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Lab Exercise 2 - Today afternoon

 Room ETH HG E 1.1 from 13:15 to 15:00

 Work description: your first camera motion estimator using DLT
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Goal of today’s lecture
• Study the algorithms behind robot-position control and augmented reality
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Outline of this lecture

• (Geometric) Camera calibration

– PnP problem

• P3P for calibrated cameras

• DLT for uncalibrated cameras

• Omnidirectional cameras
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Camera

world

3D Landmarks

Image

Perspective from n Points (aka PnP Problem)

• Given known 3D landmarks positions in the world frame and given their image 
correspondences in the camera frame, determine the 6DOF pose of the camera 
in the world frame (including the intrinsinc parameters if uncalibrated)
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Perspective from n Points (aka PnP Problem)
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Calibrated camera 
(i.e., instrinc parameters are known)

Uncalibrated camera 
(i.e., intrinsic parameters unknown)

Works for any 3D point configurations Direct Linear Transform (DLT)

Minimum number of points: 3
P3P (Perspective from Three Points)

Minimum number of points: 
4 if coplanar

6 if non coplanar

PnP Problem



How Many Points are Enough?

• 1 Point: infinitely many solutions.

• 2 Points: infinitely many solutions, but bounded.

• 3 Points: 
– (no 3 collinear) finitely many solutions (up to 4).

• 4 Points:
– Unique solution
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Inscribed Angles are Equal
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𝑠2
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From Carnot’s Theorem:
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Algebraic Approach: reduce to 4th order equation
(Fischler and Bolles, 1981)

• It is known that 𝑛 independent polynomial equations, in 𝑛 unknowns, can have no more solutions 
than the product of their respective degrees. Thus, the system can have a maximum of 8 solutions. 
However, because every term in the system is either a constant or of second degree, for every real 
positive solution there is a negative solution. 

• Thus, with 3 points, there are at most 4 valid (positive) solutions.

• A 4th point can be used to disambiguate the solutions.

𝑠1
2 = 𝐿𝐵

2 + 𝐿𝐶
2 − 2𝐿𝐵𝐿𝐶 cos 𝜃𝐵𝐶

𝑠2
2 = 𝐿𝐴

2 + 𝐿𝐶
2 − 2𝐿𝐴𝐿𝐶 cos 𝜃𝐴𝐶

𝑠3
2 = 𝐿𝐴

2 + 𝐿𝐵
2 − 2𝐿𝐴𝐿𝐵 cos 𝜃𝐴𝐵
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By defining 𝑥 = 𝐿𝐵/𝐿𝐴, it can be shown that the system can be reduced to a 4th order equation:
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Application to Monocular Visual Odometry: 
camera pose estimation from known 3D-2D correspondences

Keyframe 1 Keyframe 2

Initial point cloud New triangulated points

Current frame
New keyframe
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AR Application: Microsoft HoloLens
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Outline of this lecture

• (Geometric) Camera calibration

– PnP problem

• P3P for calibrated cameras

• DLT for uncalibrated cameras
– From general 3D objects 

– From planar grids

• Omnidirectional cameras
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Camera calibration
• Calibration is the process to determine the intrinsic and extrinsic parameters of the 

camera model

• A method proposed in 1987 by Tsai consists of measuring the 3D position of 𝑛 ≥ 6 control 
points on a three-dimensional calibration target and the 2D coordinates of their projection 
in the image. This problem is also called “Resection”, or “Perspective from 𝒏 Points (PnP)”, 
or “Camera pose from 3D-to-2D correspondences”, and is one of the most widely used 
algorithms in Computer Vision and Robotics

• Solution: The intrinsic and extrinsic parameters are computed directly from the 
perspective projection equation; let’s see how!
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Xc
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Zw
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Xw

= Pw

3D position of control points is assigned
in a reference frame specified by the user
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Camera calibration: Direct Linear Transform (DLT)

Our goal is to compute K, R, and T that satisfy the perspective projection equation (we 
neglect the radial distortion)
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Camera calibration: Direct Linear Transform (DLT)

Our goal is to compute K, R, and T that satisfy the perspective projection equation (we 
neglect the radial distortion)
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Camera calibration: Direct Linear Transform (DLT)

Our goal is to compute K, R, and T that satisfy the perspective projection equation (we 
neglect the radial distortion)

where           is the i-th row of M
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Camera calibration: Direct Linear Transform (DLT)
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By re-arranging the terms, we obtain

For 𝑛 points, we can stack all these equations into a big matrix:
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Camera calibration: Direct Linear Transform (DLT)
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By re-arranging the terms, we obtain

For 𝑛 points, we can stack all these equations into a big matrix:

Camera calibration: Direct Linear Transform (DLT)
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Minimal solution

• 𝑄(2𝑛×12) should have rank 11 to have a unique (up to a scale) non-zero solution 𝑀

• Each 3D-to-2D point correspondence provides 2 independent equations

• Thus, 5+
1

2
point correspondences are needed (in practice 6 point correspondences!)

