
Lucas-Kanade Tracker

Titus Cieslewski

Contents

1 Preliminaries 1

1.1 Outline of the exercise . 1
1.2 Provided code . 2
1.3 Conventions . 2

2 Part 1: Warping images 2

3 Part 2: Recovering a simple warp with brute force 3

4 Part 3: Recovering the warp with KLT 4

5 Part 4: Applying KLT to KITTI 6

6 Part 5: Outlier rejection with the bidirectional error 6

In this exercise, we will replace the crude matching method from exercise 3 with a Lucas-Kanade
Tracker.

1 Preliminaries

1.1 Outline of the exercise

As seen in today's lecture, a Lukas-Kanade Tracker (KLT1) can be used to track the position of a
point accross frames. In this exercise, we will implement KLT from scratch. We will start with a
well-de�ned problem where we warp an input image ourselves and see whether KLT can recover the
warp. Then, we will apply our KLT to the KITTI sequence and see how it improves on the matching
from exercise 3.

1for some reason the names are inverted in the acronym

Figure 1: Tracking 50 keypoints with the KLT implementation of this exercise. See
https://youtu.be/iaRPafeG9zw for a video. In this exercise, we apply KLT to downsampled im-
ages, since implementing the coarse-�ne estimation is outside of the scope of this exercise.

1

https://youtu.be/iaRPafeG9zw

Robotics and Perception Group,
University of Zurich. 2 PART 1: WARPING IMAGES

Figure 2: Results for the di�erent image warps in part 1.

1.2 Provided code

As usual, main.m contains one section for each part of the exercise which you can run individually
with Ctrl+Enter . Functions to be implemented are provided as documented stubs and are called
in main.m.

1.3 Conventions

We depart from the notation used in class only slightly, to better distinguish between the image in
which the template is de�ned (reference image) and the coe�cients of the patch of the template.
We call the reference image IR and the patch coe�cients

T = {~x|~x = ~xT + ∆~x ∀~x ∈ [−rT , rT]× [−rT , rT] ⊂ Z× Z} (1)

where we call ~xT the patch center and rT the patch radius, consistently with previous exercises.
Throughout the exercise, you will need to pay attention to indexing! Confusion can ensue

because we formulate most things as (x, y), but matrix, and in particular image elements are accessed
with (row, column), which corresponds to (y, x)!

2 Part 1: Warping images

Given an image I(x, y), we say I(W (x, y, ~p)) is the image I warped by the warp W which is itself
parametrized with the parameters ~p. We de�ne the warp with a 2× 3 matrix W such that

W (x, y, ~p) = W

xy
1

 , W =

[
p1 p3 p5

p2 p4 p6

]
. (2)

As seen in class, this is called an a�ne warp, and generalizes translation, rigid and similarity warps,
which are each a special case of the a�ne warp. In order to get a better understanding of KLT and
facilitate debugging, we will manually warp an image with W. Unfortunately, it is not very intuitive
to directly manipulate the coe�cients of W. Let us instead provide an interface which allows us
to get a similarity warp parametrized by the translation (∆x,∆y), a rotation angle α and the scale
change λ. Write the function getSimWarp which returns W such that

W (x, y, ~p) = λ(

[
cos(α) − sin(α)
sin(α) cos(α)

] [
x
y

]
+

[
∆x
∆y

]
). (3)

Then, write the function warpImage which warps the input image given W. Note that W (x, y, ~p)
is likely not to return integer coe�cients. You can for now return I(bW (x, y, ~p)c), later this will need
to be changed to bilinear interpolation to increase robustness of KLT. Also, note that W (x, y, ~p)
could land outside the image dimensions. In that case just return an intensity of 0. If all goes well,
you should obtain the results as in Figure 2.

2

Robotics and Perception Group,
University of Zurich. 3 PART 2: RECOVERING A SIMPLE WARP WITH BRUTE FORCE

Figure 3: Template and SSDS for Part 2.

3 Part 2: Recovering a simple warp with brute force

An essential part of the KLT implementation will be extracting warped patches:

I(W (T, ~p)) := {I(W (x, y, ~p)) ∀(x, y) ∈ T}, (4)

see (1) for the de�nition of the patch T . However, there is a slight issue with the current way in
which we apply warps. As you can see in Figure 2, rotation and scaling are applied in the top left
corner. This makes sense, since that is the origin. But it is also problematic, since for the warping
of any image patch not in the top left of the image, rotation and translation are now coupled. This
is tedious to think about, but also problematic for the optimization process. In order to avoid this
problem, we re-de�ne I(W (T, ~p)) such that the origin of the warp is now at the center of the image
patch ~xT :

I(W (T, ~p)) := {I(~xT +W (∆~x, ~p)), ∆~x ∈ [−rT , rT]2 ⊂ Z2}, (5)

where T, ~xT and ∆~x express the image patch, see 1. Implement the function getWarpedPatch, which
returns I(W (T, ~p)). As in the previous part, you can for now return I(bW (T, ~p)c), but Parts 4 and
5 will not really work well with that. For those parts, you should use bilinear interpolation. You can
copy bilinear interpolation from the reference solution of undistortImage in exercise 1.

