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Synonyms

Visual-inertial state estimation, inertial-aided vision-based state estimation, Visual-
Inertial Simultaneous Localization and Mapping (VISLAM), camera tracking, ego-
motion estimation.

Definitions

Visual-Inertial odometry (VIO) is the process of estimating the state (pose and ve-
locity) of an agent (e.g., an aerial robot) by using only the input of one or more
cameras plus one or more Inertial Measurement Units (IMUs) attached to it. VIO
is the only viable alternative to GPS and lidar-based odometry to achieve accurate
state estimation. Since both cameras and IMUs are very cheap, these sensor types
are ubiquitous in all today’s aerial robots.

Overview

Cameras and IMUs are complementary sensor types. A camera accumulates the
photons during the exposure time to get a 2D image. Therefore they are precise
during slow motion and provide rich information, which is useful for other per-
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Fig. 1 Illustration of visual-inertial sensors and measurements. Left: Stereo VI-sensor from
(Nikolic et al 2014). Right: Camera (green) and IMU (blue) measurements along a trajectory.

ception tasks, such as place recognition. However, they have limited output rate
(∼100Hz), suffer from scale ambiguity in a monocular setup, and are not robust to
scenes characterized by low texture, high speed motions (due to motion blur) and
High Dynamic Range (HDR) (which may cause over- or under-exposure of the im-
age). By contrast, an IMU is a proprioceptive sensor measuring the angular velocity
and the external acceleration acting upon it. An IMU is scene-independent, which
renders it unaffected by the aforementioned difficulties for cameras. Thus, it is the
ideal complement to cameras to achieve robustness in low texture, high speed, and
HDR scenarios. Additionally, an IMU has high output rate (∼1,000Hz). However,
it suffers from poor signal-noise ratio at low accelerations and low angular veloci-
ties. Due to the presence of sensor biases, the motion estimated from an IMU alone
tends to accumulate drift quickly. Therefore, a combination of both cameras and
IMUs can provide accurate and robust state estimation in different situations.

The typical VIO configuration is illustrated in Fig. 1. The camera(s) and IMU(s)
are rigidly attached, and the sensor suite outputs visual and inertial measurements
at different rates. In VIO, the environment is represented as a set of 3D landmarks
W p that are projected by the camera to 2D image coordinates u:

u = pro ject(TCW ·W p). (1)

The IMU measures the angular velocity ω and the external acceleration a:

ω = Iω +bg +ng, a = RIW (W a−W g)+ba +na, (2)

where Iω is the angular velocity of the IMU expressed in the IMU frame, W a the
acceleration of the IMU in the world frame, and W g the gravity in the world frame.
b and n are the biases and additive noises respectively (see (Furgale et al 2013) for
details).

VIO is the process of estimating the state of the sensor suite using the camera and
IMU measurements (1) and (2). Typically, the quantities to estimate are N states at
different times {ti}N

i=1

Xi = [Ti
WI , vi

WI , bi
a, bi

g], i = 1, 2, 3, . . . , N (3)
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Fig. 2 Comparison of loosely (left) and tightly coupled (right) paradigms for VIO.

where Ti
WI is the 6-DoF pose of the IMU, vi

WI is the velocity of the IMU, bi
a and bi

a
are the biases of the accelerometer and gyroscope respectively. In contrast to visual-
only odometry, the velocity and the biases are essential to utilize the IMU measure-
ments and have to be estimated in addition to the 6-DoF pose. Specifically, biases
are necessary for computing the actual sensor angular velocity and acceleration from
the raw measurements (2), and velocity is needed for integrating acceleration to get
position.

VIO can utilize multiple cameras and IMUs; however, the minimum number
of cameras and IMUs that is sufficient to perform VIO is one. Indeed, a single
moving camera allows us to measure the geometry of the 3D scene and the cam-
era motion up to an unknown metric scale: the projection function in (1) satisfies
pro ject(p) = pro ject(s ·p) for an arbitrary scalar s and an arbitrary point p; a sin-
gle IMU, instead, renders metric scale and gravity observable (due to the presence
of gravity in (2)) (Martinelli 2013).

