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Abstract

In this paper we present a tutorial introduction to two important
senses for biological and robotic systems — inertial and visual per-
ception. We discuss the fundamentals of these two sensing modalities
from a biological and an engineering perspective. Digital camera
chips and micro-machined accelerometers and gyroscopes are now
commodities, and when combined with today’s available computing
can provide robust estimates of self-motion as well 3D scene struc-
ture, without external infrastructure. We discuss the complementar-
ity of these sensors, describe some fundamental approaches to fusing
their outputs and survey the field.

KEY WORDS—vision, inertial sensing, sensor fusion

1. Introduction

All animals make use of multiple sensory modalities. As chil-
dren we learn about the five senses: vision, smell, hearing,
touch and taste but in fact we have many more, including
joint position, muscle exertion, balance and motion. Some
animals (Hughes 1999) have developed specialized sensors
for acoustic ranging (echo-location in bats), magnetic dead-
reckoning (navigation using magnetic fields in some birds)
and detection of prey by incredibly sensitive detection of elec-
tric fields (some sharks and eels). We also combine some of
our sensing modalities� balance and motion from the inner
ear, joint position and vision into a virtual sense of movement
which is called kinesthesia.
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For mobile robotics, ground, air and underwater, a sense of
position (localization) and motion are critically important. The
senses and fusion techniques evolved by animals may help us
to achieve a level of robotic competency that matches or ex-
ceeds that of animals. In robotics we have available to us sen-
sors that have no biological analog, for example GPS (Global
Positioning System), radar and LIDAR (LIght Detection And
Ranging).

In this paper we will discuss kinesthesia for robotics – how
to integrate information from vision and inertial sensors to
provide a robust and non-ambiguous representation of robotic
motion. We will cover the fundamentals of these two sens-
ing modalities from the perspectives of physical principles and
the engineering and biological implementations. We will show
that these sensors have useful complementarities, each able to
cover the limitations and deficiencies of the other. From an en-
gineering perspective this is extremely useful, and that nature
has found it useful to evolve such a complementary sensing
system is interesting and compelling.

A useful way to consider sensors is in terms of the spa-
tial derivative that they sense. GPS and vision are both able
to sense actual position with order 0, while odometry and gy-
roscopes sense order 1 (translational and rotational velocity)
and accelerometers sense order 2 (translational acceleration).
Higher order derivatives have the advantage of rapidly sensing
the onset of motion but their integration over time can lead to
unbounded errors if offsets and scale errors are present. How-
ever while GPS seems ideal and is a very common and low-
cost sensor it has many limitations. Standard GPS has a sub-
stantial error (of order 10 m) when used without differential
or RTK (Real Time Kinematic) correction, and requires line of
sight to the satellite constellation which rules out operation un-
derwater, underground, in many urban environments and even
beneath dense tree cover.
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Fig. 1. Combining inertial and vision sensing.

A single vision sensor can measure relative position with
derivative order of 0 but senses only a 2D projection of the 3D
world – direct depth information is lost but can be inferred, for
example using stereo vision or integration of data from mul-
tiple viewpoints. Optical flow can be computed numerically
from an image sequence to provide derivative order 1 infor-
mation, object velocity scaled by distance which may not be
known. Inertial sensors such as gyroscopes and accelerome-
ters measure derivative order 1 (angular velocity) and order
2 (translational acceleration) respectively. If information from
vision and inertial sensors can be combined, spanning deriva-
tive orders from 0 to 2, the result would be a very useful ro-
bot sensor, particularly since it would require no external in-
frastructure.

Figure 1 shows a framework for combination of inertial and
vision sensors. The 3D world is observed by the visual sensor
while its pose and motion parameters are estimated by the in-
ertial sensors. These motion parameters can also be inferred
from the image flow and known scene features. Combining
the two sensing modalities simplifies the 3D reconstruction of
the observed world. The inertial sensors also provide impor-
tant cues about the observed scene structure, such as vertical
and horizontal references. Pure structure from motion (Hart-
ley and Zisserman 2004) and bundle-adjustment (Triggs et al.
2000) methods can achieve similar results but at much higher
computational cost and with lower robustness.

Today both types of sensor are low-cost, high-performance
and becoming commodities. Color CMOS cameras are mass
produced for mobile phones and some of these have zoom and
focus control. Micro-machined (MEMS) accelerometers have
long been used for automotive air-bag triggers and are now

used in laptops to detect free-fall, and in digital cameras to
sense camera orientation.

The remainder of this tutorial is organized as follows. Sec-
tion 2 describes the fundamentals of inertial sensing and sec-
tion 3 covers visual sensing. Section 4 describes the principles
behind fusion of these two senses and applications.

2. Inertial Sensing

Gyroscopes and accelerometers are known as inertial sensors
since they exploit the property of inertia, i.e. resistance to a
change in momentum, to sense angular motion in the case of
the gyro, and changes in linear motion in the case of the ac-
celerometer. Inclinometers are also inertial sensors and mea-
sure the orientation of the acceleration vector due to gravity.
Inertial sensors are not dependent on any external references
or infrastructure, apart from the ubiquitous gravity field.

An inertial measurement unit (IMU) typically comprises
three orthogonal accelerometers to measure the acceleration
of the body, and also include three orthogonal gyroscopes to
measure the rate of change of the body’s orientation. Linear
velocity and position, and angular position are obtained by in-
tegration. This is the principle behind inertial navigation sys-
tems (INS) which are used in aerospace and naval applications
(Lawrence 1998). Over the last 15 years the developments in
electronic and silicon micromachining, pushed by the needs
of the automotive and consumer industry, have brought about
low-cost batch fabricated, silicon sensors (Yazdi et al. 1998),
which in turn is leading to new applications.
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Fig. 2. Human ear (taken with permission from Encyclopaedia Britannica 2001).

