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Abstract
This paper presents a visual-inertial odometry framework which tightly fuses inertial measurements with visual data
from one or more cameras, by means of an iterated extended Kalman filter (IEKF). By employing image patches as
landmark descriptors, a photometric error is derived, which is directly integrated as an innovation term in the filter
update step. Consequently, the data association is an inherent part of the estimation process and no additional feature
extraction or matching processes are required. Furthermore, it enables the tracking of non-corner shaped features,
such as lines, and thereby increases the set of possible landmarks. The filter state is formulated in a fully robocentric
fashion, which reduces errors related to nonlinearities. This also includes partitioning of a landmark’s location estimate
into a bearing vector and distance and thereby allows an undelayed initialization of landmarks. Overall, this results
in a compact approach which exhibits a high level of robustness with respect to low scene texture and motion blur.
Furthermore, there is no time-consuming initialization procedure and pose estimates are available starting at the
second image frame. We test the filter on different real datasets and compare it to other state-of-the-art visual-inertial
frameworks. The experimental results show that robust localization with high accuracy can be achieved with this filter-
based framework.
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1 Introduction
Robust and high-bandwidth estimation of ego-motion is a
key factor to enable the operation of autonomous robots.
For dynamically controlled robots, such as aerial vehicles or
legged robots, a reliable state estimate is essential: Failures
of the state estimator can quickly lead to damage of the
hardware and its surroundings. Thus, as autonomous robots
become more capable and extend their range of applications,
it is essential that the corresponding ego-motion estimation
can perform well in increasingly difficult environments.
The corresponding selection of sensors should be kept as
lightweight and low-cost as possible in order to employ them
on a wide range of robotic systems. Furthermore, in the
context of vision-based estimation, extreme conditions such
as strongly varying lighting, missing texture, fast motion, or
dynamic objects may need to be accounted for.

Past research has shown that combining the comple-
mentary information from an Inertial Measurement Unit
(IMU) and visual sensors can be a very capable approach
in terms of accuracy and reliability. Consequently this
approach has been successfully applied to robotic systems
such as unmanned aerial robots (Weiss et al. (2013); Shen
et al. (2014)) or legged robots (Stelzer et al. (2012); Ma
et al. (2015)). Since assessing the precision of an algo-
rithm is often simpler than evaluating its robustness, many
researchers have focused on optimizing the accuracy of their
approaches. The evaluation is typically done by measuring
the accumulated position error over given traveled distances.
Depending on the experimental setup, state-of-the-art algo-
rithms reduce position errors to 0.1% of the traveled distance

(Leutenegger et al. (2015); Forster et al. (2016); Usenko et al.
(2016)). Such a demonstration of high accuracy can serve as
surrogate for the well-functioning of an approach. However,
all odometry frameworks inherently suffer from drift and, if
the primary goal is localization accuracy, a back-end frame-
work doing global mapping, re-localization and loop closure
will be indispensable (e.g. Lynen et al. (2015)). Furthermore,
if the ego-motion estimation is employed within a feedback
loop on an autonomous robot, other aspects like reliability
and estimation time-delay become more central.

The well-established Kalman Filtering techniques repre-
sent sensor fusion frameworks that allow computationally
efficient and high-bandwidth state estimation. Due to the
inherent marginalization, the filter states at each timestep
can refer to different physical quantities, e.g., a landmark’s
position can be estimated w.r.t. the moving sensor frame
(and thereby represent a varying quantity over time). This
enables the use of a fully robocentric formulation of the
state and thereby reduces observability/nonlinearity related
issues (Castellanos et al. (2004)). To mitigate the problem of
intrinsic unobservability of a landmark’s initial distance from
the observer, the landmark position can be parameterized
by its bearing vector and distance (Montiel et al. (2006)).
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Consequently a landmark’s distance can be initialized with a
high uncertainty without affecting its bearing vector estimate
(which can be initialized with a low uncertainty). Especially
for scenarios with fast motions and short feature tracks, this
becomes invaluable as it allows a seamless initialization of
landmarks and thereby the extraction of visual information
out of a landmark’s second observation onwards. In this
context, a sound representation of the filter state is crucial for
the applicability of sensor fusion algorithms. An approach
that has become increasingly popular for 3D orientations
is based on a manifold encapsulation technique (Hertzberg
et al. (2011)), which in the present work is also applied to
bearing vectors.

The proposed approach combines an iterated extended
Kalman filter (IEKF), a fully robocentric formulation of
visual-inertial odometry, and a photometric error model.
This is achieved by associating every landmark with a
multilevel patch feature, where the innovation term is
derived by projecting the patch into the current image and
computing the photometric error for every patch pixel. To
keep the computational effort tractable, a QR-decomposition
based reduction is applied for obtaining an equivalent 2D
innovation term per observed landmark. This method takes
into account the local texture of a landmark and thereby
gains more information along the directions where the patch
gradients are stronger. In addition, this offers the possibility
to track non-corner shaped features, such as lines, increasing
the set of possible image features which is beneficial in
scenarios with missing texture.

The main contributions of this work lie in the fully
robocentric formulation of a visual-inertial odometry as well
as in the tight integration of the photometric error. The
application of manifold encapsulation to bearing vectors
can be seen as enabling technique and allows for a sound
robocentric representation of 3D landmarks. Furthermore, in
contrast to our previous work (Bloesch et al. (2015)), the
present approach inherently takes care of landmark tracking
by employing an IEKF. This allows per-landmark iterative
updates and thus provides simultaneous landmark tracking
and full state refinement while considering inertial and visual
data. To the best of our knowledge, this tight integration of
data association and estimation process has no precedent in
visual-inertial odometry.

All in all, this paper describes a fully robocentric and
direct visual-inertial odometry framework which runs in
real-time on computationally constrained platforms. To
increase robustness and usability, we implement multi-
camera support (with or without overlapping field of view)
and enable online calibration of camera-IMU extrinsics.
An in-depth derivation and evaluation of the framework
is provided, including experiments on publicly available
datasets (Burri et al. (2016)). Our framework, which we
refer to as Rovio (RObust Visual-Inertial Odometry), is
implemented in C++ and is available as open-source software
∗.

2 Related Work
Within the field of computer vision, Davison (2003)
proposed one of the first real-time 3D monocular localization
and mapping frameworks. Similarly to the work in this paper,

the author made use of an EKF framework where he co-
estimates the absolute position of 3D landmarks. Since then,
various research groups have contributed improvements and
proposed further approaches. A key issue is to improve the
consistency of the estimation framework that is affected
by its inherent nonlinearity (Julier and Uhlmann (2001);
Castellanos et al. (2004)). One approach is to make use
of a robocentric representation for the tracked landmarks
and thereby significantly reduce the effect of nonlinearities
(Castellanos et al. (2004); Civera et al. (2009)). As an
alternative, Huang et al. (2008) propose the use of a so-
called observability constrained extended Kalman filter,
whereby the inconsistencies can be avoided by using special
linearization points while evaluating the system Jacobians.

A somewhat related problem is the choice of the specific
representation of a landmark’s location. Since the depth of a
newly detected landmark is unknown for monocular setups,
the initial 3D location estimate exhibits a high uncertainty
along the view axis. To integrate this landmark from the
beginning into the estimation process, Montiel et al. (2006)
proposed the use of an inverse-depth parametrization (IDP).
They parametrize each landmark location by the camera
position where the landmark was initially detected, by a
bearing vector (parametrized with azimuth and elevation
angles), as well as the inverse depth of the landmark. The
increase in consistency for the IDP and other parametrization
methods was further analyzed and confirmed by Solà et al.
(2012).

While most standard visual odometry approaches are
based on detected and tracked point landmarks as source of
visual information, so-called direct approaches directly use
the image intensities in their estimation framework. Jin et al.
(2003) propose to model the environment as a collection of
planar patches and to derive a corresponding photometric
error between camera frames. Their work is similar to ours
in that they also embed the photometric error directly into
a filtering framework (but they do not use any inertial data
which limits them to slow motions). Molton et al. (2004)
also track locally planar image patches in a filter-based
SLAM framework. By employing gradient-based image
alignment, they also co-estimate surface normals but keep
data association separated from the subsequent EKF-based
information fusion. Silveira et al. (2008) also use planar
regions and minimize the photometric error with respect to
a reference frame in order to estimate the relative motion
as well as other parameters like illumination parameters
and patch normals. They subsequently merge the output
in an EKF. More recently, by employing highly optimized
SIMD (Single Instruction Multiple Data) implementations,
first real-time, CPU-based approaches for semi-dense motion
estimation using a monocular camera (Engel et al. (2014);
Forster et al. (2014)) have recently been proposed.