Depending on the specific information used to fuse visual and inertial measure-
ments, VIO approaches can be categorized into two paradigms: loosely coupled and
tightly coupled (Corke et al 2007). Conceptually, loosely coupled methods process
visual and inertial measurements separately by computing two independent motion
estimates that are then fused to get the final output. By contrast, tightly coupled
methods compute the final output directly from the raw camera and IMU measure-
ments, e.g., the tracked 2D features, angular velocities, and linear accelerations (2).
The difference between these two approaches is conceptually illustrated in Fig. 2.

Tightly coupled approaches are more accurate than the loosely coupled ones.
First, using IMU integration to predict the 2D feature locations in the next frame
can be used to facilitate feature tracking. Second, loosely-coupled approaches do
not consider the visual and inertial information coupling, making them incapable of
correcting drift in the vision-only estimator.

Key Research Findings

The Three Major VIO Paradigms

Existing VIO approaches can be categorized by the number of camera-poses in-
volved in the estimation, which is highly correlated with the computational demand
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and accuracy. Full smoothers (or batch nonlinear least-squares algorithms) estimate
the complete history of states, fixed-lag smoothers (or sliding window estimators)
consider a window of the latest states, and filtering methods only estimate the latest
state. Full smoothers, by keeping the whole pose history, allow re-linearization when
the estimate is updated. By contrast, sliding window estimators and filters marginal-
ize older states (which locks the linearization error permanently) and are therefore
less accurate but more efficient. Early research on VIO focuses on filters because of
their efficiency. Recently, the research focus has shifted to fixed-lag/full smoothers
due to their superior accuracy and the availability of more powerful computers.

Note that there are different criteria that can be used to characterize VIO al-
gorithms. VIO approaches can use different representations of the uncertainty for
the measurements and the Gaussian priors: the Extended Kalman Filter (EKF) rep-
resents the uncertainty using a covariance matrix; instead, information filters and
smoothers resort to the information matrix (the inverse of the covariance) or the
square-root of the information matrix (Kaess et al 2012; Wu et al 2015). The num-
ber of times in which the measurement model is linearized is also an important
criterion. While a standard EKF (in contrast to the iterated EKF) processes a mea-
surement only once, a smoothing approach allows linearizing multiple times.

While the terminology is vast, the underlying algorithms are tightly related. For
instance, it can be shown that the iterated Extended Kalman filter equations are
equivalent to the Gauss-Newton algorithm, commonly used for smoothing (Bell and
Cathey 1993).

Filtering

Filtering algorithms enable efficient estimation by restricting the inference process
to the latest state of the system. Classic approaches estimate both the poses and
landmarks, and the complexity of the filter (e.g., the Extended Kalman Filter) grows
quadratically in the number of estimated landmarks. Therefore, a small number of
landmarks are typically tracked to allow real-time operation (Davison et al 2007;
Bloesch et al 2015; Jones and Soatto 2011).

An alternative is to adopt a structureless approach where landmark positions are
marginalized out of the state vector (see, for instance, the Multi-State Constraint
Kalman filter (MSCKF) (Mourikis and Roumeliotis 2007)). A drawback of the
structureless filter is that the processing of landmark measurements needs to be de-
layed until all measurements of a landmark are obtained (Mourikis and Roumeliotis
2007). This hinders accuracy as the filter cannot use all current visual information.

There are two major error sources for filtering approaches. First, filters absorb
the information of the older states into the estimation of the latest state and drop
the older states permanently. Therefore, linearization error and erroneous outlier
measurements (see (Tsotsos et al 2015)) are locked in the filter state. Second, lin-
earization error renders filters inconsistent. Generally, the VIO problem has four
unobservable directions: the global position and the orientation around the gravity
direction (yaw) (Martinelli 2013; Kottas et al 2012). In (Kottas et al 2012) it is shown
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that linearization at the wrong estimate adds spurious information in unobservable
directions. To address this problem, the first-estimates jacobian approach (Huang
et al 2008) is often adopted to ensures that a state is not updated with different
linearization points, which is a source of inconsistency.