Humans have a similar inertial sensing system which is
called the vestibular system (Gillingham and Previc 1996).
Protected inside the bony labyrinth of the temporal bone within
the inner ear it has three main parts: the cochlea, the vestibule,
and the semicircular canals, see Figure 2. The vestibule houses
two otoliths organs, the utricle and the saccule which measure
gravitational and inertial forces providing information about
the angular position (tilt) and linear motion of the head. The
semicircular canals detect angular velocity of the head and are
are oriented in three orthogonal planes, thus measuring angular
velocity in space.

2.1. Translational Motion

One component of an inertial system is the accelerometer sen-
sor and the basic physical principle, see Figure 3, is quite sim-
ple. A proof or seismic mass, m, is supported by an elastic
element of stiffness c. This may be a pre-stressed spring or a
cantilever beam. A viscous damper, b, provides damping pro-
portional to the relative velocity of the proof mass and the sen-
sor body. The dynamics of this system can be expressed as

�x�t�� 2��n �x�t�� �2
nx�t0 � ��y�t� (1)

which converts acceleration of the sensor body, �y�t�, to dis-
placement x�t� with a natural frequency �n and a damping
ratio � . Typically the parameters m, c and b are selected to
place the resonance well above the motion frequency range
of interest. According to the Equivalence principle in general
relativity, the effects of gravity and acceleration are the same,
that is, we can not determine if the sensor is subject to some

Fig. 3. Principle of single-axis accelerometer.

component of the gravity vector, or if it is accelerating. Other
sensory inputs or strong assumptions are required to resolve
this ambiguity.

In engineered systems improvement in surface and bulk
micro-machining fabrication methods, along with integrated
electronics, have led to the development of low-cost 1, 2 or 3-
axis single-chip inertial sensors for applications such as vehi-
cle security, sports training devices, digital camera orientation
or laptop drop detection. There are presently three main types
of micro-machined low-cost accelerometers: capacitive, piezo-
electric and piezo-resistive. The piezoelectric sensors have a
large dynamic range but no DC response, making them un-
suitable for inertial navigation systems. In the piezo-resistive
sensors the position of the proof mass is measured by a piezo-
resistor which changes its value. In a capacitive sensor the
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Fig. 4. The accelerometer in the human ear: (left) the overall structure, (right) SEM of gray squirrel otoconia provided by Anna
Lysakowski and Steven Price. The bar at bottom right represents 5�m. Originally used as a cover illustration for “Otolith Function
in Spatial Orientation and Movement”, Vol. 871, Annals of the New York Academy of Sciences, 1999.

proof mass position is determined by changing capacitance.
Piezo-resistive sensors require bulk micro-machining, but ca-
pacitive sensors can be surface micro-machined providing
lower cost sensors will full signal conditioning electronics. A
more detailed overview of micro-machined inertial sensors is
provided in Yazdi et al. (1998) and Lobo (2002) and the trends
in inertial sensors are discussed in Barbour and Schmidt (1999,
2001).

For animals, the accelerometer sensor is remarkably simi-
lar to the engineered accelerometer, see Figure 4. The otolith
organs contain otoliths, literally “ear stones”, which are cal-
cium carbonate crystals that serve as the proof mass (Gilling-
ham and Previc 1996). They sit on a gelatinous substance
which acts as the spring and damper and in which are em-
bedded hair cells that detect displacement. There are two sen-
sors per ear located inside the semi-circular canal complex, see
Figure 6. The utricle measures acceleration in the horizontal
(front-back) direction, and the saccule measures in the vertical
direction. To resolve the ambiguity between gravity and body
motion, biological systems use other cues such as vision. They
also seem to separate the acceleration signals by frequency –
the low-frequency component is related to pose, and the high-
frequency component is due to acceleration. This evolved as-
sumption is justified since natural motions, such as walking or
running, result in acceleration that is typically zero mean over
an interval.

2.2. Rotational Motion

When a particle moves in a rotating reference frame, it will
experience a Coriolis force

F � 2m� � v

proportional to the velocity v of the moving particle, the ro-
tation rate of the rotating reference frame � and the particle’s
mass m.

Fig. 5. Principal of vibrating structure gyroscope.

A commonly known device is the gyroscope, essentially
a spinning wheel on an axle, invented and named in 1852
by Léon Foucault. The device, once spinning, tends to resist
changes to its orientation. For this device the net force is due
to all of the particles comprising the spinning disk which yields
a moment due to Coriolis acceleration of

M � I� � p

where I is the moment of inertia of the gyroscope disk, p
the angular velocity of the disk and � the angular velocity of
the gyroscope. As the gyroscope is rotated it exerts an oppos-
ing moment which in a strap-down gyroscope configuration is
measured, since this is proportional to the angular rate.

The vibrating structure Gyroscope (VSG) has no spinning
disk, and is based on producing radial linear motion and mea-
suring the Coriolis effect induced by rotation. Figure 5 rep-
resents a VSG where a flexing beam is made to vibrate in
the vertical plane. Rotation about the axis of the beam in-
duces a Coriolis force that displaces the beam sideways, which
can be detected. MEMS VSG gyroscopes with integrated sig-
nal processing electronics in a single piece of silicon are now
widely available.
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Fig. 6. Human Vestibular System (taken with permission from Encyclopaedia Britannica 2001).

Insects have evolved a similar device — halteres are small
knobbed structures found as a pair in some two-winged in-
sects (Dickinson 1999). The halteres play an important role in
stabilising the gaze of insects during flight and also provide
rapid feedback to wing-steering muscles to stabilise aerody-
namic force moments.