Incorporating inertial measurements in the estimation can
significantly improve the robustness of the system, provides
the estimation process with the notion of gravity, and
allows for a more accurate and high bandwidth estimation
of the velocities and rotational rates. By adapting the
original EKF proposed by Davison (2003), additional IMU

∗https://github.com/ethz-asl/rovio
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measurements can be relatively simply integrated into the
ego-motion estimation, whereby calibration parameters can
be co-estimated online (Kelly and Sukhatme (2011); Jones
and Soatto (2011)). Leutenegger et al. (2015) describe a
tightly coupled approach in which the robot trajectory and
sparse 3D landmarks are estimated in a joint optimization
problem using inertial error terms as well as the reprojection
error of the tracked landmarks in the camera images.
This is done in a windowed bundle adjustment approach
over a set of keyframe images and a temporal inertial
measurement window. Similarly, Mourikis and Roumeliotis
(2007) estimate the trajectory in an IMU-driven filtering
framework using the reprojection error of 3D landmarks as
measurement updates. Instead of adding the landmarks to
the filter state, they marginalize them out using a nullspace
decomposition, thus leading to a small filter state size. Since
inertial measurements are often obtained at a higher rate
than image data, methods for combining multiple inertial
measurements are desirable to reduce the computational
costs. Forster et al. (2016) have presented a concise IMU
measurements pre-integration method such that they can be
efficiently included in a factor graph framework. Recently,
Usenko et al. (2016) have extended their previous work on
semi-dense visual odometry (Engel et al. (2014)) in order
to integrate inertial measurements. They minimize a joint
energy term composed of visual and inertial error terms in
order to estimate the ego-motion of their sensor.

Probably the most comparable work to ours was developed
by Tanskanen et al. (2015), who implemented an EKF-based
framework for merging patch-based photometric errors with
IMU measurements. They parameterize their landmarks by
the pose of the camera when the landmark was detected
as well as the corresponding bearing vector and inverse
depth (analogously to Montiel et al. (2006)). Our work
differs in that it uses a fully robocentric formulation of
the current state, which has various implications on the
filtering and visual processing framework. We also integrate
a QR-decomposition based measurement space reduction
and perform per-landmark update iterations, which are both
key to the efficiency and accuracy of our system.

3 Prerequisites on Rotations and Unit
Vectors

3.1 Notation
For better readability and comprehensibility, we give a brief
overview of the employed notations and the algebra of
3D rotations and unit vectors. Three different coordinate
frames are used throughout the paper: the inertial world
coordinate frame, I, the IMU fixed coordinate frame, B,
as well as the camera fixed coordinate frame, C. Only
in section 6, where multi-camera setups are discussed,
the distinction between the different camera frames will
be made. The origin associated with a specific coordinate
frame is denoted by the same symbol. In this context, a
term of the form IrBC denotes the coordinates of a vector
from the origin of B to the origin of C, expressed in
the coordinate frame I. Furthermore, qBI is employed in
an abstract manner for representing the rotation between
a frame I and B. A good way to think of a rotation is

as a mapping qBI : R3 → R3 between the two associated
coordinate frames: Given a physical vector rBC , a rotation
maps the corresponding coordinates from the right index
frame to the left index frame, e.g., BrBC = qBI (IrBC). We
also employ the mapping C(q) : SO(3)→ R3×3 which is
defined such that q(r) , C(q)r and basically returns the
3× 3 rotation matrix.

As further abbreviations, we use vB for denoting the
absolute velocity of B, and ωIB for the vector describing
the relative rotational velocity of the coordinate frame B
w.r.t. the coordinate frame I. In some cases we use further
denotations like tildes (measurements) or hats (estimates) if
we want to highlight a specific aspect of a quantity. The
superscript × is used to denote the skew symmetric matrix
v× ∈ R3×3 of a vector v ∈ R3.

3.2 Representation of 3D Rotations
The set of 3D rotations, the special orthogonal group
SO(3) with group operation ⊗, is not a vector space
and thus adaptations are required in order to enable
traditional optimization based methods (e.g. filtering). A
mathematically sound and increasingly popular method is
to map the region around a selected linearization point
to a proper vector space and thereby introduce a local
parametrization. There are slight variation in how this
concept is formalized and we follow the approach of
Hertzberg et al. (2011) as we found it to provide a useful
level of abstraction for modeling.
SO(3) is a Lie group and has a logarithmic and an

exponential map which map to and from a corresponding Lie
algebra R3:

log :SO(3)→ R3, (1)
qBI 7→ log(qBI) = θBI ,

exp :R3 → SO(3), (2)
θBI 7→ exp(θBI) = qBI .

There is a certain amount of freedom in selecting these
maps. Here, we select the exponential and logarithmic maps
such that θBI in the above equations coincides with the
passive rotation vector of the rotation qBI . We can write the
following identities (the last identity is known as Rodrigues’
formula):

exp(−θ) = exp(θ)−1, (3)

exp(q(θ)) =q ⊗ exp(θ)⊗ q−1, (4)

C(θ) =I − sin(‖θ‖)θ×
‖θ‖ +

(1− cos(‖θ‖))θ×2

‖θ‖2 . (5)

The exponential and logarithmic maps can be used to
introduce a boxplus (�) and a boxminus (�) operator, which
adopt the role of addition and subtraction operators for
rotations. Using a slightly different notation than Hertzberg
et al. (2011), we define:

� :SO(3)× R3 → SO(3), (6)
q,θ 7→ exp(θ)⊗ q,

� :SO(3)× SO(3)→ R3, (7)

q,p 7→ log(q ⊗ p−1).
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Similarly to regular addition and subtraction, both operators
fulfill the following axioms:

q � 0 = q, (8)
(q � θ)� q = θ, (9)
q � (p� q) = p. (10)

This approach distinguishes between actual rotations which
are on SO(3) (Lie group) and differences of rotations which
lie on R3 (Lie algebra). The above operators take care of
appropriately transforming the elements into their respective
spaces and allow a smooth embedding of rotational
quantities in filtering and optimization frameworks.

The definition of differentials involving rotation can be
adapted by replacing the regular plus and minus operators by
the above boxplus and boxminus operators. For instance the
differential of a mapping q(x) : R→ SO(3) can be defined
as:

∂

∂x
q(x) := lim

ε→0

q(x+ ε)� q(x)

ε
. (11)

The same can be done for the other way round where we have
a mapping x(q) : SO(3)→ R:

∂

∂q
x(q) := lim

ε→0


x(q�(e1ε))−x(q)

ε
x(q�(e2ε))−x(q)

ε
x(q�(e3ε))−x(q)

ε


T

(12)

where e1/2/3 are orthonormal basis vectors. This results in
the following frequently-used derivatives (these may vary
depending on conventions):

∂/∂t (qBI(t)) = BωIB(t), (13)

∂/∂q (q(r)) = (q(r))
×
, (14)

∂/∂q
(
q−1

)
= −C(q)T , (15)

∂/∂q (q ⊗ p) = I, (16)
∂/∂q (p⊗ q) = C(p), (17)
∂/∂θ (exp(θ)) = Γ(θ), (18)

∂/∂q (log(q)) = Γ−1(log(q)). (19)

The derivative of the exponential map is given by the
Jacobian Γ(θ) ∈ R3×3 which has the following analytical
expression:

Γ(θ) =I − (1− cos(‖θ‖))θ×
‖θ‖2 +

(‖θ‖ − sin(‖θ‖))θ×2

‖θ‖3 .

(20)

The above derivations are independent of the actual
numerical parametrization of 3D rotations (e.g. quaternions
or rotation matrices) as long as it is lossless and the
associated operations adhere to certain rules. A more detailed
discussion and derivations can be found in Bloesch et al.
(2016). The employed parametrization in the implementation
is based on unit quaternions using the Hamilton convention.
For a unit quaternion q with real part q0 and imaginary part q̌
we employ the following exponential and logarithmic maps:

exp(θ) = (q0, q̌) =

(
cos(‖θ‖/2), sin(‖θ‖/2)

θ

‖θ‖

)
(21)

log(q) = 2 atan2(‖q̌‖, q0)
q̌

‖q̌‖ (22)

where θ ∈ R3 can be interpreted as the corresponding rota-
tion vector. Both maps together with the quaternion multipli-
cation are the only parametrization specific operations that
are required.