Fixed-lag Smoothing

Fixed-lag smoothers estimate the states that fall within a given time window, while
marginalizing out older states (Mourikis and Roumeliotis 2008; Sibley et al 2010;
Dong-Si and Mourikis 2011; Leutenegger et al 2015). For VIO, which is highly non-
linear, fixed-lag smoothing approaches are generally more accurate than filtering,
since they relinearize part of the past measurements as the estimate is updated May-
beck (1979). Moreover, these approaches are more robust to outliers by explicit
outlier rejection after the optimization or using robust cost functions (Hartley and
Zisserman 2003). However, since fixed-lag smoothers still resort to marginalization,
they, similar to filters, suffer from inconsistency and linearization errors (Hesch et al
2014; Dong-Si and Mourikis 2011; Huang et al 2011).

Fixed-lag smoothers are more computationally expensive than filters, since mul-
tiple states instead of the latest one are estimated. In addition, the marginalization of
the states outside the estimation window can lead to dense Gaussian priors, which
hinders efficient matrix operations. For this reason, it has been proposed to drop
certain measurements instead of marginalizing them to maintain the sparsity of the
problem (Leutenegger et al 2015).

Full Smoothing

Full smoothing methods estimate the entire history of the states by solving a large
nonlinear optimization problem (Jung and Taylor 2001; Sterlow and Singh 2004;
Bryson et al 2009; Indelman et al 2013; Patron-Perez et al 2015). Full smoothing
guarantees the highest accuracy, since it can update the linearization point of the
complete state history as the estimate evolves. However, because the optimization
problem is approximately cubic with respect to the dimension of the states, real-time
operation quickly becomes infeasible as the trajectory and the map grow over time.
Common practice (also widely used in fixed-lag smoothers) is to only keep selected
keyframes (Leutenegger et al 2015; Qin et al 2017; Strasdat et al 2010; Nerurkar
et al 2014) and/or run the optimization in a parallel tracking and mapping archi-
tecture (Mourikis and Roumeliotis 2008; Klein and Murray 2009). A breakthrough
has been the development of incremental smoothing techniques (iSAM (Kaess et al
2008), iSAM2 (Kaess et al 2012)). They leverage the expressiveness of factor graphs
to maintain sparsity and to identify and update only the typically small subset of
variables affected by a new measurement. VIO using the incremental smoothing
framework has been demonstrated in (Forster et al 2017a).
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The different update rates of cameras and IMUs bring additional difficulties for
both full-smoothing and fixed-lag smoothing approaches. Filtering methods usu-
ally use IMUs for the process model and cameras for the measurement model, and,
thus, they handle the different rates of IMUs and cameras naturally. In smooth-
ing approaches, however, it is infeasible for real-time applications to add a state
at every IMU measurement, since the problem complexity grows with the dimen-
sion of the states. Therefore, the IMU measurements are typically integrated be-
tween frames to form relative motion constraints. This requires the integration to
be repeated when the state estimate changes (i.e., after each optimization iteration).
(Lupton and Sukkarieh 2012) show that this repeated integration can be avoided
by a reparametrization of the relative motion constraints. Such reparametrization is
called IMU preintegration. (Forster et al 2017a) build upon [2] and bring the theory
of IMU preintegration to maturity by properly addressing the manifold structure of
the rotation group SO(3).

Camera-IMU Calibration

The knowledge about the spatial transformations and temporal offsets between cam-
era(s) and IMU(s) is crucial to obtain good performance from VIO. Off-line spatial
calibration of cameras and IMUs is a well-studied problem and can be solved us-
ing both filters (Kelly and Sukhatme 2011) and batch optimization (Furgale et al
2013). For on-line self calibration, state-of-the-art VIO algorithms often include the
unknown spatial transformation (between cameras and IMUs) in the states and esti-
mate it together with the motion of the sensor suite ((Leutenegger et al 2015; Li and
Mourikis 2013). If the visual-inertial sensor suite is not hardware synchronized as in
(Nikolic et al 2014), the temporal offset of the cameras and IMUs also needs to be
estimated. While different approaches have been proposed for off-line calibration
((Kelly and Sukhatme 2014; Furgale et al 2013)), very few works have been done
for on-line processing ((Li and Mourikis 2013)).

