
Lecture 04
Image Filtering

Davide Scaramuzza
http://rpg.ifi.uzh.ch

Institute of Informatics – Institute of Neuroinformatics

1

http://rpg.ifi.uzh.ch/

19.09.2019 Lecture 01 - Introduction to Computer Vision and Visual Odometry Davide Scaramuzza

26.09.2019
Lecture 02 - Image Formation 1: perspective projection and camera models
Exercise 01 - Augmented reality wireframe cube

Davide Scaramuzza
Daniel & Mathias Gehrig

03.10.2019
Lecture 03 - Image Formation 2: camera calibration algorithms
Exercise 02 - PnP problem

Davide Scaramuzza
Daniel & Mathias Gehrig

10.10.2019 Lecture 04 - Filtering & Edge detection Davide Scaramuzza

17.10.2019
Lecture 05 - Point Feature Detectors, Part 1
Exercise 03 - Harris detector + descriptor + matching

Davide Scaramuzza
Daniel & Mathias Gehrig

24.10.2019
Lecture 06 - Point Feature Detectors, Part 2
Exercise 04 - SIFT detector + descriptor + matching

Davide Scaramuzza
Daniel & Mathias Gehrig

31.10.2019
Lecture 07 - Multiple-view geometry
Exercise 05 - Stereo vision: rectification, epipolar matching, disparity, triangulation

Davide Scaramuzza
Daniel & Mathias Gehrig

07.11.2019
Lecture 08 - Multiple-view geometry 2
Exercise 06 - Eight-Point Algorithm

Antonio Loquercio
Daniel & Mathias Gehrig

14.11.2019 Lecture 09 - Multiple-view geometry 3 (Part 1) Antonio Loquercio

21.11.2019
Lecture 10 - Multiple-view geometry 3 (Part 2)
Exercise session: Intermediate VO Integration

Davide Scaramuzza
Daniel & Mathias Gehrig

28.11.2019
Lecture 11 - Optical Flow and Tracking (Lucas-Kanade)
Exercise 08 - Lucas-Kanade tracker

Davide Scaramuzza
Daniel & Mathias Gehrig

05.12.2019
Lecture 12 - Place recognition and 3D Reconstruction
Exercise session: Deep Learning Tutorial

Davide Scaramuzza
Daniel & Mathias Gehrig

12.12.2019
Lecture 13 - Visual inertial fusion
Exercise 09 - Bundle Adjustment

Davide Scaramuzza
Daniel & Mathias Gehrig

19.12.2019
Lecture 14 - Event based vision
After the lecture, we will Scaramuzza's lab. Departure from lecture room at 12:00 via tram 10.
Exercise session: Final VO Integration

Davide Scaramuzza
Daniel & Mathias Gehrig

No exercise this afternoon

2

Image filtering

• The word filter comes from frequency-domain processing, where “filtering” refers to the
process of accepting or rejecting certain frequency components

• We distinguish between low-pass and high-pass filtering

– A low-pass filter smooths an image (retains low-frequency components)

– A high-pass filter retains the contours (also called edges) of an image (high frequency)

Low-pass filtered image High-pass filtered image

3

Low-pass filtering

4

Low-pass filtering
Motivation: noise reduction

• Salt and pepper noise: random
occurrences of black and white
pixels

• Impulse noise: random
occurrences of white pixels

• Gaussian noise: variations in
intensity drawn from a Gaussian
distribution

Source: S. Seitz
5

Gaussian noise

How could we reduce the noise to try to recover the “ideal image”? 6

𝐼 𝑥, 𝑦 = መ𝐼 𝑥, 𝑦 + 𝜂(𝑥, 𝑦) 𝜂(𝑥, 𝑦)~Ɲ(𝜇, 𝜎)

Ideal image Noise process Gaussian i.i.d. (white) noise

Moving average

• Replaces each pixel with an average of all the values in its neighborhood

• Assumptions:

– Expect pixels to be like their neighbors

– Expect noise process to be independent from pixel to pixel

7

Moving average

• Replaces each pixel with an average of all the values in its neighborhood

• Moving average in 1D:

8

Weighted Moving Average

• Can add weights to our moving average

• Weights [1, 1, 1, 1, 1] / 5

9

Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16

10

This operation is called convolution
Example of convolution of two sequences (or “signals”)
 One of the sequences is flipped (right to left) before sliding over the other
 Notation: 𝑎 ∗ 𝑏
 Nice properties: linearity, associativity, commutativity, etc.