3.3 Representation of 3D Unit Vectors
While the above handling of rotations has been used
similarly in previous filtering frameworks (e.g. Li and
Mourikis (2013); Bloesch et al. (2013)), we extend the
methodology to 3D unit vectors on the 2-sphere S2. This
is done analogously to Hertzberg et al. (2011), whereas
we employ a parametrization yielding simple analytical
derivatives and guarantee second order differentiability. A
main issue with 3D unit vectors is to select orthonormal
vectors for spanning the tangent space such that a suitable
difference operator can be defined. Assigning orthonormal
vectors to every point on the 2-sphere creates a vector
field and as stated by the “hairy ball theorem”, there is no
continuous way of doing so over the full 2-sphere. To solve
this issue we employ a rotation, µ ∈ SO(3), as underlying
representation for unit vectors and define the following
quantities:

n(µ) := µ(ez) ∈ S2 ⊂ R3, (23)

N(µ) := [µ(ex),µ(ey)] ∈ R3×2, (24)

where ex/y/z ∈ R3 are the basis vectors of an arbitrary
orthonormal coordinate system. The actual unit vector is
given by n(µ) which results when rotating ez by µ (if the
context is clear we directly refer to the unit vector using µ).
The matrix N(µ) is composed of the rotated ex and ey
and spans the tangent space. While such a construction of
the tangent space is not deterministic since infinitely many
rotations µ provide the same unit vector n(µ), we have
the advantage that smooth transformations of the rotation
µ induce smooth transformations of the associated tangent
space.

The tangent space can be used to define the following
boxplus and boxminus operators:

� :SO(3)× R2 → SO(3), (25)
µ,u 7→ exp(N(µ)u)⊗ µ,

� :SO(3)× SO(3)→ R2, (26)

ν,µ 7→N(µ)Tθ(µ,ν),

where θ maps two unit vectors to the minimal rotation vector
between them:

θ(n(µ),n(ν)) =
acos(n(ν)Tn(µ))

‖n(ν)× n(µ)‖ n(ν)× n(µ). (27)

A visualization of the 2-sphere and the tangent space for a
specific µ is given in Figure 1.

The concept is slightly more complicated than in the case
of 3D rotations since we truly over-parameterize a 3D unit
vector (no constraint is imposed on the underlying rotation).
To overcome this, we use a different notion of equivalence
where we define that two unit vector parametrizations µ and
ν are equivalent (µ ∼ ν) iff n(µ) = n(ν). With this, the
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n( )

N(1)( )

N(2)( )

n( )

N(�)u = θ(n(μ),n(ν))

exp(N(μ)u)

N(μ)T

N(μ)

u=n(ν)�n(μ)

R2

u

Figure 1. Representation of 3D unit vectors: The 3D unit vector
n(µ) is represented as the result of applying the rotation µ
onto the z-axis of an arbitrary inertial coordinate system. The
images of the x- and y-axis are used to define an orthonormal
plane to the unit vector. This plane then represents the tangent
space used for the construction of the boxplus and boxminus
operations. The boxminus operator takes two 3D unit vectors
and represents their difference in R2. Conversely, the boxplus
operator takes an element from R2 and applies it on a 3D unit
vector.

axioms proposed by Hertzberg et al. (2011) are fulfilled:

µ� 0 = µ, (28)
(µ� u)� µ = u, (29)
µ� (ν � µ) ∼ ν. (30)

A technical detail with this parametrization is that whenever
representing a difference, u ∈ R2, we have to keep track of
the corresponding tangent space. Mathematically, if we have
two rotations µ and ν with µ ∼ ν, it does not follow that
(µ� u) ∼ (ν � u).

Similarly to the derivatives given in section 3.2, the most
commonly used derivatives for terms involving 3D unit
vectors are given by:

∂/∂t (µ(t)) = −N(µ(t))Tn(µ(t))× (31)
· ∂/∂t (n(µ(t))) ,

∂/∂µ (n(µ)) = n(µ)×N(µ), (32)

∂/∂µ
(
N(µ)T r

)
=−N(µ)Tr×N(µ). (33)

The first identity relates the time derivative of a 3D unit
vector on its manifold to its time derivative in the 3D vector
space. The second expression is the derivative of the unit
vector in 3D w.r.t. to its minimal 2D representation. Those
identities can be very useful when computing Jacobians,
whereby the chain rule can be applied for computing
the derivatives of more complex terms. An example will
be provided when discussing the process model of the
bearing vector state of 3D landmarks (see section 5.3 and
Appendix A).

All in all, the proposed unit vector parametrization
yields analogous advantages as obtained when employing
the well established minimal 3D rotation parametrization.
This includes a singularity-free parametrization which
comes with relatively simple differentials. Furthermore the
parametrization of the tangent space is orthogonal and the
direction of the boxminus operation is in accordance with
the shortest path between two given unit vectors (taking
a step along ν � µ is optimal for going from µ to ν,

Figure 2. The construction of a multilevel patch out of an image
pyramid. Here each single patch is composed of 8 × 8 pixels
and 3 pyramid levels are depicted. These settings may vary in
the actual implementation.

see Figure 1). Other parametrizations, such as azimuth and
elevation angles, do not meet these properties and often
exhibit singular configurations.

4 Multilevel Patches and Photometric Error

4.1 Multilevel Patch Features
Along the lines of other landmark-based visual odometry
approaches (Davison (2003)) we model landmarks as
distinguished stationary 3D locations in the environment.
Each landmark is associated with a multilevel patch
feature P = {P0, . . . , PL}, which is composed of multiple
n× n image patches, Pl, extracted at the projected
landmark location on image level l. In the current default
implementation we extract 6× 6 image patches on the
second and third pyramid level (down-sampling factor of 2).
These parameters can and should be adapted to the actual
hardware setup and the scenario. An example is given in
Figure 2. The simultaneous use of multiple pyramid levels
leads to cross-correlations between the pixel intensities.
These are not explicitly modeled but can be handled to a
certain extent by tuning the corresponding error weighting.

In contrast to a standard feature descriptor, a patch-
based descriptor allows to compute a photometric error and
thereby to avoid the use of reprojection errors. Taking the
information of every pixel gives much richer information
about the environment, which not only helps improving the
robustness in bad lighting conditions, but also inherently
takes into account the texture of the tracked image patch. For
instance, it enables the integration of edge-shaped features,
whereby the gained information is along the perpendicular
direction of the edge. In comparison, reprojection error
based approaches typically attempt to minimize the distance
between the predicted and detected feature location. This
ignores the local texture around the landmark and, if no
additional measures are taken, all landmarks are weighted
equally.

4.2 Projection Model and Linear Warping
Given the bearing vector µ of a landmark, the pixel
coordinates in the camera frame can be retrieved by using the
camera modelπ. Assuming a known intrinsic calibration, the
pixel coordinates p can directly be expressed by p = π(µ).
If the camera is moving, the feature moves through the image
and is seen from a different perspective. To account for a
certain patch distortion effect, a linear warping matrix is
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tracked with each feature. This is done by concatenating
all Jacobians when transforming a landmark location. For
instance, if we detect a feature in some frame at pixel p1,
transform the corresponding bearing vector µ1 = π−1(p1)
with a process model µ2 = f(µ1), and then re-project the
bearing vector in a subsequent frame p2 = π(µ2), we obtain
the following linear warping matrix:

D =
∂π(µ2)

∂µ2

∂f(µ1)

∂µ1

∂π−1(p1)

∂p1

∈ R2×2. (34)

In essence, this maps the two patch axes from the point of
patch extraction (which where aligned with the image axes)
to the two distorted patch axes in the projection image. This
approach tracks the distortion locally around the patch and
ignores any larger scale information like the geometric shape
of a patch. To avoid large distortions and the accumulation of
errors, the patches are re-extracted regularly and the warping
matrix is reset to identity.

4.3 Photometric Error and Patch Alignment
The photometric error between a given multilevel patch
feature and a specific image is computed by extracting
a warped patch at the estimated location and evaluating
the pixel-wise intensity error. For a given multilevel patch
feature (with coordinates p and multilevel patch P =
{P0, . . . , PL}) at a specific image level l and patch pixel pj ,
the photometric error can be formalized as follows:

el,j(p, P, I,D) = Pl(pj)− a Il(p sl +Dpj)− b, (35)

where Il is the image at the pyramid level l and sl =
0.5l is a scaling factor to account for the down-sampling.
The linear warping matrix D is used to map patch pixel
coordinates to image coordinates. Furthermore, inter-frame
illumination changes are taken into account by employing
an affine intensity model composed of the scalars a and b
(both get marginalized out). Figure 3 depicts the photometric
error between a patch and its measurement in an image at a
predicted location p.

If we minimize the squared error terms for a multilevel
patch, we obtain a patch alignment algorithm which is
very similar to the well-known Kanade-Lucas-Tomasi (KLT)
feature tracker (Lucas and Kanade (1981); Shi and Tomasi
(1994)). A slight difference is given by the fact that
we optimize over multiple image levels at once. The
minimization can be solved by a Gauss-Newton method
which iteratively linearizes the optimization problem around
an estimated patch location p̂:

b(p̂+ δp, P, I,D) = A(p̂, I,D)δp+ b(p̂, P, I,D),
(36)

where b(p̂, P, I,D) represents the stacked error terms from
eq. (35) and A(p̂, I,D) the corresponding Jacobian. The
corresponding normal equations are then given by:

A(p̂, I,D)TA(p̂, I,D)δp = −A(p̂, I,D)T b(p̂, P, I,D),
(37)

which can be solved for the correction δp. This is analogous
to one iteration step of the KLT feature tracker (but is not
used as such in Rovio). In section 5.4 we will demonstrate

Figure 3. Illustration of the (signed) photometric error between
a previously extracted patch (green) and its projection into an
image (measured, red) at a predicted location p. The bottom left
grey tone of the difference patch represents 0. Only a single
image level is depicted. This photometric error is directly used
as the innovation term in an IEKF.

how eq. (36) is leveraged into the innovation term of the
employed IEKF.