A significant contribution to the community is the open source calibration tool-
box Kalibr (Furgale et al 2013). It uses a continuous representation of the trajectory
instead of discrete states, which has, therefore, the ability to model the temporal
offset between the cameras and IMUs. Kalibr is widely used for both spatial and
temporal calibration of camera-IMU systems.

Examples of Applications

Pioneering work on VIO-based autonomous navigation of aerial robots was done
in the context of the European project sFly (2009-2012) (Bloesch et al 2010; Weiss
et al 2013; Lynen et al 2013; Forster et al 2013; Meier et al 2012; Scaramuzza et al
2014).
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Nowadays, there are several open-source VIO software packages available that
have explicitly been developed for and successfully deployed on aerial robots. Most
of these pipelines are monocular, since a single camera and an IMU are the minimal
sensor suite necessary for reliable state estimation; the monocular setup is a conve-
nient choice for flying robots due to its low weight and power consumption, with
respect to other sensor configurations, such as stereo or multi-camera systems. The
open source monocular VIO software packages currently available are:

• MSCKF (Mourikis and Roumeliotis 2007) - The Multi-State Constraint Kalman
Filter (MSCKF) forms the basis of many modern, proprietary VIO systems
(such as Google ARCore, the former Google Tango), but until recently no suffi-
cient, publicly available implementation existed. The original MSCKF algorithm
in (Mourikis and Roumeliotis 2007) proposed a measurement model that ex-
pressed the geometric constraints between all of the camera poses that observed
a particular image feature, without the need to maintain an estimate of the 3D
feature position in the state. The extended Kalman filter backend in (Zhu et al
2017) implements this formulation of the MSCKF for event-based camera in-
puts, but has been adapted to feature tracks from standard cameras. The code
is publicly available at: 1https://github.com/daniilidis-group/
msckf_mono.

• OKVIS (Leutenegger et al 2013, 2015) - Open Keyframe-based Visual-Inertial
SLAM (OKVIS) utilizes non-linear optimization on a sliding window of keyframe
poses. The cost function is formulated with a combination of weighted repro-
jection errors for visual landmarks and weighted inertial error terms. The fron-
tend uses a multi-scale Harris corner detector (Harris and Stephens 1988) to
find features, and then computes BRISK descriptors (Leutenegger et al 2011)
on them in order to perform data association between frames. Keyframes older
than the sliding window are marginalized out of the states being estimated.
OKVIS uses Googles Ceres solver (Agarwal et al 2010) to perform non-linear
optimization. It should be noted that OKVIS is not optimized for monocular
VIO, and in (Leutenegger et al 2015) it shows superior performance using a
stereo configuration. The software is available in a ROS-compatible package at:
https://github.com/ethz-asl/okvis_ros.

• ROVIO (Bloesch et al 2015) - Robust Visual Inertial Odometry (ROVIO) is
a visual-inertial state estimator based on an extended Kalman Filter (EKF),
which proposed several novelties. In addition to FAST corner features (Ros-
ten et al 2010), whose 3D positions are parameterized with robot-centric bear-
ing vectors and distances, multi-level patches are extracted from the image
stream around these features. The patch features are tracked, warped based on
IMU-predicted motion, and the photometric errors are used in the update step
as innovation terms. Unlike OKVIS, ROVIO was developed as a monocular
VIO pipeline. The pipeline is available as an opensource software package at:
https://github.com/ethz-asl/rovio.

• VINS-Mono - VINS-Mono (Qin et al 2017) is a non-linear optimization-based
sliding window estimator, tracking robust corner features (Shi and Tomasi 1994),
similar to OKVIS. However, VINS-Mono introduces several new features to this

1https://github.com/daniilidis-group/msckf_mono
1https://github.com/daniilidis-group/msckf_mono
https://github.com/ethz-asl/okvis_ros
https://github.com/ethz-asl/rovio
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class of estimation framework. The authors propose a loosely-coupled sensor
fusion initialization procedure to bootstrap the estimator from arbitrary initial
states. IMU measurements are pre-integrated before being used in the optimiza-
tion, and a tightly-coupled procedure for relocalization is proposed. VINS-Mono
additionally features modules to perform 4DoF pose graph optimization and loop
closure. The software is available in both a ROS compatible PC version and an
iOS implementation for state estimation on mobile devices. VINS-Mono is avail-
able at: https://github.com/HKUST-Aerial-Robotics/VINS-Mono.