11

This operation is called convolution
Example of convolution of two sequences (or “signals”)
 One of the sequences is flipped (right to left) before sliding over the other
 Notation: 𝑎 ∗ 𝑏
 Nice properties: linearity, associativity, commutativity, etc.

12

• Convolution:
– Flip the filter in both dimensions (bottom to top, right to left) (=180 deg turn)

– Then slide the filter over the image and compute sum of products

2D Filtering

F

H

180 deg turn

Filtering an image: replace each pixel
with a linear combination of its neighbors.

The filter 𝑯 is also called “kernel” or “mask”.
13

𝐺 𝑥, 𝑦 =

𝑢=−𝑘

𝑘

𝑣=−𝑘

𝑘

𝐹[𝑥 − 𝑢, 𝑦 − 𝑣]𝐻 𝑢, 𝑣

𝐺 = 𝐹 ∗ 𝐻

Convolution

Cross-correlation

For a Gaussian or box filter, will the output of convolution and
correlation be different?

Review: Convolution vs. Cross-correlation

14

𝐺 𝑥, 𝑦 =

𝑢=−𝑘

𝑘

𝑣=−𝑘

𝑘

𝐹[𝑥 − 𝑢, 𝑦 − 𝑣]𝐻 𝑢, 𝑣

𝐺 𝑥, 𝑦 =

𝑢=−𝑘

𝑘

𝑣=−𝑘

𝑘

𝐹[𝑥 + 𝑢, 𝑦 + 𝑣]𝐻 𝑢, 𝑣

Properties: linearity, associativity, commutativity

Properties: linearity, but not associativity and commutativity

𝐺 = 𝐹 ∗ 𝐻

𝐺 = 𝐹 ⊗ 𝐻

Example: Moving Average in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Input image Filtered image

111
111
111

“box filter”

15

𝐹 𝑥, 𝑦 𝐺 𝑥, 𝑦

Example: Moving Average in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Input image Filtered image

16

𝐹 𝑥, 𝑦 𝐺 𝑥, 𝑦

Example: Moving Average in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Input image Filtered image

17

𝐹 𝑥, 𝑦 𝐺 𝑥, 𝑦

Example: Moving Average in 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Input image Filtered image

18

𝐹 𝑥, 𝑦 𝐺 𝑥, 𝑦

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Example: Moving Average in 2D
Input image Filtered image

19

𝐹 𝑥, 𝑦 𝐺 𝑥, 𝑦

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Example: Moving Average in 2D
Input image Filtered image

20

𝐹 𝑥, 𝑦 𝐺 𝑥, 𝑦

Box filter:
white = high value, black = zero value

original filtered

Example: Moving Average in 2D

21

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want the closest pixels to have higher influence on the output?

Gaussian filter

22

𝐹 𝑥, 𝑦

𝐻 𝑢, 𝑣

This kernel is the
approximation of a
Gaussian function:

𝐻 𝑢, 𝑣
1

2𝜋𝜎2
𝑒
−
𝑢2+𝑣2

2𝜎2

Smoothing with a Gaussian

23

Compare the result with a box filter

24

This “web”-like effect is called aliasing
and is caused by the high frequency

components of the box filter

• What parameters matter?

• Size of the kernel

– NB: a Gaussian function has infinite support, but discrete filters use finite
kernels

Gaussian filters

25

Which one approximates better the ideal Gaussian filter, the left or the right one?

Gaussian filters

Recall: standard deviation = [pixels], variance = 2 [pixels2]

• What parameters matter?

• Variance of Gaussian: control the amount of smoothing

26

σ = 5 pixels
with 30 × 30 pixel kernel

σ = 2 pixels
with 30 × 30 pixel kernel

…

σ is called “scale” of the Gaussian kernel, and controls the amount of smoothing.