Note that due to the scaling factor sl in eq. (35), error
terms for higher image levels will have a weaker corrective
influence on the filter state or the patch alignment. On the
other hand, they exhibit increased robustness w.r.t. image
blur or bad initial alignment and thus strongly increase the
robustness of the overall alignment method.

4.4 Detection and Scoring
The detection of new landmarks is based on the FAST corner
detector (Rosten and Drummond (2006)) which provides a
large amount of candidate feature locations. After removing
candidates which are close to currently tracked features,
we compute a patch gradient based score for selecting
new features which are added to the state. This basically
represents an adaptation of the Shi-Tomasi score (Shi and
Tomasi (1994)) by considering the combined Hessian on
multiple image levels, instead of only a single level. The
combined Hessian can be directly retrieved from the normal
equations (37):

H = A(p̂, I,D)TA(p̂, I,D), (38)

where the minimal eigenvalue of H corresponds to the
adapted Shi-Tomasi score.

The advantage is that a high score is correlated with the
alignment accuracy of the corresponding multilevel patch
feature. Instead of returning the minimal eigenvalue, the
method can return other eigenvalue based scores like the
1- or 2-norm. This is useful in environments with scarce
corner data, whereby also edge-shaped features can be
considered. Finally, the detection process is also coupled
with a bucketing technique to achieve a good distribution of
the features within the camera frame.
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5 Filter Framework

5.1 Iterated Extended Kalman Filtering

The regular Kalman filter can be interpreted as the recursive
optimal solution to the maximum likelihood estimation
problem formulated over two subsequent time steps (Bell
and Cathey (1993)). Analogously, the EKF can be associated
with a nonlinear maximum likelihood estimation and can be
shown to yield the same result as the first iteration step of
a corresponding Gauss-Newton optimization. However, in
contrast to its linear counterpart, the EKF cannot guarantee
to retrieve the optimal solution, whereby linearization errors
tend to become larger if the linearization point is further
away from the real solution. A possibility to improve this
aspect is to make use of an IEKF which is basically the
recursive form of the Gauss-Newton optimization (Bell and
Cathey (1993)).

A nonlinear discrete time system with state x, innovation
term y, process noisew ∼ N (0,W ), and update noise n ∼
N (0,R) can be written as:

xk = f(xk−1,wk−1), (39)
yk = h(xk,nk). (40)

In eq. (40) we made use of an implicit formulation of
the measurement model which directly yields the Kalman
innovation yk. This provides more flexibility in the design
by allowing the direct integration of residuals. Given an
a-posteriori estimate x+

k−1 with covariance P+
k−1, the

prediction step of the IEKF is analogous to the EKF and
yields the a-priori estimate at the next time step:

x−k = f(x+
k−1,0), (41)

P−k = F k−1P
+
k−1F

T
k−1 +Gk−1W k−1G

T
k−1, (42)

with the Jacobians

F k−1 =
∂f

∂xk−1
(x+
k−1,0), (43)

Gk−1 =
∂f

∂wk−1
(x+
k−1,0). (44)

Analogously to the EKF, the update step of the IEKF
can be linked to an optimization problem considering
the deviation from the prior x−k and the innovation term
h(x+

k ,0):

min
x+

k

‖x+
k � x

−
k ‖P−−1

k

+ ‖h(x+
k ,0)‖(JkRkJT

k )−1 . (45)

However, in contrast to the EKF, an iterative scheme
is employed where the problem is linearized around
continuously refined linearization points x+

k,j starting with
x+
k,0 = x−k :

min
∆xk,j

‖x+
k,j � x

−
k +L−1

k,j∆xk,j‖P−−1

k

+ ‖h(x+
k,j ,0) +Hk,j∆xk,j‖(JkRkJT

k )−1 (46)

where the Jacobians are updated every iteration step:

Hk,j =
∂h

∂xk
(x+
k,j ,0), (47)

Jk,j =
∂h

∂nk
(x+
k,j ,0), (48)

Lk,j =
∂(x−k �∆x)

∂∆x
(x+
k,j � x

−
k ). (49)

The Jacobian Lk,j of the boxplus operator is required to
account for the special linearization of certain states such
as rotations or bearing vectors. Its inverse L−1

k,j is the
corresponding Jacobian of the boxminus operation w.r.t. to
the left operand and is required to linearize the deviation of
the prior in (46). Please note that due to the special notion
of differentials on manifolds the Jacobian Lk,j is a square
matrix (see eq. (11)). Also, in the case of vector spaces this
Jacobian will be the identity matrix.

Setting the derivative of the cost function (46) w.r.t. the
incremental update ∆xk,j to zero and employing some
matrix calculus yields the following recursive solution:

Sk,j =Hk,jL
T
k,jP

−
k Lk,jH

T
k,j + Jk,jRkJ

T
k,j , (50)

Kk,j = LTk,jP
−
k Lk,jH

T
k,jS

−1
k,j , (51)

∆xk,j =Kk,j

(
Hk,jLk,j(x

+
k,j � x

−
k ) (52)

− h(x+
k,j ,0)

)
−Lk,j(x+

k,j � x
−
k ),

x+
k,j+1 = x+

k,j �∆xk,j , (53)

whereby the iteration is terminated when the update ∆xk,j
is below a certain threshold. Finally, the covariance matrix
is only updated once the process has converged after n
iterations:

P+
k = (I −Kk,nHk,n)LTk,nP

−
k Lk,n. (54)

Especially in setups with large initial uncertainties,
the IEKF can provide a significant gain in convergence
and accuracy. Using a termination criteria based on the
magnitude of the performed correction, the computational
overhead can be limited to cases with large update
corrections (e.g. the initial measurements of a new
landmark). Once the state has properly converged, the
number of iterations can be kept to a minimum and the
computational costs remain similar to the ones of the regular
EKF.

5.2 Filter Setup and State Definition
Similar to other visual-inertial filtering frameworks (Kelly
and Sukhatme (2011); Jones and Soatto (2011)), the inertial
measurements are employed to propagate the filter state,
while the visual measurements are processed and integrated
during the filter update step (see Figure 4). The proposed
filter setup differs in that it makes use of a fully robocentric
formulation of the filter state, which has previously been
tested in vision-only approaches Civera et al. (2009). The
advantage of this formulation is that the position and yaw
states, which are unobservable, can be fully decoupled from
the rest of the filter states. This decreases the noise magnitude
and improves the consistency of relevant states such as
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Iterative refinement (5.1)

Camera model (4.2)
Warped patch

extraction (4.3)

Photometric error (4.3)

QR-decomposition (5.4)

I

Kalman update (5.1)

and outlier detection (5.4)

Kalman prediction (5.3)

Quality score computation

and landmark pruning (5.5),

new landmark adding (4.4)

Per-landmark update iterations

Patch extraction (4.3) and

warp computation (4.2)

Pi

Ai,bi

Hi,yi

pi Di

Pix-

Figure 4. Flow graph of the filter framework. The processing of
the inertial (ω̃, f̃ ) and visual (I) measurements (red terms) is
tightly embedded in the IEKF framework. The filter state x and
covariance P are alternatively processed by an IMU-based
prediction step and a vision-based update step. Most of the
visual information is processed as part of the iterative update
step (grey block). The order and dependencies of the image
processing sub-steps are also illustrated and the numbers
represent the references to the corresponding sections.

velocity or inclination angles. On the other hand, noise from
the gyroscope affects all states that need to be rotated during
the state propagation (see section 5.3). However, since the
gyroscope noise is often relatively small and because most
states are observable, this does not represent a significant
issue.

The state of the filter is composed of the following
elements (including N visual landmarks):

x :=
(
r,v, q, bf , bω, c, z,µ0, . . . ,µN , ρ0, . . . , ρN

)
(55)

with:

• r := BrIB: robocentric position of IMU,
• v := BvB: robocentric velocity of IMU,
• q := qIB: attitude of IMU (map from B to I),
• bf : additive bias on accelerometer (expressed in B),
• bω: additive bias on gyroscope (expressed in B),
• c := BrBC : linear part of IMU-camera extrinsics,
• z := qCB: rotational part of IMU-camera extrinsics,
• µi: bearing vector to landmark i (expressed in C),
• ρi: distance parameter of landmark i.