We can now implement a �rst, simple, brute force tracker, as seen in the �rst part of the lecture.
The goal of tracking is to �nd a warp W which minimizes the sum of square di�erence (SSD) E
between the template and a warped patch from the image in which the template is supposed to be
tracked:

E(W) =
∑

(I(W (T,W))− IR(T))2 (6)

Because the warp is also performed on the patch domain T , we can simply extract how the center

point ~xT has moved from W : ∆~xT =
[
p5 p6

]T
. Implement trackBruteForce, which recovers

translation-only warp by trying out di�erent values for (p5, p6) and selects the one with the lowest
such SSD:

argminE(W′(p5, p6)), W′ =

[
1 0 p5

0 1 p6

]
, (7)

where the range of (p5, p6) to try is itself de�ned as a patch D with parameters (xD, yD) = (xT , yT)
but a di�erent radius rD. For the given test cases, the plots should look like in Figure 3. main.m

gives you feedback on what the recovered (p5, p6) should be.

3

Robotics and Perception Group,
University of Zurich. 4 PART 3: RECOVERING THE WARP WITH KLT

4 Part 3: Recovering the warp with KLT

As discussed in the lecture, brute force tracking works well, but has the disadvantage that it has
a large space of possible W to explore. In the previous part, this space was mitigated to two
dimensions by only using two parameters for W. But the size of the space grows exponentially with
the parameters, and a general a�ne warp has six parameters!

Thankfully, it turns out that E(W) is mostly smooth and locally convex around the optimal
solution E(W?). This is illustrated for (p5, p6) aka (∆x,∆y) on the right side of Figure 3. This
local convexity suggests that we can use gradient descent to �nd W?, assuming that we start with
an initial guess that is su�ently close to W?. KLT uses the Gauss-Newton method for gradient
descent. As seen in class, this is �rst formulated as �nding an increment ∆~p to that initial guess ~p
that minimizes the error E:

E =
∑

(I(W (T, ~p+ ∆~p))− IR(T))2 (8)

E(∆~p) = minE ⇔ ∂

∂∆~p

∑
(I(W (T, ~p+ ∆~p))− IR(T))2 = 0 (9)

If we wanted to solve this directly, we would need to �nd a di�erentiable expression for I(W (T, ~p+
∆~p)). You are welcome to try, but you will �nd that this requires a pixel-wise case distinction. This
would require much more computation than just �nding ~p with the above brute force method. The
Gauss-Newton algorithm avoids this problem by linearizing around ~p, that is, making the assumption
I(W (T, ~p + ∆~p)) ∼ I(W (T, ~p)) + ∂I

∂~p∆~p (�rst-order Taylor approximation). Using this approxima-
tion will result in an error, but solving the approximation iteratively should converge to the local
minimum2. With this approximation, (9) becomes

∂

∂∆~p

∑
(I(W (T, ~p)) +

∂I

∂~p
∆~p− IR(T))2 = 0 (10)

which we can now derive with respect to ∆~p. For simplicity of expression, let us use vector calculus.
We de�ne the column vectors ~e,~i,~iR which are the vectorizations of the expression inside the square
root in (10),I(W (T, ~p)) and IR(T), respectively. Each coe�cient of these vectors then corresponds
to a pixel of the patch T and we have:

~e =~i+
∂~i

∂~p
∆~p−~iR : (11)

Recall that a central component of vector calculus is the Jacobian matrix ∂ ~f
∂~x , which expresses the

derivative of a function ~f(~x) : Rn → Rm as follows:

∂ ~f

∂~x
=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 (12)

Note that ∂ ~f
∂~x is (m× n). It is conveniently de�ned such that f(~x) = A~x⇒ ∂ ~f

∂~x = A.
So, with (11), we can rewrite (10) as:

∂

∂∆~p
~eT~e = ~0. (13)

Let us derive with respect to ∆~p. Remember that ~e depends on ∆~p, so we need to apply the chain
rule:

∂

∂∆~p
~eT~e =

∂

∂~e
~eT~e · ∂~e

∂∆~p
(14)

2See Newton's method for �nding the root (zero-crossing) of one-dimensional functions for some intuitive under-
standing.

4

Robotics and Perception Group,
University of Zurich. 4 PART 3: RECOVERING THE WARP WITH KLT

It is simple to show that ∂
∂~e~e

T~e = 2~eT . You should be able to show that with pen and paper by

writing out the coe�cients of ~eT~e and then writing out the Jacobian ∂
∂~e for these coe�cients. As for

∂~e
∂∆~p , it is simply ∂I

∂~p , as can be seen from (11). So we now have:

2~eT · ∂
~i

∂~p
= ~0 (15)

Dividing by two and applying (AB)T = BTAT for later convenience, we get:

∂~i

∂~p

T

· ~e =
∂~i

∂~p

T

(~i+
∂~i

∂~p
∆~p−~iR) = ~0 (16)

and can now proceed to solve for ∆~p, by taking it out from the product, moving the other terms to
the right side and eliminating the factor ∆~p is multiplied with:

∂~i

∂~p

T

(~i+
∂~i

∂~p
∆~p−~iR) =

∂~i

∂~p

T
∂~i

∂~p︸ ︷︷ ︸
H

∆~p+
∂~i

∂~p

T

(~i−~iR) = 0⇔ (17)

H∆~p =
∂~i

∂~p

T

(~iR −~i) ⇔ ∆~p = H−1 ∂~i

∂~p

T

(~iR −~i), (18)

where we have introduced H, the so-called Hessian. With this derivation, you should be able to write
the function trackKLT, which iteratively updates ~p← ~p+ ∆~p with the update rule we just derived.