Vertebrate animals have evolved a sensor based on some-
what different principles and which measures rotational accel-
eration. Within the labyrinth structure of the ear is the vestibu-
lar apparatus which comprises three semicircular canals along
with the otolith organs mentioned above (Gillingham and Pre-
vic 1996). Each canal is a circular duct filled with a viscous
fluid. Rotation causes the fluid to push against one or other
end of the duct, where the ampulla is located which senses the
resulting force, see Figure 6.

Although the semicircular canals are stimulated by angu-
lar acceleration, the neural output from the sensory cells in the
ampulla represents the velocity at which the canal is being ro-
tated over the range of normal head movements – the canal
mechanism performs a mathematical integration of the input
signal. This comes about due to the very small internal diame-
ter of the canal, approximately 0.3 mm, which results in a large
increase in the viscous properties of the fluid causing cupula
deflection to be in phase with angular velocity.

Each human ear contains three ducts arranged roughly at
right angles with each other so that they represent all three
planes in three-dimensional space. The horizontal duct lies in a
plane pitched up approximately 30 degrees from the horizontal
plane of the head. The anterior canals are located in vertical
planes that project forward and outward by approximately 45
degrees, see Figure 7.

The brain combines signals from all six ducts to create a
representation of the vector that describes the instantaneous
angular velocity of the head. This sensor signal has many func-
tion but an important one is to provide a feed-forward signal
to the eye muscles to ensure gaze stability, a reflex known as
vestibulo-ocular reflex (VOR) that involves two pathways, one
direct from the vestibular system to the eye muscles and one
via the cerebellum which allows for some measure of gain con-
trol (Carpenter 1988).

Human inertial perceptual thresholds are affected by many
factors including mental concentration, fatigue, attention and
person-to-person variability (Gillingham and Previc 1996).
Reasonable threshold values for perception of angular accel-
eration are 0.14, 0.5 and 0.5 deg�s�2 for yaw, roll, and pitch
motions, respectively. A 1.5 deg change in direction of applied
gravity force is perceptible by the otolith organs under ideal
conditions. Values of 0.01 g for vertical and 0.006 g for hori-
zontal acceleration are representative perception thresholds for
linear acceleration. These are valid for sustained and relatively
low frequency stimulus. The currently available low cost iner-
tial sensors are capable of similar performances (Lobo 2002).

2.3. Inertial Navigation

At the most basic level, an inertial navigation system (INS)
simply performs a double integration of sensed acceleration, a,
over time to estimate position. Assuming a set of accelerom-
eters measuring acceleration along three orthogonal axis we
have

p �
�

�
pdt �

��
��
pdt �

��
adt (2)
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Fig. 7. Axes of the semicircular canals (taken with permission from Dickman 2006).

Fig. 8. Simplified strap-down inertial navigation system.

where p is the position,
�
p the velocity, and

��
p the acceleration

vectors.
The measured accelerations are given in the body frame of

reference, initially aligned with the navigation frame of refer-
ence. If body rotations occur, they must be taken into account.
In gimbaled systems the accelerometers are kept in alignment
with the navigation frame of reference and the gyros stabilize
the accelerometer platform directly or via a servo system. In
a strap-down system the gyros measure the body rotation rate,
and the sensed accelerations are computationally converted to
the navigation frame of reference. Figure 8 shows a block di-
agram of a strap-down inertial navigation system. Common
complications include variability in the sensor gain and offset,
often as a function of temperature, and also cross-axis sensi-
tivity.

The dynamics of our moving sensor system are given by

xt�1 � �xt � N �0� Q� (3)

yi
t � Hxt � N �0� R� (4)

where the state vector x comprises system pose and its deriv-
atives in the navigation frame of reference. The observation
yi � [a� �] are the outputs of the inertial sensors, body accel-
eration and angular velocity. The angular velocity is integrated
to update the rotational attitude of the IMU. Using this attitude,
gravity can be computationally separated from the sensed ac-
celeration to yield acceleration of the body itself. Savage de-
scribes a complete mechanization using quaternions for per-
forming the rotation update (Savage 1984).

Quaternions provide a convenient representation for 3D ro-
tations (Kuipers 1999). A quaternion

	
q can be written as

	
q � q0 � q1i� q2j� q3k � �q0� q� (5)

where q1, q2 and q3 are the components of the imaginary or
vector part q of the quaternion, i, j and k are quaternion vector
operators, analogous to unit vectors along orthogonal coordi-
nate axes, and q0 is the scalar part. The quaternion vector op-
erators, which correspond to the i in complex numbers, are all
square roots of�1, and i2 � j2 � k2 � �1. The magnitude of
a quaternion is defined as


	q
 �
�

q2
0 � q2

1 � q2
2 � q2

3 � (6)

The complex conjugate
	
q
�

of quaternion
	
q is given by

	
q
� � q0 � q1i� q2j� q3k � �q0��q� (7)

and the inverse
	
q
�1

	
q
�1 � 1

	
q
�

	
q
�

	
q
	
q
� � (8)

Vectors can by represented by purely imaginary quaternions.
A point in space given by the vector p can be represented by
the quaternion

	
p � �0� p�. In our notation, when multiplying
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vectors with quaternions, the corresponding imaginary quater-
nion is assumed.