The generic parametrization for the distance di of a landmark
i is given by the mapping di = d(ρi) with derivative d′(ρi).
In the context of this work we mainly tested the inverse
distance parametrization, d(ρi) = 1/ρi. A brief comparison
with the regular distance parametrization is provided in
section 7.3.

Rotations (q, z) and bearing vectors (µi) are parametrized
as detailed in section 3.2 and section 3.3. This means
that quantities like differences, uncertainties, or errors
are represented as elements of a vector space with
minimal dimension, i.e., 3D for rotations and 2D for

bearing vectors. By using the combined bearing vector and
distance parametrization, landmarks can be initialized in an
undelayed manner and can be integrated into the filter at
detection time. The distance of a landmark is initialized with
a fixed value or, if sufficiently converged, with an estimate
of the current average scene distance. The corresponding
covariance is set to a very large value. In comparison to other
inverse-depth parametrizations, we do not over-parametrize
the 3D landmark location estimates, whereby each landmark
corresponds to 3 columns in the covariance matrix of the
state (2 for the bearing vector and 1 for the distance
parameter). This also avoids the need for re-parametrization
(Solà et al. (2012)).

A singularity-free parametrization of bearing vectors
on the full unit sphere is essential here. It enables the
proper representation of bearing vectors and their uncertainty
estimates even if outside the field of view of the camera.
Furthermore, limiting the validity of the parametrization to
a certain region would render online camera-IMU extrinsics
calibration and multi-camera support more difficult.

5.3 State Propagation
The state propagation is driven by the proper acceleration
measurement, f̃ = Bf̃B, and the rotational rate measure-
ment, ω̃ = Bω̃IB. Both measurements are modeled as noise
and bias affected leading to the following bias corrected but
noise affected estimates:

f̂ =f̃ − bf −wf , (56)
ω̂ =ω̃ − bω −wω. (57)

Together with the estimated camera linear velocity and
rotational rate

v̂C =z(v + ω̂×c), (58)
ω̂C =z(ω̂), (59)

this yields the following set of continuous differential
equations:

ṙ =− ω̂×r + v +wr, (60)

v̇ =− ω̂×v + f̂ + q−1(g), (61)
q̇ =− q(ω̂), (62)

ḃf = wbf , (63)

ḃω = wbω, (64)
ċ = wc, (65)
ż = wz, (66)

µ̇i =N(µi)
T

(
ω̂C + n(µi)

× v̂C
d(ρi)

)
+wµ,i, (67)

ρ̇i = − n(µi)
T v̂C/d

′(ρi) + wρ,i. (68)

The term N(µi)
T projects a 3D vector onto the 2D tangent

space at the bearing vector µi (see Figure 1). Furthermore,
g is the gravity vector expressed in the world coordinate
frame, and the terms of the form w∗ are white Gaussian
noise processes. The corresponding covariance parameters
can either be derived from the IMU specifications or can be
tuned manually.
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Note that the derivatives of bearing vectors and rotations
lie within 2D and 3D vector spaces, respectively. This
is required for achieving a minimal and consistent
representation of the filter state and covariance. While most
of the above derivatives are relatively well known, the
dynamics of the bearing vector and distance parameter is a
novelty in this work. We give a sketch of the corresponding
derivation in Appendix A. It relies on the assumption that a
3D point landmark F with bearing vector µ and distance
parameter ρ remains stationary with respect to an inertial
frame I:

IrIF = IrIC + q−1
CI (µ d(ρ)). (69)

In eq. (68) we can observe that the derivative of the distance
parameter only depends on the velocity in direction of
the bearing vector. On the other hand, the derivative of
the bearing vector, eq. (67), is the sum of a velocity and
rotational rate effect, whereby the magnitude of the velocity
effect is proportional to the inverse distance of the landmark.

Using an appropriate Euler forward integration scheme,
i.e., using the boxplus operator where appropriate, the above
time continuous equation can be transformed into a set
of discrete prediction equations which are used during
the prediction of the filter state. For the attitude, the
rotational IMU-camera extrinsics and the bearing vectors the
discretization yields:

qk+1 =qk � (−∆t qk(ω̂k)),

= exp(−∆t qk(ω̂k))⊗ qk,
= qk ⊗ exp(−∆t ω̂k)⊗ q−1

k ⊗ qk,
= qk ⊗ exp(∆t(bω,k +wω,k − ω̃k)), (70)

zk+1 = zk �∆twz,k,

= exp(∆twz,k)⊗ zk, (71)

µi,k+1 = exp
(

∆t
((
I − n(µi,k)n(µi,k)T

)
ω̂C

+ n(µi,k)×
v̂C

d(ρi,k)

+N(µi,k)wµ,i

))
⊗ µi,k. (72)

The derivation of the bearing vector discretization is given in
Appendix A.

In typical visual-inertial sensor setups, the IMU measure-
ments are often obtained at a higher rate than the images.
As the proposed propagation step is driven by the IMU
measurements this can result in a high computational burden.
A classical approach to mitigate this issue is to make use
of IMU pre-integration techniques (Forster et al. (2016)) in
order to merge multiple IMU measurements into a single
prediction step. However, since the duration between two
consecutive images remains relatively small we employ a
simpler pre-integration approach where the Jacobian is eval-
uated based on the mean of the IMU measurement. Thus,
even if multiple IMU measurements are available between
two consecutive images, eq. (42) is evaluated only once.
Compared to the regular solution no notable performance
loss could be observed.

5.4 Direct Innovation Term and Update
In section 4.3, we discussed how to construct a photometric
error term based on the pixel-wise intensity difference

between a previously extracted patch and its predicted
location in a given image frame. Within an IEKF this can be
directly used as innovation term. However, for the multilevel
patch format that we use, this would lead to a 6× 6× 2 =
72 dimensional error term per patch inducing very high
computational cost. Fortunately, looking at eq. (36), one can
observe that the entire error term corresponding to a patch
Pi and an image I is only dependent on the estimated pixel
coordinates pi = π(µi). Thus, the only direct filter state
dependency of this error term is given by the bearing vector
and an equivalent reduced 2D error term can be derived. This
can be achieved by means of a QR-decomposition of the
gradient matrix in eq. (36):

A(pi, I,Di) = Q(pi, I,Di)R(pi, I,Di), (73)

=
[
Q1(pi, I,Di) Q2(pi, I,Di)

] [R1(pi, I,Di)
0

]
where the upper-triangular matrix R1(pi, I,Di) has full
row-rank 2 for regular features, row-rank 1 for line features,
and goes towards 0 for uniform patches.

Considering the above decomposition, the innovation term
for the jth iteration step for a patch i yields:

yi,j = Q1(π(µ+
i,j), I,Di)

T b(π(µ+
i,j), Pi, I,Di). (74)

This has a maximal dimension of 2 and loses dimensions for
degenerate cases like line-shaped or uniform patches. Since
this represents a left-multiplication with an orthonormal
matrix, the noise characteristics are assumed to be of the
same magnitude on every photometric error term. To account
for potentially different noise properties of the intensity
errors, a weighting based scheme could be introduced. The
Jacobian for the innovation term is given by

Hi,j = R1(π(µ+
i,j), I,Di)

dπ

dµ
(µ+

i,j). (75)

Within the IEKF, the tracked landmarks are updated one
after another, each undergoing a certain number of iterations.
While the robocentric state formulation moved parts of the
nonlinearities from the update into the propagation step,
significant nonlinearities remain with the pixel intensity
generation. The update iterations are taking care of aligning
the patches in the current image and, simultaneously, to
spread the gained information throughout the filter state.
Thus, all the landmark tracking functionality is intrinsically
contained in the filter. In the case where a landmark’s
predicted image coordinates exhibit a large uncertainty (e.g.
for newly initialized landmarks), multiple hypothesis are
select within the uncertainty bound. Figure 5 provides a
simplified sketch of the tracking concept. An advantage of
this is that non-corner features can be properly tracked by
considering the prior provided by the IMU-driven process
model. In the case of line-shaped features, for instance,
a corrective update only applies along the perpendicular
direction to the line, while the other direction remains
unaffected. In the degenerate case of uniformly textured
patch features, the iteration finishes after one step without
changes to the filter state (since no information is contained
in the patch). Figure 6 shows the tracked landmarks in a
frame. Each iteration for a landmark update is depicted by
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1 2 3 4

Figure 5. Overview of the landmark tracking concept. Step 1: a
patch feature (blue square) is extracted for the landmark (blue
dot). Step 2: the estimated landmark image coordinates (yellow
dot) and the corresponding covariance (yellow ellipse) are
provided by the filter’s IMU-driven process model. Step 3:
depending on the magnitude of the uncertainty multiple
candidates (yellow dots) are initialized. Step 4: for each
candidate an iterative update (black arrow) is performed which
integrates patch intensity errors together with the motion prior.
Outlier detection and quality checks are performed to select the
best valid tracking (green vs red squares). Steps 3 and 4 are
completely integrated in the iterative filter updates.