Smoothing with a Gaussian

27

>> hsize = 20;

>> sigma = 5;

>> h = fspecial('gaussian', hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> im = imread('panda.jpg');

>> outim = imfilter(im, h);

>> imshow(outim);

outim

Sample Matlab code

5 10 15 20

5

10

15

20

28im

Boundary issues
• What about near the image edges?

– the filter window falls off the edges of the image

– need to pad the image borders

– methods:

• zero padding (black)

• wrap around

• copy edge

• reflect across edge

29

Summary on (linear) smoothing filters

• Smoothing filter
– has positive values (also called coefficients)

– sums to 1 preserve brightness of constant regions

– removes “high-frequency” components; “low-pass” filter

30

Non-linear filtering

31

Effect of smoothing filters

Linear smoothing filters do not alleviate salt and pepper noise!

32

Median filter
• It is a non-linear filter

• Removes spikes: good for “impulse noise” and “salt & pepper noise”

Input image

Output image

Median value

10 15 20 23 27 30 31 33 90

Sort

Replace element

33

303133
279023
201510

303133
272723
201510

Element to be
replaced

Salt and
pepper noise

Median
filtered

Plots of a row of the image

Median filter

34

Median filter
• Median filter preserves strong edges,

… but it removes small edges.
35

• Gaussian filters do not preserve strong egdes (discontinuites). This is because they apply the same
kernel everywhere.

• Median filters do preserve strong edges but remove small (weak) edges.

Image patch Kernel

Bilateral filter

Bilateral filter
• Gaussian filters do not preserve strong egdes (discontinuites). This is because they apply the same

kernel everywhere.

• Median filters do preserve strong edges but remove small (weak) edges.

• Bilateral filters solve this by adapting the kernel locally to the intensity profile, so they are patch-
content dependent: they only average pixels with similar brightness. Basically, the weighted average
discards the influence of pixels with different brightness (across the discontinuity), while all the pixels
that are on the same size of the discontinuity are smoothed.

Bilateral filter

Bilateral filter

High-pass filtering
(edge detection)

41

Edge detection

• Ultimate goal of edge detection: an idealized line drawing.

• Edge contours in the image correspond to important scene contours.

42

Edges are sharp intensity changes

43

Images as functions F(𝑥, 𝑦)

Edges look like steep cliffs

44

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
local extrema of derivative

An edge is a place of rapid change in the image intensity function.

Derivatives and edges

45

For a 2D function 𝐼(𝑥, 𝑦) the partial derivative along 𝑥 is:

For discrete data, we can approximate using finite differences:

What would be the respective filters along 𝑥 and 𝑦 to implement the
partial derivatives as a convolution?

),(),(
lim

),(

0

yxIyxI

x

yxI

1

),(),1(),(yxIyxI

x

yxI

Differentiation and convolution

46

Partial derivatives of an image

Alternative Finite-difference filters

Sample Matlab code

>> im = imread('lion.jpg');

>> h = fspecial('sobel');

>> outim = imfilter(double(im), h);

>> imagesc(outim);

>> colormap gray;
48

Image gradient
The gradient of an image:

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude

49

∇I =
𝜕𝐼

𝜕𝑥
,
𝜕𝐼

𝜕𝑦

∇I=
𝜕𝐼

𝜕𝑥
, 0

∇I= 0,
𝜕𝐼

𝜕𝑦

∇I =
𝜕𝐼

𝜕𝑥
,
𝜕𝐼

𝜕𝑦

𝜃 = 𝑎𝑡𝑎𝑛2
𝜕𝐼

𝜕𝑦
,
𝜕𝐼

𝜕𝑥

∇𝐼 =
𝜕𝐼

𝜕𝑥

2

+
𝜕𝐼

𝜕𝑦

2

The gradient points in the direction of fastest intensity change

Effects of noise
Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
50

𝜕𝐼(𝑥)

𝜕𝑥

𝐼 𝑥

Where is the edge?

Solution: smooth first

Look for peaks in 51

𝜕

𝜕𝑥
𝐼 ∗ 𝐻

𝐼

𝐻

𝐼 ∗ 𝐻

𝜕

𝜕𝑥
𝐼 ∗ 𝐻

Alternative: combine derivative and smoothing filter

Differentiation property of convolution.