• SVO+MSF - Multi-Sensor Fusion (MSF) (Lynen et al 2013) is a general EKF
framework for fusing data from different sensors in a state estimate. Semi-
Direct Visual Odometry (SVO) (Forster et al 2014, 2017b) is a computationally
lightweight visual odometry algorithm that aligns images by tracking FAST cor-
ner features and edgelets and minimizing the photometric error of patches around
them. This sparse alignment is then jointly optimized with the scene structure by
minimizing the reprojection error of the features in a nonlinear least-squares op-
timization. The pose estimated from the vision-only SVO is provided to MSF as
the output of a generic pose sensor, where it is then fused in a loosely-coupled
manner with the IMU data, as proposed in (Faessler et al 2016). Both MSF and
SVO are publicly available, and communicate through a ROS interface. SVO 2.0
is available at: https://github.com/uzh-rpg/rpg_svo_example.
MSF is available at: https://github.com/ethz-asl/ethzasl_msf.

• SVO+GTSAM (Forster et al 2017a) - The same visual odometry frontend as
in the SVO+MSF system has also been paired with a full-smoothing backend
performing online factor graph optimization using iSAM2 (Kaess et al 2012).
In (Forster et al 2017a), the authors present results using this integrated sys-
tem and propose the use of pre-integrated IMU factors in the pose graph opti-
mization. Both components of this approach, SVO and the GTSAM 4.0 opti-
mization toolbox (Dellaert 2012), are publicly available. SVO 2.0 is available
at: https://github.com/uzh-rpg/rpg_svo_example. GTSAM is
available at: https://bitbucket.org/gtborg/gtsam/

A benchmark comparison of all the aforementioned open-source monocular VIO
pipelines on common flying robot hardware (Odroid, Up Board, and Intel NUC) has
been recently published (Delmerico and Scaramuzza 2018). The evaluation consid-
ers the pose estimation accuracy, per-frame processing time, and CPU and memory
load while processing the EuRoC Micro Aerial Vehicle datasets (Burri et al 2016),
which contain several 6DoF trajectories typical of flying robots. Note that quantita-
tively evaluating the accuracy is a non-trivial task due to the unobservable DoFs in
VIO systems, for which a tutorial can be found in Zhang and Scaramuzza (2018).

Very recently, a VIO pipeline combining an event-camera, a standard camera, and
an IMU (called UltimateSLAM) has been published (Rosinol Vidal et al 2018). It is
shown on public datasets that this hybrid pipeline leads to an accuracy improvement
of 85% over standard, frame-based VIO systems. Furthermore, it is shown that it can
be used for autonomous quadrotor flight in scenarios inaccessible with traditional
VIO, such as high-speed motion, low-light environments and high dynamic range
scenes.

https://github.com/HKUST-Aerial-Robotics/VINS-Mono
https://github.com/uzh-rpg/rpg_svo_example
https://github.com/ethz-asl/ethzasl_msf
https://github.com/uzh-rpg/rpg_svo_example
https://bitbucket.org/gtborg/gtsam/
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Future Directions for Research

New research directions are the integration of complementary sensors, such as event
cameras, and new algorithmic tools, such as deep learning.

Contrarily to standard cameras, which send entire images at fixed frame rates,
event cameras, such as the dynamic vision sensor (DVS) (Lichtsteiner et al 2008)
or the asynchronous time-based image sensor (ATIS) (Posch et al 2011), only send
the local pixel-level brightness changes caused by movement in a scene at the time
they occur. Event cameras have four key advantages compared to standard cam-
eras: a very low temporal latency (microseconds), a very high output rate (up to
1 MHz vs 100Hz of standard cameras), a very high dynamic range (up to 140 dB
vs 60 dB of standard cameras), and a very low power consumption (10mW vs 1W
of standard cameras). These properties enable the design of a new class of VIO
and VISLAM algorithms that can operate in scenes characterized by high-speed
motion (Gallego et al 2017; Rebecq et al 2017a; Rosinol Vidal et al 2018) and high-
dynamic range (Kim et al 2014, 2016; Rebecq et al 2017b,a; Rosinol Vidal et al
2018), where standard cameras fail. However, since the output is composed of a se-
quence of asynchronous events, traditional frame-based computer-vision algorithms
are not directly applicable, so that novel algorithms must be developed to deal with
these cameras.