Figure 6. Live screenshot of the tracked landmarks. The
projected patches (final iteration) are depicted by squares
(green if successful, red if rejected). The predicted uncertainty
of the landmark location are represented by yellow ellipses and
each update iteration candidates is marked by a yellow dot. The
final location is highlighted with a small red dot surrounded by
four green or red dots. The surrounding locations are checked
for higher innovation residuals (green). If more than two
surrounding locations exhibit no increased innovation residuals
(red) then the match is rejected (e.g. the bottom left landmark).

a yellow dot. Especially for the newly added landmarks (the
four most right ones), the initial uncertainty (yellow) ellipse
and the number of iterations are increased.

To account for moving objects or other disturbances, a
simple Mahalanobis based outlier detection is implemented
within the update step. It compares the obtained innovation
residual with the predicted innovation covariance and rejects
the measurement whenever the weighted norm exceeds
a certain threshold. This method inherently takes into
account the covariance of the state and measurements. It
also considers the image gradients and thereby tends to
reject gradient-less image patches more readily. In addition,
a threshold on the total intensity error of a patch is
introduced, whereas a patch measurement is rejected if the
threshold is exceeded. Also, a landmark quality check is
performed by sampling 4 nearby locations and evaluating
the corresponding innovation residual. Tracking tends to be
bad if not at least two locations exhibit a significantly higher
residual than the matched landmark (see the bottom left
landmark in Figure 6).

The computation of the photometric error relies on an
image patch from a previous frame. If parts of this image
patch have influenced the filter state in the past, the
resulting photometric error will exhibit a correlation with
the current filter state. This correlation is not modeled in
the current framework and doing so would significantly
increase the computational burden (one possible approach
would be to co-estimate the patch pixel intensities). This
is an issue which is also commonly encountered in dense
approaches where cross-correlations between localization
and mapping are often neglected. In our case however, the
cross-correlation with the environment geometry is tracked
and accounted for and the problem is limited to the texture
of the environment. A refinement step on the patch intensities
could reduce the pixel intensity noise and thereby reduce this
effect. Investigations in this direction will be part of future
work.

5.5 Landmark Management
The IEKF does not exhibit good scalability in terms of the
size of the filter state. Consequently, only a limited number
of landmarks can be tracked and they have to be selected
and managed carefully in order to obtain good results. In
section 4.4, we outlined an intensity based scoring which
describes how informative the content of a patch can be.
This is mainly used to decide what landmarks are added
to the filter state. In addition to this, we maintain tracking
and visibility information of a landmark, and a combined
heuristic quality score is computed for each landmark which
is being tracked. The quality score is composed of three sub-
scores:

• The global quality: how often has a landmark been
tracked since initialization

• The local quality: how often has a landmark been
tracked when expected to be in the field of view
(limited to recent frames)

• The local visibility: how often was the landmark in the
field of view (limited to recent frames)

If a landmark exhibits a high global quality, i.e. it has often
been tracked since initialization, the pruning threshold on
the two local sub-scores is kept more conservative. Using
an adaptive thresholding, we can control the total amount
of landmarks which are currently in the frame. E.g. if we
reach the maximal number of landmarks in the filter state and
only a minor part is properly tracked, we make the landmark
pruning stricter to get space for new landmarks.

6 Multi-Camera Setup
One issue with monocular visual-inertial setups is that they
require sufficient motion in order to properly estimate the
complete filter state. Also, a particular camera can be blind
at times, because of fast lightning changes or very bad
texture. Adding an additional camera can therefore improve
the robustness of the overall system. In the case where a
multi-camera setup has overlapping fields of view, multiple
measurements of the same landmark are received at a
given time. This provides information about the landmark’s
distance and the extrinsic calibration of the corresponding
camera frames. Still, some excitation of the states is
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necessary to estimate the calibration parameters. Once
the calibration estimates have converged, the distance of
landmarks in overlapping fields of view becomes observable,
even if the sensor remains stationary.

New landmarks are still detected in single camera frames
only and the parametrization of the corresponding bearing
vector and distance parameter is kept with respect to the
detection frame. In the case where the newly detected
landmark can be seen in more than one camera frame, the
initial distance estimate can be computed by triangulation.

For all subsequent time steps, the landmarks get projected
in every camera frame. If the predicted pixel coordinates lie
within a camera frame, an iterative update is performed (see
section 5.4). If the measurement camera frame Cm (where
the landmark is observed) is not the same as the detection
camera frame Cd (where the landmark is parametrized), the
corresponding bearing vector must be transformed into the
measurement frame first. This can be done by

Cmµi = zm(cd + z−1
d (Cdµi d(ρi))− cm) (76)

where the terms of the form c∗ and z∗ represent the
linear and rotational extrinsic IMU-camera calibration of
the corresponding camera. Together with the parametrization
of the landmark location (Cdµi, ρi), they are contained in
the filter state. This represents the main difference to the
monocular setup, whereas the innovation Jacobian in eq. (75)
has to be right-multiplied by the Jacobian of eq. (76).

7 Experimental Results
The evaluation of the presented approach is split into
multiple parts. These include convergence evaluation
(section 7.1), parameter exploration (section 7.2), evaluation
of the photometric feedback (section 7.3), comparison with
other approaches (section 7.4), and tests on a real MAV
(section 7.5). Whenever possible, the publicly available
EuRoC datasets are employed (Burri et al. (2016)). All
experiments are performed with the same selection of
parameters except where explicitly mentioned. Our baseline
implementation only employs the second and third image
pyramid level. While taking into account the first image
level can increase accuracy, it is not really useful for highly
dynamic and difficult cases. As default, we use a patch size
of 6× 6 together with 25 filter landmarks.

Accuracy remains an important criteria for visual-inertial
odometry and can be evaluated quantitatively. To a certain
extent, it can also serve as a surrogate measure for the
well-functioning of an approach. To evaluate accuracy we
contemplate the root mean square estimation error per
traveled distance (Geiger et al. (2012)). For instance, if we
want to evaluate the accuracy after 10 m of traveled distance
and have a dataset which is 80 m long, we split the obtained
estimation results into 8 chunks of 10 m. The chunks are then
aligned with the corresponding bit of groundtruth data and
the accumulated error after 10 m is evaluated. Box-plots are
employed to depict the corresponding median and quartiles.
Assuming that the odometry output exhibits random walk
drift with increasing traveled distance (which is often a good
approximation as long as the yaw error remains small), the
observed errors should increase as square root of the traveled
distance. We select the spacing of the traveled distance
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Figure 7. Dataset observing a horizontal plane with a
monocular setup. Estimated landmark heights (grey) together
with their average (red) and empirical standard deviation (red
dashes, 1-σ). The groundtruth (blue) is estimated by averaging
the height estimates once converged. In the top plot, the
average of the estimated standard deviation over multiple
landmark heights is provided (green dashes, 1-σ). The bottom
plot depicts the normalized error (height error divided by
estimated standard deviation) together with the 1% confidence
threshold.

samples quadratically, and should therefore observe a linear
error increase in the plots. The following results can vary
depending on the setup and environment and should not be
over-interpreted.

7.1 Convergence Evaluation
The proposed robocentric formulation allows an undelayed
initialization of landmarks but strongly relies on the
proper convergence of the corresponding distance estimates
(which are initialized with a very high uncertainty). While
a decreasing uncertainty is desired since it allows for
more accurate tracking of the sensor pose, spurious and
inconsistent convergence must be avoided. Especially in the
monocular case, the uncertainty should only be decreased if
the sensor is moving and sufficient baseline is acquired. In
order to investigate the consistency of the distance estimates,
a dataset was recorded where a horizontal surface was the
only visible object (the camera was directed towards the
floor). The virtual groundtruth of the sensor height is inferred
by averaging over the height of all converged landmarks
(see Figure 7). This allows to evaluate the convergence of
the landmarks heights (which are strongly coupled to the
distance estimates).