Unit quaternions are such that 
	q
 � 1 and
	
q
	
q
� � 1 and for

which the inverse is the conjugate
	
q
�1 � 	

q
�
. Unit quaternions

can be used to represent rotations, and the rotation � about a
unit vector u is given by the unit quaternion

	
q � cos

�

2
� sin

�

2
u� (9)

The rotation for a space point, or vector, p is given by

p� � 	
qp

	
q
�1 � 	

qp
	
q
�
� (10)

If the quaternion
	
q �k� represents the body rotation relative

to the navigation frame at sample interval k, then the body ac-
celerations can by converted to the navigation frame of refer-
ence by

ana	 � 	
q �k� ab

	
q �k�� (11)

In an INS the set of orthogonal gyros provide a measurement
of the body rotation rate vector given by

� �
�
�x �y �z

�T
(12)

and � � 
�
 �
�
�2

x � �2
y � �2

z gives the magnitude of the

rotation rate and �
�

the unit vector around which the rotation
occurs. The rotation increment during a sampling interval 
t
is given by the quaternion



	
q � cos

�
�
t

2

�
� sin

�
�
t

2

�
�

�
(13)

provided that � �� 0. The quaternion
	
q �k�, that represents the

body rotation relative to the navigation frame at sample inter-
val k, can now be updated by

	
q �k � 1� � 	

q �k�

	
q (14)

and using (11) the measured body accelerations are converted
to the navigation frame, the gravity component is removed,
and integration (2) provides body velocity and position in the
navigation frame. Typically a unit-quaternion is used and the
result of (14) is renormalized to unity to counter numerical
effects after each time step.

Referring back to (3) and (4) the state vector is x �
[p� �p� �p� 	q�

�	
q] where p  �3 and

	
q  SO�3�. This can be

considered as a state estimation problem, given a dynamic
model (3) and the observations (4), and is typically solved us-
ing an extended Kalman filter (Jazwinsky 1970). The state vec-
tor may be extended to include sensor bias and scale factors.

Fig. 9. Camera perspective projection: (a) lens image forma-
tion� (b) pinhole camera model.

3. Visual Sensing

3.1. Model of Visual Sensing

The physical principle for image formation on biological and
engineered visual sensors is shown in Figure 9. Different
geometries can also be considered for the imaging model, such
as perspective, fisheye, spherical, catadioptric, etc. (Hartley
and Zisserman 2004� Faugeras 1993). Commonly a convex
lens projects a 2-dimensional image of the world onto the im-
age plane. The commonly used pinhole camera model, shown
in Figure 9, considers one centre of projection where all rays
originating from world points converge. The image will be
equivalent to a plane cutting that pencil of rays, projecting im-
ages of world points onto a plane.

In the pinhole camera model a projection point pi � �u� 	�T
in the camera image is related with a 3D point P � [X� Y� Z ]T

by the perspective relations

u � Su�
X

Z
� u0 	 � S	�

Y

Z
� 	0 (15)

where u and 	 are the picture elements (pixels) coordinates
on the image plane, �u0� 	0�

T is the image center, �, Su is the
camera focal distance, S	 are the scale factors associated with
the physical dimensions of the pixels, and P is expressed in
the camera frame of reference. This camera model ignores lens
distortion and assumes there is no skew.

We can rewrite the above equation as

u � fu
X

Z
� u0 	 � f	

Y

Z
� 	0 (16)
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where u and 	 are the pixel coordinates with origin at the im-
age center and f is the camera effective focal distance (i.e.
includes the pixel scale factor). This can be written as a pro-
jective mapping, up to scale factor s as

spi �

�
��	

su

s	

s



��� � CP

�

�
��	

fu 0 0

0 f	 0

0 0 1



���
�
��	

1 0 u0 0

0 1 	0 0

0 0 1 0



���

 �� �
intrinsic

� [R t]���
extrinsic

�
������	

X

Y

Z

1



�������

(17)

where P � �X� Y� Z� is the world point, and matrix C is the
projection matrix comprising intrinsic parameters of the cam-
era and lens and the extrinsic parameters of the camera’s pose
[R� t] with respect to the world. The scale factor is arbitrary,
and reflects the fact that only the projective ray for each image
point is known.

An engineered camera system typically uses a glass lens
with fixed focus or some means to move it slightly along the
optical axis to achieve a clear image. The image is projected
onto a silicon fabricated CMOS or CCD array, with upto 8
million photosites but for low-end cameras is typically only
0.5 million (for VGA resolution). The photosites, of typical di-
mension 2� 10�m are arranged in a regular rectangular grid.
Low-cost color sensors have color filters printed on the sur-
face, typically filtering a 2x2 group of pixels with one red, one
blue and two green filters. Digital processing provides an esti-
mate of red, green and blue intensity at each pixel, but in fact
the measurements are not independent. For low-cost sensors
exposure control is achieved by altering the integration time
and adding an analog gain stage. The dynamic range within an
image is typically only 8–10 bits.

The human eye is approximately spherical with a diameter
of 15 mm and filled with a clear gel-like material. The lens is
a clear, bi-convex structure about 10 mm in diameter, which
is deformed by muscles to focus the image which is projected
on the retina (image-plane) at the back of the eye. There are
two types of photoreceptors in the retina: cones and rods. In
normal daylight conditions cone photoreceptors are active and
these are color sensitive: 65% sense red, 33% sense green and
2% sense blue. The cones are approximately 3�m in diameter
and 34000 of them are packed into the foveal area of the retina

which is only 0.6 mm in diameter. The photoreceptor density
in the rest of the retina is considerably lower. The eye has high
resolution only over the foveal field of view of a few degrees
but subconscious eye motion directs the fovea over the entire
field of view. Cone photoreceptors have a dynamic range of
600. At very low light levels the rod photoreceptors become
active and provide another factor of 20 in dynamic range. The
rod sensors are monochromatic and their density in the fovea is
only 7% of that of the cones, but increases in the peripheral re-
gion. Their sensitivity is chemically adapted slowly over time.
Illumination levels on the retina are controlled by the iris, a
muscle-drive diaphram that controls the size of the opening
called the pupil. The overall dynamic range of the eye is over
100000 which corresponds to more than 16 bits.

As mentioned earlier, distance information is lost in the pro-
jective imaging transformation. Cutting (1997) discusses nine
visual cues used by humans to perceive distance, and each cue
has a significance that varies with distance. Some cues give or-
dinal information such as which object is closer than another,
whereas others can give more quantitative information. Stereo
disparity (Faugeras 1993) is a well-known method to robotics
and computer vision researchers to recover distance but it is
just one of many perceptual cues used by humans to infer dis-
tance and is only effective up to 10 m. The evolutionary devel-
opment of nine sources of information reflects the importance
of depth perception which cannot be trusted to any one single
cue.