52

𝜕

𝜕𝑥
𝐼 ∗ 𝐻 = 𝐼 ∗

𝜕𝐻

𝜕𝑥

𝐼

𝜕𝐻

𝜕𝑥

𝐼 ∗
𝜕𝐻

𝜕𝑥

Derivative of Gaussian filter (along 𝑥)

 11*
0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030

53

𝐼 ∗ 𝐺 ∗ 𝐻 = 𝐼 ∗ (𝐺 ∗ 𝐻)

Derivative of Gaussian filters

𝑥-direction 𝑦-direction

54

Laplacian of Gaussian
Consider

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph 55

𝐼 𝑥

𝜕2𝐻

𝜕𝑥2

𝐼 ∗
𝜕2𝐻

𝜕𝑥2

𝜕2

𝜕𝑥2
𝐼 ∗ 𝐻 = 𝐼 ∗

𝜕2𝐻

𝜕𝑥2

2D edge detection filters

• ∇2 is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

56

∇2 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2

∇2𝐺𝐺 =
1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2
𝜕𝐺

𝜕𝑥

Summary on (linear) filters
• Smoothing filter:

– has positive values

– sums to 1 preserve brightness of constant regions

– removes “high-frequency” components: “low-pass” filter

• Derivative filter:
– has opposite signs used to get high response in regions of high

contrast

– sums to 0 no response in constant regions

– highlights “high-frequency” components: “high-pass” filter

57

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

The Canny edge-detection algorithm (1986)

Take a grayscale image.
If not grayscale (i.g.,
RGB), convert it into a
grayscale by replacing
each pixel by the mean
value of its R, G, B
components.

58

https://en.wikipedia.org/wiki/Lenna

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

The Canny edge-detection algorithm (1986)

Take a grayscale image.
If not grayscale (i.g.,
RGB), convert it into a
grayscale by replacing
each pixel by the mean
value of its R, G, B
components.

59

https://en.wikipedia.org/wiki/Lenna

The Canny edge-detection algorithm (1986)

: Edge strength

Convolve the image 𝐼
with 𝑥 and 𝑦 derivatives
of Gaussian filter

60

𝜕𝐺

𝜕𝑥

𝜕𝐺

𝜕𝑦

𝜕𝐼

𝜕𝑥
= 𝐼 ∗

𝜕𝐺

𝜕𝑥

𝜕𝐼

𝜕𝑦
= 𝐼 ∗

𝜕𝐺

𝜕𝑦

∇𝐼 =
𝜕𝐼

𝜕𝑥

2

+
𝜕𝐼

𝜕𝑦

2

Thresholded ∇𝐼

The Canny edge-detection algorithm (1986)

Threshold it (i.e., set to
0 all pixels whose value
is below a given
threshold)

61

Thinning: non-maxima suppression (local-maxima detection)

along edge direction

The Canny edge-detection algorithm (1986)

Take local maximum
along gradient direction

62

Summary (things to remember)

• Image filtering (definition, motivation, applications)

• Moving average

• Linear filters and formulation: box filter, Gaussian filter

• Boundary issues

• Non-linear filters

– Median & bilateral filters

• Edge detection

– Derivating filters (Prewitt, Sobel)

– Combined derivative and smoothing filters (deriv. of Gaussian)

– Laplacian of Gaussian

– Canny edge detector

• Readings: Ch. 3.2, 4.2.1 of Szeliski book

63

Understanding Check

Are you able to:

• Explain the differences between convolution and correlation?

• Explain the differences between a box filter and a Gaussian filter?

• Explain why should one increase the size of the kernel of a Gaussian filter if is
large (i.e. close to the size of the filter kernel?

• Explain when would we need a median & bilateral filter?

• Explain how to handle boundary issues?

• Explain the working principle of edge detection with a 1𝐷 signal?

• Explain how noise does affect this procedure?

• Explain the differential property of convolution?

• Show how to compute the first derivative of an image intensity function along 𝑥
and 𝑦?

• Explain why the Laplacian of Gaussian operator is useful?

• List the properties of smoothing and derivative filters?

• Illustrate the Canny edge detection algorithm?

• Explain what non-maxima suppression is and how it is implemented?
64