Start with a ~p which corresponds to an identity warp. Note that ∂~i
∂~p can be further decomposed

as seen in the class. Because ~i(~p) = ~i(~w), ~w = W~x, you can use the chain rule: ∂~i
∂~p = ∂~i

∂ ~w ·
∂ ~w
∂~p =[

~ix ~iy
]

∂
∂~pW (x, y, ~p) =

[
~ix ~iy

] [∆x 0 ∆y 0 1 0
0 ∆x 0 ∆y 0 1

]
where ∆x,∆y are the pixel coe�cients

relative to ~xT , see (5). Here, ~ix,~iy are nothing but the x- and y-gradients of the warped image
patch, vectorized. This all sounds good until you try to implement it and realize that you can't
simply implement it as a matrix multiplication, because ∆x,∆y have di�erent values for di�erent

pixels, that is, di�erent rows of
[
~ix ~iy

]
. So, to construct ∂~i

∂~p , you will need to multiply each row of[
~ix ~iy

]
with a numerically di�erent ∂ ~w

∂~p . Hints:

• Use getWarpedPatch to get I and IR, then obtain ~i and ~iR by vectorizing the matrices.

• Similarly, it is convenient to obtain the patch gradients by convolving I �rst, and vectorizing the
patch later. For convenience, you can get the image gradients by convolving with

[
1 0 −1

]
rather than with

[
1 −1

]
. Note that this convolution, if applied validly, will reduce the patch

size by one pixel on each side. To make sure that the gradient is de�ned on the full patch, use
as input to the convolutions an accordingly larger patch.

• A good �rst step when debugging is to check the whether the shapes of your intermediate

products make sense. For example, in (18) the shapes of matrices H−1, ∂~i
∂~p

T
, (~iR −~i) should

be, respectively, (6× 6), (6× |T |), (|T | × 1), where |T | is the amount of pixels in the patch.

• You should be able to write down convenient intermediate products (try to avoid redundant
calculations!) from the above derivation. If you struggle, consult the lecture notes.

• For debugging and visualization, we recommend to plot IR, I, (IR − I), the warped image
gradients Ix, Iy and the steepest descent images ∇I ∂W

∂~p , which you can obtain by reshaping

each column of ∂~i
∂~p into an image patch. See Figure 4 and https://youtu.be/3g-zEHoVwvM for

how these look like in our implementation.

5

https://youtu.be/3g-zEHoVwvM

Robotics and Perception Group,
University of Zurich.6 PART 5: OUTLIER REJECTION WITH THE BIDIRECTIONAL ERROR

Figure 4: Visualization of KLT gradient descent for the very �rst iteration. See https://youtu.be/3g-
zEHoVwvM for the video.

5 Part 4: Applying KLT to KITTI

You should now be able to run the next section, in which we take the keypoint tracker and apply it
to the KITTI dataset. This will work much better if you have implemented bilinear interpolation in
getWarpedPatch. Note that we have downsampled the images by a factor of 4. This ensures that
a su�cient amount of them are tracked; with a higher resolution, the motion of too many points
is outside of the convergence basin of KLT. As you should see, some points are still not correctly
tracked. Next, we will implement a simple method to discard points which are not correctly tracked.

6 Part 5: Outlier rejection with the bidirectional error

The bidirectional error check is a simple test to verify that a point is consistently tracked. Let us
de�ne the result of tracking a point ~xT from image Ii to image Ii+1 with KLT as

Ψi+1
i (~xT) = ~xT +

[
p5

p6

]
. (19)

Then, the bidirectional error test veri�es that when we try to track the point back to Ii, we are close
to ~xT again:

Ψi
i+1(Ψi+1

i (~xT))− ~xT < λ (20)

Implement trackKLTRobustly which encapsulates Ψi+1
i (~xT) and also indicates whether the tracking

has passed the bidirectional error test. Then, when you run the corresponding section of main.m,
you should get something like in Figure 1 and https://youtu.be/iaRPafeG9zw .

6

https://youtu.be/3g-zEHoVwvM
https://youtu.be/3g-zEHoVwvM
https://youtu.be/iaRPafeG9zw

	Preliminaries
	Outline of the exercise
	Provided code
	Conventions

	Part 1: Warping images
	Part 2: Recovering a simple warp with brute force
	Part 3: Recovering the warp with KLT
	Part 4: Applying KLT to KITTI
	Part 5: Outlier rejection with the bidirectional error