3.2. Visual Motion

Suppose that the camera is moving with angular velocity � �
[�x � �y� �z] and translational velocity T � [Tx � Ty� Tz] with
respect to the fixed frame and P is a point in the world. The
velocity of the point P, expressed relative to the camera frame,
is given by

�P � � � P� T� (18)

Following the approach of Hutchinson et al. (1996) we substi-
tute the perspective projection equations (16) into (18) allow-
ing us to write the derivatives of the coordinates of P in terms
of the image feature parameters u� 	 as

�X � z�y � 	z

�
�z � Tx (19)

�Y � uz

�
�z � z�x � Ty (20)

�Z � z

�
�	�x � u�y�� Tz� (21)

where f � fu � f	 . Our visual feature is the image plane
coordinate [u� 	] corresponding to P, and using the quotient
rule we obtain
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�u � f
Z �X � X �Z

Z2
(22)

� f

Z2

�
Z

�
Z�y � 	z

f
�z � Tx

�

� uz

f

�
Z

f
�	�x � u�y�� Tz

��
(23)

� f

Z
Tx � u

Z
Tz � u	

f
�x � f 2 � u2

f
�y � 	�z (24)

and similarly

�	 � f

Z
Ty � 	

Z
Tz � � f 2 � 	2

f
�x � u	

f
�y � u�z� (25)

Rewriting these two equations in matrix form we obtain
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(26)

which relates image-plane velocity of a point to the relative
velocity of the point with respect to the camera through the
image Jacobian matrix. We can clearly see that image-plane
velocity is the summation of 6 motion components, making it
impossible to disambiguate rotational from translational mo-
tion from the observed motion of a single point. Also we can
see that the first three columns in the image Jacobian have the
range in the denominator. This represents the effect of range, z,
on apparent velocity, i.e. a slow close object appears to move
at the same speed as a distant fast object.

3.3. Concurrent Estimation of Structure and Motion

While direct depth information is lost from a single perspec-
tive view, multiple views from different viewpoints hold the
possibility of recovering depth, and this is the well-studied
computer vision problem called structure from motion (SFM)
(Jebara et al. 1999� Huang and Netraveli 1994� Hartley and
Zisserman 2004� Ma et al. 2004). More formally, SFM esti-
mates both the 3D position of points in the scene with respect
to some fixed coordinate frame and also the pose of the camera
for each frame. A typical SFM implementation has the follow-
ing components:

1. Robust detection of salient features, such as points or
lines, in each scene that we can observe across multiple
consecutive images.

2. Determining the correspondence of these features be-
tween consecutive images.

3. Updating the estimate of scene structure and camera
pose.

Within this general approach many variations are reported
in the literature.

Point features are most commonly used and the Kanade–
Lucas tracker (Kanade and Lucas 1981) combines corner de-
tection with tracking, yielding multi-frame tracks of features
on the image plane in an efficient way for small motions
that typically occur between consecutive video frames. Alter-
natively corner features can be found using the Shi–Tomasi
(Tomasi and Shi 1994) or Harris (Harris and Stephens 1988)
detectors in individual frames and then correspondence is de-
termined, generally involving an exhaustive comparison of all
features between consecutive image frames (Ma et al. 2004�
Nistér et al. 2006). Point feature comparison is typically based
on the similarity of regions surrounding each corner. The
search process can be pruned by assuming the image-plane
motion is small. Information about camera motion from the
inertial sensors can also be used to predict feature position,
which can significantly reduce the search space, see for ex-
ample Corke (2004). Methods have been proposed that do not
use correspondence such as Dellaert (2000), or which use a
probabilistic measure of correspondence such as Domke and
Aloimonos (2005, 2006). Robust feature detection is discussed
further in Vincze and Hager 1999), and implementations of
trackers are generally available (Hager and Toyama 1998�Xvi-
sion2� Birchfield). SFM using lines is discussed in Rehbinder
and Ghosh (2003) and Huang and Netraveli (1994).

Assuming a rigid scene, a small number of corresponding
points from 2 or 3 consecutive images can be used to estimate
the change in camera pose and the world coordinates of the
points (Nistér et al. 2006� Ma et al. 2004). Techniques such
as random sample consensus (RANSAC) (Fischler and Bolles
1981) or least-median squares (Zhang et al. 1995) are applied
to provide robustness against correspondence errors. Nistér
presents a pre-emptive technique which gives high efficiency
in limited time as required for real-time applications (Nistér
2005). A subsequent smoothing filter can be applied to the
camera motion to account for dynamic constraints (Soatto et
al. 1993). Alternatively the problem can be formulated as esti-
mating the state of the dynamic system

xt�1 � �xt � N �0� Q� (27)

y	t � H�xt �� N �0� R� (28)

where the state vector x � [xc�xw] comprises the state
of the camera xc � [P�

	
q] and the state of the world
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x � [P1� P2� � � �PN ], the 3D coordinates of N scene
points. The camera state includes camera pose, and if the
camera is uncalibrated or partly calibrated will also include
the unknown intrinsic parameters. Many representations of
the world coordinates have been proposed, including Carte-
sian �x� y� z�, image-plane coordinate augmented by depth
along the ray �u� 	� d� (Jebara et al., 1999), and a proba-
bilistic depth distribution (Davison 2003). The observation
y	t � [�u1� 	1�� �u2� 	2�� � � � �uN � 	N �] represents the image-
plane coordinates of the world points, which is typically a very
non-linear function of camera pose and depends on the type of
camera projection model. Most SFM systems use conventional
projective cameras but wide angle lenses have been used by
Davison et al. (2004) and Strelow (2004). Various approaches
to solving this estimation problem have been demonstrated,
including extended Kalman filters by Broida et al. (1990) and
Azarbayejani and Pentland (1995). A software toolkit for im-
plementing SFM is available (Torr).

