large,

⇒ R >  threshold

⇒ SSD increases in all 

directions

1 and 2 are small;

SSD is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

J. Shi and C. Tomasi (June 1994). "Good Features 
to Track,". 9th IEEE Conference on Computer 
Vision and Pattern Recognition

49

http://citeseer.ist.psu.edu/shi94good.html
http://www.inf.fu-berlin.de/lehre/SS06/SeminarComputerVision/origReport_von_Carlo_Tomasi.pdf
http://citeseer.ist.psu.edu/shi94good.html


Interpreting the eigenvalues



2

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region
1

“Corner”

1 and 2 are large,

⇒ R >  threshold

⇒ SSD increases in all 

directions

• Computation of λ1 and λ2 is expensive  Harris & Stephens 
suggested using a different  cornerness function:

)(trace)det()( 22

2121 MkMkR  

• 𝑘 is a magic number in the 
range (0.04 to 0.15)

50

C.Harris and M.Stephens. "A Combined 
Corner and Edge Detector.“ , 1988 
Proceedings of the 4th Alvey Vision 

Conference: pages 147-151.

• The corner detector using 
this criterion is called 
«Harris» detector

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf


Harris Detector: Workflow
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Harris Detector: Workflow
• Compute corner response 𝑅
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Harris Detector: Workflow
• Find points with large corner response: 𝑅 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
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Harris Detector: Workflow
• Take only the points of local maxima of thresholded 𝑅 (non-maxima suppression)
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Harris Detector: Workflow
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Harris (or Shi-Tomasi) Corner Detector Algorithm

Algorithm:

1. Compute derivatives in x and y directions (𝐼𝑥 , 𝐼𝑦) e.g. with Sobel filter

2. Compute 𝐼𝑥
2, 𝐼𝑦

2, 𝐼𝑥𝐼𝑦

3. Convolve 𝐼𝑥
2, 𝐼𝑥

2, 𝐼𝑥𝐼𝑦 with a box filter to get σ 𝐼𝑥
2 , σ 𝐼𝑦

2 , σ 𝐼𝑥𝐼𝑦, which are 

the entries of the matrix 𝑀 (optionally use a Gaussian filter instead of a box 
filter to avoid aliasing and give more “weight” to the central pixels)

4. Compute Harris Corner Measure 𝑅 (according to Shi-Tomasi or Harris)

5. Find points with large corner response  (𝑅 > threshold)

6. Take the points of local maxima of R

56

From now on, whenever you hear Harris corner detector we will be referring to 
either the original Harris detector (1988) or to its modification by Shi-Tomasi (1994).
The Shi-Tomasi, despite being a bit more expensive, yet has a small advantage… see 

next slides



Harris vs. Shi-Tomasi
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Image 𝐼 Cornerness response 𝑅



Harris vs. Shi-Tomasi

Harris 
operator

Shi-Tomasi
operator
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Harris Detector: Some Properties

How does the size of the Harris detector affect the performance?

Repeatability:

• How does the Harris detector behave with geometric changes? Which means, 
can it re-detect the same corners when the image exhibits changes in

• Rotation,

• Scale (zoom), 

• View-point,

• Illumination 
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Harris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e., eigenvalues) remains the same

Corner response R is invariant to image rotation

Image 1 Image 2
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Harris Detector: Some Properties

• But: non-invariant to image scale!

All points will be 
classified as edges

Corner!

Image 1 Image 2
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Harris Detector: Some Properties

• Quality of Harris detector for different scale changes

Repeatability=

# correspondences detected

# correspondences present

Scaling the image by ×2 
 ~18% of correspondences get 

matched



Harris Detector: Some Properties

• Is it invariant to illumination and view point changes?

– Affine illumination changes: 

• yes, why?

– Non linear, but monotonic illumination changes: 

• yes, why?

– View point invariance?

• Does the same corner look like a corner from a different 
view point? 

– It depends on the view point change, why?

Hint: 
remember that Harris corners are local maxima of the cornerness response function



Summary (things to remember)
• Filters as templates

• Correlation as a scalar product

• Similarity metrics: NCC (ZNCC), SSD (ZSSD), SAD (ZSAD), Census Transform

• Point feature detection

– Properties and invariance to transformations

• Challenges: rotation, scale, view-point, and illumination changes

– Extraction

• Moravec

• Harris and Shi-Tomasi

– Rotation invariance

• Reading: 

– Ch. 4.1 and Ch. 8.1 of Szeliski book

– Ch. 4 of Autonomous Mobile Robots book

– Ch. 13.3 of Peter Corke book



Understanding Check:

Are you able to:
• Explain what is template matching and how it is implemented?
• Explain what are the limitations of template matching? Can you use it to 

recognize cars?
• Illustrate the similarity metrics SSD, SAD, NCC, and Census transform?
• What is the intuitive explanation behind SSD and NCC?
• Explain what are good features to track? In particular, can you explain what are 

corners and blobs together with their pros and cons?
• Explain the Harris corner detector? In particular:

– Use the Moravec definition of corner, edge and flat region.
– Show how to get the second moment matrix from the definition of SSD and first order 

approximation (show that this is a quadratic expression) and what is the intrinsic 
interpretation of the second moment matrix using an ellipse?

– What is the M matrix like for an edge, for a flat region, for an axis-aligned 90-degree 
corner and for a non-axis—aligned 90-degree corner?

– What do the eigenvalues of M reveal?
– Can you compare Harris detection with Shi-Tomasi detection?
– Can you explain whether the Harris detector is invariant to illumination or scale 

changes? Is it invariant to view point changes?
– What is the repeatability of the Harris detector after rescaling by a factor of 2?