Over-determined solution

• n ≥ 6 points

• A solution is to minimize | 𝑄𝑀 |2 subject to the constraint | 𝑀 |2 = 1.
It can be solved through Singular Value Decomposition (SVD). The solution is the 
eigenvector corresponding to the smallest eigenvalue of the matrix 𝑄𝑇𝑄
(because it is the unit vector 𝑥 that minimizes | 𝑄𝑥 |2 = 𝑥𝑇𝑄𝑇𝑄𝑥). 

• Matlab instructions:

• [U,S,V] = svd(Q);

• M = V(:,12);

Camera calibration: Direct Linear Transform (DLT)

0MQ 
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Degenerate configurations

1. Points lying on a plane and/or along a single line passing through the center of projection

2. Camera and points on a twisted cubic (i.e., smooth curve in 3D space of degree 3)

Camera calibration: Direct Linear Transform (DLT)

0MQ 
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𝐶
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Camera calibration: Direct Linear Transform (DLT)

T)|K(RM 



















































3

2

1

333231

232221

131211

0

0

34

24

14

333231

232221

131211

  

100

0

0

  

t

t

t

rrr

rrr

rrr

v

u

m

m

m

mmm

mmm

mmm

v

u





25

• Once we have determined M, we can recover the intrinsic and extrinsic 
parameters by remembering that:



• Once we have determined M, we can recover the intrinsic and extrinsic 
parameters by remembering that 

• However, notice that we are not enforcing the constraint that 𝑅 is 
orthogonal, i.e., 𝑅 ∙ 𝑅𝑇= 𝐼

• To do this, we can use the so-called QR factorization of 𝑀, which 
decomposes 𝑀 into a 𝑅 (orthogonal), T, and an upper triangular matrix 
(i.e., 𝐾)

Camera calibration: Direct Linear Transform (DLT)
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Tsai’s (1987) Calibration example
1. Edge detection

2. Straight line fitting to the detected edges

3. Intersecting the lines to obtain the image corners (corner accuracy < 0.1 pixels)

4. Use more than 6 points (ideally more than 20) and not all lying on the same plane

27

𝛼𝑢/𝛼𝑣𝛼𝑢 𝑢0 𝑣0

What are the «skew» 
and «residuals»?

Why is this ratio 
not 1?



Tsai’s (1987) Calibration example
• The original Tsai calibration (1987) used to consider two different focal lengths 𝛼𝑢, 𝛼𝑣

(which means that the pixels are not squared) and a skew factor (𝐾12 ≠ 0, which means 
the pixels are parallelograms instead of rectangles) to account for possible misalignments 
(small 𝑥, 𝑦 rotation) between image plane and lens

• Most today’s cameras are well manufactured, thus, we can assume  
𝛼𝑢

𝛼𝑣
= 1 and 𝐾12 = 0

• What is the residual? The residual is the average “reprojection error” (see Lecture 8). The 
reprojection error is computed as the distance (in pixels) between the observed pixel point 
and the camera-reprojected 3D point. The reprojection error gives as a quantitative 
measure of the accuracy of the calibration (ideally it should be zero).
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DLT algorithm applied to mutual robot localization

In this case, the camera has been pre-calibrated (i.e., K is known). Can you 
think of how the DLT algorithm could be modified so that only R and T need 
to be determined and not K? 29

http://youtu.be/8Ui3MoOxcPQ
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Outline of this lecture

• (Geometric) Camera calibration

– PnP problem

• P3P for calibrated cameras

• DLT for uncalibrated cameras
– From general 3D objects 

– From planar grids

• Omnidirectional cameras
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Camera calibration from planar grids: homographies

• Tsai’s calibration is based on DLT algorithm, which requires points not to lie 
on the same plane

• An alternative method (today’s standard camera calibration method) 
consists of using a planar grid (e.g., a chessboard) and a few images of it 
shown at different orientations

• This method was invented by Zhang (1999) @Microsoft Research and is 
implemented in both Matlab and the OpenCV C/C++ library

31
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Camera calibration from planar grids: homographies

• Tsai’s calibration is based on DLT algorithm, which requires points not to lie 
on the same plane

• An alternative method (today’s standard camera calibration method) 
consists of using a planar grid (e.g., a chessboard) and a few images of it 
shown at different orientations

• This method was invented by Zhang (1999) @Microsoft Research and is 
implemented in both Matlab and the OpenCV C/C++ library
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• Our goal is to compute K, R, and T, that satisfy the perspective projection equation 
(we neglect the radial distortion)