There are very strong similarities between SFM and the si-
multaneous localization and mapping (SLAM) problem (New-
man 2007� Thrun et al. 2005� Montemerlo and Thrun 2007),
also known as concurrent mapping and localization (CML). A
SLAM algorithm incrementally builds a stochastic map, with
every new data acquisition it estimates the robot pose from
the matches between observed and previously perceived land-
marks, and updates the map with new landmarks and fused
estimates for matched ones.

With a single camera there is no depth data for the land-
mark, and this is essentially the bearing-only SLAM problem.
To determine the initial estimate of landmark depth, a land-
mark initialization process is used which combines at least
two observations of the same features from far enough apart
robot poses. Real-time visual SLAM has recently been ac-
complished using a single camera (Davison 2003� Davison et
al. 2004, 2007) or with a stereo camera (Molton and Brady
2000) which provides range and bearing observations. Many
different sensors can be used to detect landmarks, but to apply
the classic extended Kalman filter (EKF) SLAM algorithm,
the landmark addition into the stochastic map requires a full
Gaussian estimation of its state.

4. Inertial and Visual Sensor Fusion

Combining camera and inertial sensors exploits their comple-
mentary characteristics:

1. The inertial sensor is unable to distinguish a change in
inclination from acceleration of the body, due to Ein-
stein’s equivalence principle.

2. Inertial sensors have large measurement uncertainty at
slow motion and lower relative uncertainty at high ve-
locities. Inertial sensors can measure very high veloci-
ties and accelerations.

3. Cameras can track features very accurately at low veloc-
ities. With increasing velocity, tracking is less accurate
due to motion blur and the effect of camera sampling
rate. For high velocities and accelerations cameras with
higher frame rate can be used up to a limit, but the in-
crease in bandwidth complicates real-time implementa-
tions.

4. In a projective image we cannot, according to (26), dis-
ambiguate rotational from translational motion.

5. A near object with low relative speed appears the same
as a far object with high relative speed, again according
to (26).

Thus the motivation for integration of vision and inertial
sensing is clear. Starting with the early work of researchers
such as Viéville and Faugeras (1990) there is now growing
interest and application of inertial and visual fusion which is
driven by the availability of small and low-cost sensors.

4.1. Gravity as a Vertical Reference

In vision based systems used in mobile robotics, the perception
of self-motion and structure of the environment is essential. In-
ertial sensors can provide valuable data not only about camera
ego-motion, but also an absolute reference for how to expect
features and structures to be oriented in the world.

A static camera is capable of observing one important iner-
tial cue – gravity. The vertical vanishing point of any vertical
world features defines the gravity reference for the camera.
The image horizon line is another cue for camera attitude. The
path of objects in free fall or ballistic motion also provide a
vertical reference. With some prior knowledge about expected
scene features, the visual gravity cues can be detected and
a vertical reference defined for the camera. Conversely, hav-
ing the vertical reference from static inertial sensors provides
knowledge about expected scene features. Vision processing
can use this external reference for feature extraction, simplify-
ing correspondence, object identification and scene interpreta-
tion.

In dynamic systems keeping track of the vertical direction
is required, so that gravity acceleration can be compensated
for, and it also provides a valuable spatial reference. Dynamic
inertial cues also provide an image independent location of the
image focus of expansion and center of rotation which can be
useful during visual based navigation tasks.

Low level monocular image processing can use the vertical
reference to tune edge detection to find relevant features such
as vertical or horizontal scene elements. In stereo vision the
vertical reference provides an external restriction when con-
sidering ground plane or levelled plane point correspondence
in the stereo pair. Results for ground plane segmentation of
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feature points, vertical line detection and 3D vertical line seg-
mentation are presented in Lobo and Dias (2003).

In Lobo and Dias (2004) depth maps obtained from stereo
vision are rotated to a vertically aligned world frame of refer-
ence using the inertial vertical reference. Segmentation of pla-
nar levelled patches is simplified, and taking the ground plane
as a reference plane for the acquired maps, the fusion of mul-
tiple maps reduces to a 2D translation and rotation problem.
In Viéville et al. (1995) ego motion is estimated using the ver-
tical cue. Using the vertical as a basic cue for 3D orientation
simplifies the structure from motion paradigm. A line segment
based module to recover ego motion is implemented that con-
currently builds a 3D map of the environment in which the
absolute vertical is taken into account. The proposed method
reduces the disparity between two frames in such a way that
3D vision is simplified. In particular the correspondence prob-
lem is simplified.

Gravity provides a valuable spatial reference, however for
rotations about a vertical axis gravity provides no cues, and
gyro integration is required to keep track of body attitude. The
earth’s magnetic field can be used to provide the missing bear-
ing (Caruso et al. 1998), but magnetic sensing is sensitive to
nearby ferrous metals and electric currents. In fact, there is
some overlap and complementarity between the two sensors,
with different noise characteristics that can be exploited to pro-
vide a useful rotation absolute reference as in Roetenberg et al.
(2003, 2005).

4.2. Concurrent Estimation of Structure and Motion

According to Qian et al. (2001) the advantages of inertial and
visual fusion in SFM are: greater robustness to feature tracking
errors, fewer features required to recover camera motion and
reduced ambiguity in the recovery of camera motion. There
are two broad approaches that we will call loosely and tightly
coupled. The loosely coupled approach uses separate INS and
SFM blocks, running at different rates and exchanging infor-
mation. The tightly-coupled systems combine the disparate
raw data of vision and inertial sensors in a single, optimum
filter, rather than cascading two filters, one for each sensor.