Figures 7 and 8 show the estimated height of the tracked
landmarks over time for a monocular and a stereo setup
respectively. Since the landmarks are initialized at a fixed
distance, which in this experiment tends to relate to points
below the surface, a significant estimation error can be
observed at initialization. Due to the motion of the sensor,
however, the height estimates quickly converge. In the
top part of both figures, the estimated standard deviation
(average of the estimated standard deviations) is compared
against the measured standard deviation (empirical standard
deviation of the actual height errors). In both cases, the
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Figure 8. Dataset observing a horizontal plane with a stereo
setup. Stereo initialization is disabled. Estimated landmark
heights (grey) together with their average (red) and empirical
standard deviation (red dashes, 1-σ). The groundtruth (blue) is
estimated by averaging the height estimates once converged. In
the top plot, the average of the estimated standard deviation
over multiple landmark heights is provided (green dashes, 1-σ).
The bottom plot depicts the normalized error together with the
1% confidence threshold.

estimated standard deviation encompasses the measured one.
Since we averaged over many landmark tracks, this is not a
strict check of consistency but still shows that the estimated
covariance must lie within a reasonable range on average.
A better analysis is provided in both lower plots which
depict the normalized height error (height error divided
by estimated standard deviation). In both experiments we
can show that the normalized error remains below the 1%
confidence threshold, i.e., there are no unreasonably large
height estimate errors if compared to the corresponding
uncertainty estimates.

The results of the monocular and the stereo setup are
similar due to the significant amount of motion present in
the recorded data. The final standard deviation of the height
errors amounts to 0.0119 m for the monocular setup and
0.0073 m for the stereo setup.

Other parameters which have to converge for a proper
functioning of the filter are the online calibration parameters,
which are composed of the IMU biases and the IMU-
camera extrinsics. The later should remain nearly constant
for different datasets with the same sensor setup, and we can
thus evaluate the extrinsics on multiple datasets and compare
the values they have converged to. Figure 9 shows the final
estimate of the rotational and translation part of the extrinsics
if running the proposed filter on all 11 EuRoC datasets.
To make the task more difficult, the initial values were
selected as zero translation and closest orthogonal rotation
(corresponding to all zero angles in the figure). The resulting
estimates, including uncertainties, seem to exhibit a large
amount of accordance between the different datasets and
between monocular and stereo setup. In comparison to the
first half of the datasets, the second half includes datasets
with less motion which pose more difficulties for a proper
estimation of the extrinsics. Consequently, the estimated
uncertainty (length of bar) remains larger as well. In general,
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Figure 9. Final camera-IMU extrinsics estimates for all 11
EuRoC datasets for monocular and stereo setups. The length of
the lines corresponds to the 3-σ bounds of the estimates. The
order of the lines corresponds to the datasets V1 01–03,
V2 01–03, and MH 01–05.

the stereo setup only brings a marginal reduction of the
uncertainties as long as sufficient motion is available. On
the contrary, the stereo setup exhibits more difficulties for
converging to the proper extrinsic calibration, as can be seen
in the lower plot where a single roll angle converges to a
biased value. This is due to wrong stereo matches, whereby
a single wrong match can bias the estimation, especially
if there is not sufficient motion for correcting the wrong
convergence.

For completeness, we also investigate the convergence of
the IMU bias estimation. We only evaluate them on a single
dataset (V1 03) since they exhibit intra-dataset variability.
Since we have a stereo setup, we can perform two distinct
monocular and one stereo evaluation with the same dataset.
The results are depicted in Figures 10 and 11, where the
estimate over time is plotted together with the 3-σ bounds.
In particular, the gyroscope biases seem to converge very
rapidly and exhibit only a very small variability. Also the
accelerometer biases converge with sufficient excitation of
the system. They typically converge faster along the gravity
direction which is given by the x-axis at the beginning of the
dataset.

7.2 Parameter Exploration
Several important framework parameters are evaluated on the
EuRoC dataset V1 03. Since the total number of landmarks
in the filter state has a major influence on the computational
cost of the framework, this is the first parameter that we
explore. Figure 12 shows the position error with respect to
the traveled distance for different amounts of landmarks.
Surprisingly, increasing the number of landmarks does not
improve the accuracy of the output once a certain amount
of landmarks is reached (roughly 20). While for vision-only
systems it has been shown that the number of landmarks
is a crucial parameter (Strasdat et al. (2010)), it seems
to be different for visual-inertial systems. In visual-inertial
systems the IMU provides a good prior on the motion
of the systems and merely needs to be stabilized using
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Figure 10. Estimated gyroscope biases for dataset V1 03.
Estimates (darker lines) together with the 3-σ bounds (brighter
lines). Results for two monocular (left and right camera) and
one stereo evaluation are depicted. The estimates converge
very quickly and are less motion dependent than the
accelerometer biases.
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Figure 11. Estimated accelerometer biases for dataset V1 03.
Estimates (darker lines) together with the 3-σ bounds (brighter
lines). Results for two monocular (left and right camera) and
one stereo evaluation are depicted. The accelerometer bias
converges quicker along the gravity direction which is mostly
along the x-axis.

recurrent stationary landmarks observations. The amount
of required landmarks could be depending on the quality
of the employed IMU, whereas an IMU of lower quality
would benefit more from higher landmark counts. Within
this context we also noticed a relatively strong influence
of non-rejected outliers on the output’s accuracy, whereas
we selected the outlier rejection parameters to be rather
strict. We noticed that properly tracking few high-quality
landmarks often leads to better results than tracking many
landmarks with an increased risk for non-rejected outliers.

In our previous work (Bloesch et al. (2015)) we fixed
the patch size to 8× 8. Here, we also investigate smaller
patch sizes since this reduces the computational load. Results
for patch sizes down to 2× 2 are depicted in Figure 13. It
shows that we can reduce the patch size without significantly
losing accuracy. Only the case with 2× 2 patches exhibits
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Figure 12. Accumulated position error over traveled distance
for different landmark counts. The number of landmarks from
left to right are 10, 15, 20, 25 (red), 30, 35, 40, 45, 50. The patch
size is fixed to 6. The median and the quartiles are depicted.
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Figure 13. Accumulated position error over traveled distance
for different patch sizes. The patch sizes from left to right are 2,
4, 6 (red), 8. The landmark count is 25. The median and the
quartiles are depicted.

notably increased errors. This could probably be tackled by
increasing the amount of pyramid levels which is similar
to having larger patches. All in all we propose to employ
the combination of patch size 6× 6 together with 25 filter
landmarks which we highlight in red in all box-plots. On a
single core of an Intel R© CoreTM i7 at 2.4 MHz the resulting
framework uses 30-50% of the CPU load.

7.3 Photometric Feedback Evaluation
The photometric error feedback and its tight integration in
the estimation process is a key component of the proposed
framework. In order to assess the effect of the photometric
feedback we replace it by a traditional reprojection error
based feedback combined with an explicit feature tracker.
To this end, we implement the KLT tracker mentioned
in section 4.3 (including initial guess from the IMU
propagation and using patch warping) and try to maintain
all settings as similar as possible. For the reprojection error
a different measurement covariance is required, which is
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Figure 14. Accumulated position error for different Rovio
setups on the EuRoC dataset V1 03. The proposed Rovio setup
(red) is compared to an implementation with regular distance
parametrization (grey), an implementation without update
iterations (blue), and an implementation which uses the
reprojection error instead of the photometric error feedback
(green). While overall the proposed setup exhibits the smallest
tracking error, only the setup with the regular distance
parametrization shows a significant accuracy loss.

tuned to achieve best performance in terms of accumulated
position error on the evaluation dataset (V1 03). The results
are depicted in Figure 14. Two related experiments are
included in this graph: a comparison with regular distance
parametrization and a simple EKF implementation (no
update iterations).

An interesting observation is that the reprojection error
based implementation does not lead to much larger tracking
error. The reason for this are the abundant corner features
in the dataset which are relatively well captured by the
regular reprojection error. Still, our framework does not
rely on any external feature tracker which can be seen as
advantage in terms of reduced complexity. Furthermore, in
the extreme case were no corner features are available (see
Figure 15) the KLT tracker fails and the advantage of the
inherent landmark tracking becomes more evident. Failing
landmark tracking entails that most sparse state-of-the-art
visual-inertial odometry frameworks will be deprived of
vision and strongly rely on an IMU-based prediction together
with an eventual relocalization. In contrast, Rovio’s implicit
landmark tracking is able to keep track of more subtle image
regions due to the tight combination with inertial data which
can help to overcome visually degenerate sequences.

Finally, we can observe that the use of a regular distance
parametrization leads to significantly increased tracking
error. This is due to the less accurate stochastic model on the
distance when compared to inverse distance parametrization
and confirms previous results (Montiel et al. (2006)). The
EKF implementation exhibits only a slightly increased error
metric. This indicates that a single update is often sufficient
for the inherent tracking. This may become more critical if
the prediction of the landmark location is less accurate, such
as when the initial landmark distance estimate is bad or in
cases with high linear velocities.

Figure 15. Tracking behavior without strong corner features.
Snapshot taken at the end of a 20 s dataset with lines only. The
inherent landmark tracking can handle such situations due to
the additional prior it receives from the IMU-driven state
propagation.
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Figure 16. Accumulated position error over traveled distance
for a monocular and a stereo Rovio setup as well as for Okvis.
Red: standard monocular Rovio (6 × 6 patches, 25 landmarks).
Blue: standard stereo Rovio (6 × 6 patches, 25 landmarks).
Green: stereo Okvis with online parameter estimation. All
frameworks exhibit similar tracking errors.