• Since the points lie on a plane, we have 𝑍𝑤 = 0
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• Our goal is to compute K, R, and T, that satisfy the perspective projection equation 
(we neglect the radial distortion)

• Since the points lie on a plane, we have 𝑍𝑤 = 0

where           is the i-th row of 𝐻
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Camera calibration from planar grids: homographies

This matrix is called 
Homography

34















    

~

~

~

~

3

2

3

1

Ph

Ph

w

v
v

Ph

Ph

w

u
u

T

T

T

T

Conversion back from homogeneous coordinates to pixel coordinates leads to:
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By re-arranging the terms, we obtain

For 𝑛 points, we can stack all these equations into a big matrix:
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0HQ 
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Minimal solution

• 𝑄(2𝑛×9) should have rank 8 to have a unique (up to a scale) non-trivial solution 𝐻

• Each point correspondence provides 2 independent equations

• Thus, a minimum of 4 non-collinear points is required

Over-determined solution

• n ≥ 4 points

• It can be solved through Singular Value Decomposition (SVD) (same considerations as 
before)

Solving for K, R and T
• H can be decomposed by recalling that 

0HQ 

Camera calibration from planar grids: homographies
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How to recover K, R, T from H?

1. Estimate the homography 𝐻𝑖 for each view, using the DLT algorithm.

2. Determine the intrinsics K of the camera from a set of homographies:

1. Each homography 𝐻𝑖 ∼ 𝐾 𝒓1, 𝒓2, 𝒕 provides two linear equations in the 6 entries of 
the matrix B ≔ 𝐾−⊤𝐾−1. Letting 𝒘1 ≔ 𝐾𝒓1, 𝒘2 ≔ 𝐾𝒓2, the rotation constraints 
𝒓1
⊤𝒓1 = 𝒓2

⊤𝒓2 = 1 and  𝒓1
⊤𝒓2 = 0 become

𝒘1
⊤𝐵𝒘1 −𝒘2

⊤𝐵𝒘2 = 0 and 𝒘1
⊤𝐵𝒘2 = 0.

2. Stack 2N equations from N views, to yield a linear system 𝐴𝒃 = 𝟎. Solve for b (i.e., B) 
using the Singular Value Decomposition (SVD).

3. Use Cholesky decomposition to obtain K from B.

3. The extrinsic parameters for each view can be computed using K:
𝒓1 ∼ 𝜆𝐾−1𝐻𝑖 : , 1 ,  𝒓2 ∼ 𝜆𝐾−1𝐻𝑖 : , 2 , 𝒓3 = 𝒓1 × 𝒓2 and 𝑇𝑖 = 𝜆𝐾−1𝐻𝑖 : , 3 , 
with 𝜆 = 1/𝐾−1𝐻𝑖 : , 1 . Finally, build 𝑅𝑖 = (𝒓1, 𝒓2, 𝒓3) and enforce rotation 
matrix constraints.

Won’t be asked 
at the exam
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Types of 2D Transformations 

This transformation is called 
Homography

39



Application of calibration from planar grids
• Today, there are thousands of application of this algorithm:

– Augmented reality

Most AR apps use AprilTag or ARuco Markers
40

https://april.eecs.umich.edu/software/apriltag
https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html


Application of calibration from planar grids

Marc Pollefeys’ labMy lab

• Today, there are thousands of application of this algorithm:

– Augmented reality

– Robotics (beacon-based localization)

• Do we need to know the metric size of the tag? 
– For Augmented Reality?

– For Robotics?

41
Most AR apps use AprilTag or ARuco Markers

https://april.eecs.umich.edu/software/apriltag
https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html


If the camera is calibrated, only R and T need to be determined. In this 
case, should we use DLT (linear system of equations) or PnP (non 
linear)?

Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, IJCV’09

DLT vs PnP: Accuracy vs noise

42



DLT vs PnP: Accuracy vs number of points

If the camera is calibrated, only R and T need to be determined. In this 
case, should we use DLT (linear system of equations) or PnP (non 
linear)?

Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, IJCV’0943



DLT vs PnP: Timing

Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, IJCV’0944



An Efficient Algebraic Solution to P3P

Similarly to Kneip (CVPR’11) and Maselli (ICPR’14), directly solve for 
the camera’s pose (not the distances).

1. Eliminate the camera’s position and the features’ distances to yield 
a system of 3 equations in the camera’s orientation alone.

2. Successively eliminate two of the unknown 3-DOFs (angles) 
algebraically and arrive at a quartic polynomial equation.

• Results: outperforms previous methods in terms of speed, 
accuracy, and robustness to close-to-singular cases.