4.2.1. Loosely Coupled Systems

In the loosely coupled approach, see Figure 10, the INS and
SFM blocks run independently. Translational and angular ve-
locity estimates from the INS are used to predict feature mo-
tion, and velocity estimates from SFM can be used to bound
integration errors in the INS. Prediction of feature motion pro-
vides a virtual stabilized camera, which has the advantages of
low-cost, small-size, no moving parts and superiour dynamics
compared to a mechanical pan/tilt camera. This makes the fea-
ture correspondence process more robust and can reduce the
search space thus reducing computational load.

Fig. 10. Loosely coupled inertial-visual system.

Primates however do have the equivalent of an active
pan/tilt camera system. The vestibulo-ocular reflex (Carpen-
ter 1988) provides a feedforward from head rotational veloc-
ity (sensed in the semi-circular canals) to eye rotational veloc-
ity. A simple demonstration shows the effectiveness of VOR
for retinal-image stabilization. Hold your extended fingers at
arms length in front of your face, and move them slowly from
side to side. You can clearly see them because of your visual
(optokinetic) tracking reflexes. However as the frequency of
movement increases you will reaches a point where the fingers
cannot be seen clearly – they are blurred by the movement –
typically around 60 deg�s�1 or 1 or 2Hz for most people. Now,
if the fingers are held still and the head is rotated back and
forth at that frequency the fingers remain perfectly clear – this
is VOR in action.

Conflicts between these two subsystems, visual and
vestibular, lead to interesting physiological effects. The sensa-
tion of vertigo, when looking down from a high place, occurs
as the body tends to sway in order to obtain a visual stimu-
lus since the viewed scene is very far away. Even large am-
plitude movements fail to provide any visual stimulus, but the
large swaying motion triggers the vestibular system, giving an
alarm that the body is out of balance. During prolonged head
rotation the elasticity of the cupula gradually returns it to its
resting position, signaling no rotation. This conflicts with in-
formation from the eyes and causes the sensation of dizziness.
Motion sickness results from conflicts between these sensors,
typically when the vestibular system indicates motion, but the
eyes do not.

For low frequency motion of external world features rel-
ative to the body, or body motion relative to the world,
gaze stabilization is done by the visual system with the op-
tokinetic tracking reflexes. As the frequency increases, the
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Fig. 11. Tightly coupled inertial-visual system.

vestibulo-ocular reflexes assume a predominant role. In nor-
mal human activity the higher frequencies of relative motion
are due to head and body motion, where the vestibular sys-
tem can provide a suitable stimulus for the gaze stabilization
reflexes. In engineering terms this is an example of comple-
mentary filtering (Zimmerman and Sulzer 1991) to fuse the in-
ertial (rate) and visual (position) data, see for example, Corke
(2004).

4.2.2. Tightly Coupled Systems

In the tightly coupled approach, shown in Figure 11, a single
high-order estimation filter is used. Combining the observation
equations (4) and (28) we can write

xt�1 � �xt � N �0� Q� (29)

yi
t � Hi �xt�� N �0� R� (30)

y	t � H 	�xt�� N �0� R� (31)

where the state vector x � [xc�xw] comprises the inertial state

of the camera xc � [p� �p� �p� 	q�
�	
q] and the state of the world

x � [P1� P2� � � �PN ], and the 3D coordinates of N scene
points. The inertial observations yi � [ �p� �] are the outputs
of the inertial sensors, while the visual observations, y	 are
the image-plane coordinates of the world points. Additionally
the state vector may be augmented by unknown camera intrin-
sic parameters and inertial sensor bias and scale parameters.
The state vector will be large, typically over 20 states, which
has implications for computational load and for tuning. Imple-
mentation is complicated by the fact that the visual and inertial
observations occur at quite different rates.

This estimation problem has been solved using offline batch
optimzation by Strelow (2004), extended Kalman filter by
Qian et al. (2001), iterated extended Kalman filter by Strelow
(2004) and unscented Kalman filter by Julier et al. (2000) and
Armesto et al. (2004). Strelow (2004) also investigates the use
of the panoramic catadioptric camera combined with inertial
sensing.

4.3. A Summary of Applications and Related Work

Integration of visual and inertial sensing modalities opens new
application directions in robotics and other fields. Inertial sen-
sor technology has been steadily improving (Yazdi et al. 1998�
Barbour and Schmidt 2001), enabling innovative applications
such as the development of vestibular prostheses for human pa-
tients (Wall et al. 2003). This section briefly summarizes var-
ious applications of inertial and visual sensors reported in the
literature, such as virtual and augmented reality, localization
and mapping for navigation, involving gaze control, pose and
motion estimation, hybrid trackers and structure from motion.

To better exploit the benefits of combining the two sensing
modalities in artificial systems, a clear understanding of bio-
logical systems provides useful perspective. Taking advantage
of improved brain imaging techniques, a better understand-
ing of the visual motion and self-movement interactions has
been pursued (Beer et al. 2002� Previc et al. 2000). Vestibu-
lar information is necessary not only for vestibular reflexes
but also in various cognitive functions for our adequate be-
havior in three-dimensional space. In Fukushima (1997) the
regions of the cerebral cortex where vestibular information
is represented is investigated. Perception and action influence
each other, making some biological systems highly coupled
and complex, from which direct models for sensor fusion are
not easily derived (Hurley 2001). In Leone (1998) and Ange-
laki et al. (1999) the role of gravity in visual perception and
how the brain deals with the ambiguity between inclination
and body acceleration is investigated. In Harris et al. (2000)
and Reymond et al. (2002) the motion perception inferred from
visuovestibular cues is studied. The perceived relative motion
is important for posture control (Kelly et al. 2005).