7.4 Comparison with Related Work
Figure 16 compares both the monocular and stereo Rovio
setups against the stereo Okvis framework on the EuRoC
dataset V1 03. Okvis is the open-source release version
of the work of Leutenegger et al. (2015) and relies on
a windowed bundle adjustment approach which includes
inertial measurements. Due to the sufficient motion and
good texture of the dataset, monocular and stereo setups
exhibit very similar tracking errors. For this dataset, the
performances of Rovio and Okvis are comparable and show
that our approach can compete with state-of-the-art visual-
inertial frameworks.

The accuracy of the presented approach was also evaluated
on the 1.4 km long circular dataset employed by Leutenegger
et al. (2015), Forster et al. (2016), and Usenko et al. (2016).
Figures 17 and 18 show the position error and the yaw
error over traveled distance for the standard monocular and
stereo Rovio setups as well as for Okvis. The performance of
Rovio is slightly inferior to Okvis for the 360 m of traveled
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Figure 17. Accumulated position error over traveled distance
for the long circular dataset. Red: baseline monocular Rovio.
Blue: baseline stereo Rovio. Green: stereo Okvis with online
parameter estimation.

distance. Again, the performance is strongly depending on
the selected tuning parameters which were kept constant
for all experiments. Forster et al. (2016) and Usenko et al.
(2016) both provide results which show 0.3 m position error
after 360 m. Caution should be taken when interpreting these
results since only 3 non-overlapping segments of length
360 m are contained in the 1.4 km long dataset (low statistical
significance). Rovio seems to perform better for shorter
distances and shows similar performance to all other visual-
inertial frameworks, especially for a traveled distance of
10 m (n=140), where it exhibits a median error of less than
0.1 m. One reason for the decreased long term performance
can be found in the increased yaw error which has a strong
impact on the position performance for longer distances.

We observed that the above error could be further
reduced by choosing stricter outlier rejection parameters
and including the first pyramid level into the residual
computation (below 0.4 m for 360 m). In the end,
however, large scale accuracy should be provided by an
enclosing back-end system performing loop closures and
re-localization, rather then over-tuning the front-end visual-
inertial odometry at the cost of increased computational costs
and lower overall robustness.

7.5 Robust MAV Control
In this final evaluation section we investigate the applica-
bility of Rovio for feedback control on a MAV for fast
aggressive flights under bad lighting conditions and motion
blur. The system is initialized on the ground and remains
stationary for 30 s. After take off, it performs three fast
circular loops before landing at the same location. The
trajectory’s position and attitude are depicted in Figures 19
and 20, respectively. The 3-σ bounds for the estimates are
plotted as well. The observable roll and pitch angles very
quickly converge from their initially large uncertainties and
accurately track the MAV’s inclination angles after take off.
The global yaw angle and positions, on the other hand,
accumulate uncertainty over time, what confirms the inherent
unobservability of those states. All in all, the experiment
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Figure 18. Accumulated yaw error over traveled distance for
the long circular dataset. Red: baseline monocular Rovio. Blue:
baseline stereo Rovio. Green: stereo Okvis with online
parameter estimation.
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Figure 19. Estimated MAV position for aggressive flight. Red:
estimated position. Light-red: 3-σ bounds. Blue: Vicon
groundtruth. The unobservable position accumulates
uncertainty over time.

shows that Rovio can handle fast motions and difficult scenes
while providing a reliable state estimation for feedback
control of an autonomous MAV.

Figure 21 shows the robocentric velocity of the MAV. Due
to the robocentric formulation of our filter, the observable
states are entirely decoupled from the unobservable states.
Hence, the uncertainties are bounded and the estimation error
remains minimal which is essential for feedback control.
Additionally, velocity estimates are provided where Rovio
was reset every 5 s. The estimates very quickly converge
to the true velocities for all resets. This highlights the very
simple and robust initialization of our robocentric filtering
approach where ego-motion estimates are immediately
available.

8 Conclusion

This paper presented an IEKF-based framework which
tightly fuses inertial measurements and image data. The
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Figure 20. Estimated MAV attitude for aggressive flight. The
yaw-pitch-roll decomposition is employed to separate the
unobservable yaw from the two inclination angles (only
visualization). Red: estimated attitude. Light-red: 3-σ bounds.
Blue: Vicon groundtruth.
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Figure 21. Estimated MAV velocity for aggressive flight. Red:
estimated velocity. Light-red: 3-σ bounds. Blue: Vicon
groundtruth. Grey: estimated velocity when reseting Rovio every
5 s. Since the velocity is expressed in the robocentric IMU
coordinate frame it is fully observable and the uncertainty
remains bounded.

originality and strength of the proposed approach lie in
its fully robocentric formulation combined with the direct
feedback of photometric error as the Kalman innovation
term. This leads to a more robust implementation, since
the observable states are not influenced by the growing
global covariance. We introduce an iterative update scheme
which inherently takes care of landmark tracking. While
simplifying the structure of the overall framework, data
association is robustified by the tight coupling with
the IMU-driven process model. The employed minimal
representations of rotations and bearing vectors improve
the numerical consistency of the approach and reduce the
computational effort. The extensive experimental evaluation
shows that the presented approach can compete with state-
of-the-art visual-inertial fusion techniques. Interestingly,
our approach achieves comparable ego-motion estimation
accuracy with a significantly lower landmark count.

Robustness with respect to fast motions and bad lightning
conditions as well as the instantaneous initialization
procedure where demonstrated in a real autonomous MAV
flight experiment. Additional features, such as optional GPS
measurements, are included in the updated version of the
publicly available open-source software package ∗.
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Appendix A Bearing Vector Calculus
Assuming a stationary 3D point landmark F with bearing
vector µ and distance parameter ρ, the corresponding differ-
ential equations can be obtained by totally differentiating the
kinematics:

d

dt

{
IrIF = IrIC + q−1

CI (µ d(ρ))
}
. (77)

For this we require the following partial differentials:

d

dt
(IrIC) = IvC , (78)

∂

∂qCI
(q−1
CI (µ d(ρ))) =− q−1

CI (µ d(ρ))×C(q−1
CI ), (79)

=−C(q−1
CI )µ×d(ρ), (80)

d

dt
qCI = ωC , (81)

∂

∂µ
(q−1
CI (µ d(ρ))) = C(q−1

CI )µ×N(µ)d(ρ), (82)

∂

∂ρ
(q−1
CI (µ d(ρ))) = C(q−1

CI )µd′(ρ). (83)

In eq. (79) we use the chain rule together with eqs. (14)
and (15), in eq. (81) we directly employed eq. (13), and
eq. (82) relies on eq. (32). The total differential of eq. (77)
can be evaluated and simplified to (left multiplication with
C(qCI)):

0 = IvC −C(q−1
CI )µ× ωCd(ρ) (84)

+C(q−1
CI )
(
µ×N(µ)µ̇ d(ρ) + µ d′(ρ) ρ̇

)
,

0 = vC − µ×ωC d(ρ) (85)

+ µ×N(µ)µ̇ d(ρ) + µ d′(ρ) ρ̇.

From this the dynamics for the bearing vector and distance
parameter can be obtained by pre-multiplication with
1/d(ρ)N(µ)Tµ× and 1/d′(ρ)µT respectively:

µ̇ =N(µ)T
(
ω̂C + n(µ)×

v̂C
d(ρ)

)
+wµ, (86)

ρ̇ = − n(µ)T v̂C/d
′(ρ) + wρ. (87)

Here we used the identities N(µ)Tµ×µ× = −N(µ)T and
N(µ)TN(µ) = I . Also, some additive process noise has
been added.

∗https://github.com/ethz-asl/rovio
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Applying the Euler-forward discretization scheme on the
continuous time differential equation of the bearing vectors
(67) yields:

µk+1 = µk �∆t
(
N(µk)T

(
ω̂C + n(µk)×

v̂C
d(ρk)

)
+wµ

)
,

µk+1 = exp
(

∆tN(µk)
(
N(µk)T

(
ω̂C

+ n(µk)×
v̂C
d(ρk)

)
+wµ

))
⊗ µk,

µk+1 = exp
(

∆t
((
I − n(µk)n(µk)T

)
ω̂C

+ n(µk)×
v̂C
d(ρk)

+N(µk)wµ

))
⊗ µk. (88)

Here we applied the definition of boxplus (25) and used
the identity N(µ)N(µ)T = I − n(µ)n(µ)T . The three
components influencing the bearing vector prediction can be
observed here: the perpendicular part of the rotational rate,
the linear velocity weighted by the inverse distance, and the
additive noise.
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