• Available in OpenCV > 3.3. solvePnP() with SOLVEPNP_AP3P

3 points Pairwise subtraction and dot product

Ke and Roumeliotis (CVPR’17)

45

Won’t be asked 
at the exam



Recap

46

Calibrated camera 
(i.e., instrinc parameters are known)

Uncalibrated camera 
(i.e., intrinsic parameters unknown)

Works for any 3D point configuration DLT (Direct Linear Transform)

Minimum number of points: 4 (i.e., 3+1)
P3P (Perspective from Three Points (plus 1))

Minimum number of points: 
4 if coplanar

6 if non coplanar

PnP Problem



Outline of this lecture

• (Geometric) Camera calibration

– PnP problem

• P3P for calibrated cameras

• DLT for uncalibrated cameras
– From general 3D objects 

– From planar grids

• Omnidirectional cameras

47



Overview on Omnidirectional Cameras



Example scene viewed by three different camera models

Zhang et al., Benefit of Large Field-of-View Cameras for Visual Odometry, ICRA’16
http://rpg.ifi.uzh.ch/fov.html 49

Perspective Fisheye Catadioptric

http://rpg.ifi.uzh.ch/fov.html


Catadioptric Cameras

50



Catadioptric Cameras
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Non Central Catadioptric cameras

52

Rays do not intersect in a single point



Camera Models

single effective viewpoint

Central Catadioptric cameras

53

• Rays do not intersect in a single point
• Mirror must be surface of revolution of a conic



Hyperbola 

+ 

Perspective camera

Parabola

+ 

Orthographic lens

Types of central catadioptric cameras

F1

F2

F1

Central Catadioptric cameras

54

NB: one of the foci of the hyperbola must lie in the 
camera’s center of projection
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Because we can:

• Apply standard algorithms valid for perspective geometry.

• Unwarp parts of an image into a perspective one

• Transform image points into normalized vectors on the unit sphere

Why do we prefer central cameras?

http://www.cis.upenn.edu/~kostas/omnigrasp.html


𝛼

p

• We describe the image projection function by means of a 
polynomial, whose coefficients are the parameters to be 
estimated

• The coefficients, intrinsics, and extrinsics are then found via DLT
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Scaramuzza, Martinelli, Siegwart, A toolbox for easily calibrating omnidirectional cameras, IROS’06. PDF
Scaramuzza, Omnidirectional Camera, chapter of Encyclopedia of Computer Vision, Springer’14. PDF

Unified Omnidirectional Camera Model

When 𝑎𝑖 = 0 then we get a pinhole camera

http://rpg.ifi.uzh.ch/docs/IROS06_scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/omnidirectional_camera.pdf


OcamCalib: Omnidirectional Camera Calibration 

• Released in 2006, it is the standard toolbox for calibrating wide angle cameras 

• Original url: https://sites.google.com/site/scarabotix/ocamcalib-toolbox

• Since 2015, included in the Matlab Computer Vision Toolbox: 
https://ch.mathworks.com/help/vision/ug/fisheye-calibration-basics.html

D. Scaramuzza, A. Martinelli, R. Siegwart, A toolbox for easily calibrating omnidirectional cameras, 
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006. PDF. 57

Example calibration images of a catadioptric camera Example calibration images of a fisheye camera

https://sites.google.com/site/scarabotix/ocamcalib-toolbox
https://ch.mathworks.com/help/vision/ug/fisheye-calibration-basics.html
http://rpg.ifi.uzh.ch/docs/IROS06_scaramuzza.pdf


Equivalence between Perspective and Omnidirectional model

58



Measures the ray direction (angles).

59

Equivalence between Perspective and Omnidirectional model



Measures the ray direction (angles).

60

Equivalence between Perspective and Omnidirectional model
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Pc

C

u

v

p


Zc

f

Image plane

C = optical center = center of the lens

Image plane

O = principal point

Zc = optical axis

Equivalence between Perspective and Omnidirectional model



Representation of image points on the unit sphere
Always possible after the camera has been calibrated!
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Summary (things to remember)

• P3P and PnP problems

• DLT algorithm

• Calibration from planar grid (Homography algorithm)

• Readings: Chapter 2.1 of Szeliski book

• Omnidirectional cameras

– Central and non central projection 

– Dioptric

– Catadioptric (working principle of conic mirrors)

• Unified (spherical) model for perspective and omnidirectional cameras

• Reading: Chapter 4 of Autonomous Mobile Robots book: link

63

http://rpg.ifi.uzh.ch/docs/teaching/2019/Ch4_AMRobots.pdf


Understanding Check

Are you able to:

• Describe the general PnP problem and derive the behavior of its solutions?

• Explain the working principle of the P3P algorithm?

• Explain and derive the DLT? What is the minimum number of point 
correspondences it requires?

• Define central and non central omnidirectional cameras?

• What kind of mirrors ensure central projection?
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