In Viéville and Faugeras (1989) the use of inertial sensors in
computer vision applications was proposed, and further work
studied the cooperation of the inertial and visual systems in
mobile robot navigation by using the vertical cue, rectifying
images and improving self-motion estimation for 3D struc-
ture reconstruction (Viéville and Faugeras 1990� Viéville et al.
1993a, 1993b, 1995� Viéville 1997). In Lobo and Dias (2003)
a framework is proposed for vision and inertial sensor coop-
eration. The use of gravity as a vertical reference is explored,
enabling camera focal distance calibration with a single van-
ishing point, vertical line segmentation, and ground plane seg-
mentation. In Lobo et al. (2003) world vertical feature de-
tection and 3D mapping is presented, and in Lobo and Dias
(2004) the inertial vertical reference is used to improve depth
map alignment and registration.

An important aspect in practical implementation is system
calibration. When visual and inertial sensors are integrated in a
system their relative pose must be determined. A specific cali-
bration stand with a target board with a set of coded fiducials is
used in Foxlin and Naimark (2003a) to fully calibrate a minia-
turized hybrid self-tracker system. In Lang and Pinz (2005) the
rotation calibration between sensors is based on rotation dif-
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ferences. In Lobo and Dias (2005, 2007) a simple relative pose
calibration procedure based on observing gravity is proposed,
and a calibration toolbox is provided (Lobo 2006).

Some bio-inspired robotic implementations of image sta-
bilization and gaze control have been proposed (Panerai and
Sandini 1998� Panerai et al. 2000, 2002� Viollet and Frances-
chini 2005) that try to mimic the vestibulo-ocular reflex, using
inertial sensors to generate compensatory movements and limit
the amplitude of image motion to a range can be dealt by the
visual algorithms.

Virtual reality applications have always required motion
sensors on the user which is inconvenient. Augmented real-
ity, where virtual reality is overlaid onto a realtime view, is
particularly sensitive to any mismatch between real and esti-
mated user motion. Precise user attitude and translation can
be obtained with several sensor suites, using external vision
and specific markers, radio transponders, ultrasound beacons,
laser beacons, etc. Aiming for low cost self contained sys-
tems, MEMs inertial sensors are being used in combination
with computer vision techniques (You et al. 1999). The ulti-
mate goal is to have a visuo-inertial tracker, that can operate in
arbitrary unprepared environments relying on natural features,
suitable for augmented reality applications. In You and Neu-
mann (2001) a two-channel complementary motion extended
Kalman filter is used to combine the low-frequency stability of
vision sensors with the high-frequency tracking of gyroscope
sensors, hence, achieving stable static and dynamic six-degree-
of-freedom pose tracking. Augmented reality systems rely on
hybrid trackers to successfully fuse real time imagery with dy-
namic 3D model (You et al. 1999� Lang et al. 2002� Neumann
et al. 2003� Jiang et al. 2004).

Many other hybrid self-trackers based on inertial and vision
sensors have been proposed (Hoff et al. 1996� Azuma et al.
1999� Chai et al. 2002� Naimark and Foxlin 2002� Foxlin and
Naimark 2003b� Ribo et al. 2004� Hogue et al. 2004� Alenya
et al. 2004� Klein and Drummond 2004). The visual tracking
relies on either specific targets, line contours or more demand-
ing natural landmarks, and both visual and inertial estimators
interact to produce a hybrid tracker. Some commercial hybrid
self-tracker systems are being developed such as Foxlin and
Naimark (2003b) and Foxlin et al. (2004). In Grimm and Gri-
gat (2004) the pose of an ergonomic pen-like human–computer
interface is tracked in real time using vision and a set of ac-
celerometers.

As mentioned above, the integration of inertial sensors can
reduce ambiguities and improve robustness of structure from
motion methods (Qian et al. 2001, 2002). The dual problem of
motion estimation from observed structure has long been pur-
sued, and some recent work that explores the complementarity
of inertial and visual sensing for motion estimation is Jung and
Taylor (2001), Strelow and Singh (2002, 2003), Chroust and
Vincze (2004), and Chen and Pinz (2004).

Applications to robotics are increasing. Some early work
on vision systems for automated passenger vehicles also in-

corporated inertial sensors and explored the benefits of visuo-
inertial tracking (Dickmanns 1998� Goldbeck et al. 2000).
Other ground vehicle applications include agricultural vehi-
cles (Hague et al. 2000), wheelchairs (Goedem et al. 2004)
and indoor mobile robots (Stratmann and Solda 2004� Diel et
al. 2005). Recent work related to aerial vehicles (UAVs) in-
cludes fixed wing aircraft (Kim and Sukkarich 2004, 2007)�
Bryson and Sukkarich 2007� Nygards et al. 2004� Graovac
2004), rotorcraft (Muratet et al. 2005� Corke 2004) and de-
scending spacecraft (Roumeliotis et al. 2002). For underwa-
ter vehicles (AUVs) there are recent results in Eustice et al.
(2005), Huster and Rock (2003) and Dunbabin et al. (2006).

5. Conclusion

This paper has presented a tutorial introduction to inertial and
visual sensors and discussed how they may be fused to create a
robust estimate of self motion. For mobile robotics, ground, air
and underwater, a sense of position (localization) and motion
are critically important. Biological systems from flying insects
to humans have evolved complementary sensor systems that
provide this functionality which is a testament to their util-
ity. Artificial systems should also exploit this sensor fusion.
Inertial sensors coupled to cameras can provide valuable data
about camera ego-motion and how world features are expected
to be oriented. Feature detection and tracking benefits from
both static and dynamic inertial information. Visual and iner-
tial sensors today have high performance and are low cost and
compact. They require no external reference and emit no radi-
ation. These sensors have useful complementarities, each able
to cover the limitations and deficiencies of the other.
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