A robust VIO architecture should not solely exploit geometry and sensor mea-
surement models but should also be able to exploit semantic/contextual information
about the environment and application-specific priors about the motion dynamics. In
this respect, the recent development of deep visual odometry (Costante et al 2016;
Wang et al 2017; Zhou et al 2017) has shown promising initial results, especially in
addressing open challenges with standard cameras, such as dealing with the aperture
problem, motion blur, defocus, and low visibility scenarios.

Cross-References

Visual Simultaneous Localization and Mapping; Visual Odometry.

References

Agarwal A, Mierle K, Others (2010) Ceres solver. http://ceres-solver.org
Bell BM, Cathey FW (1993) The iterated kalman filter update as a gauss-newton method. IEEE

Trans Autom Control 38(2):294–297, DOI 10.1109/9.250476
Bloesch M, Weiss S, Scaramuzza D, Siegwart R (2010) Vision based MAV navigation in unknown

and unstructured environments. In: IEEE Int. Conf. Robot. Autom. (ICRA)
Bloesch M, Omari S, Hutter M, Siegwart R (2015) Robust visual inertial odometry using a direct

EKF-based approach. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS)

http://ceres-solver.org


10 Davide Scaramuzza and Zichao Zhang

Bryson M, Johnson-Roberson M, Sukkarieh S (2009) Airborne smoothing and mapping using
vision and inertial sensors. In: IEEE Int. Conf. Robot. Autom. (ICRA), pp 3143–3148

Burri M, Nikolic J, Gohl P, Schneider T, Rehder J, Omari S, Achtelik MW, Siegwart R (2016)
The EuRoC micro aerial vehicle datasets. Int J Robot Research 35:1157–1163, DOI 10.1177/
0278364915620033

Corke P, Lobo J, Dias J (2007) An introduction to inertial and visual sensing. Int J Robot Research
26(6):519–535, DOI 10.1177/0278364907079279

Costante G, Mancini M, Valigi P, Ciarfuglia T (2016) Exploring representation learning with cnns
for frame-to-frame ego-motion estimation. In: IEEE Int. Conf. Robot. Autom. (ICRA)

Davison AJ, Reid ID, Molton ND, Stasse O (2007) MonoSLAM: Real-time single camera SLAM.
IEEE Trans Pattern Anal Machine Intell 29(6):1052–1067

Dellaert F (2012) Factor graphs and GTSAM: A hands-on introduction. Tech. Rep. GT-RIM-
CP&R-2012-002, Georgia Institute of Technology

Delmerico J, Scaramuzza D (2018) A benchmark comparison of monocular visual-inertial odom-
etry algorithms for flying robots. In: IEEE Int. Conf. Robot. Autom. (ICRA)

Dong-Si TC, Mourikis A (2011) Motion tracking with fixed-lag smoothing: Algorithm consistency
and analysis. In: IEEE Int. Conf. Robot. Autom. (ICRA)

Faessler M, Fontana F, Forster C, Mueggler E, Pizzoli M, Scaramuzza D (2016) Autonomous,
vision-based flight and live dense 3D mapping with a quadrotor MAV. J Field Robot 33(4):431–
450, DOI 10.1002/rob.21581

Forster C, Lynen S, Kneip L, Scaramuzza D (2013) Collaborative monocular SLAM with multiple
micro aerial vehicles. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pp 3962–3970, DOI
10.1109/IROS.2013.6696923

Forster C, Pizzoli M, Scaramuzza D (2014) SVO: Fast semi-direct monocular visual odometry. In:
IEEE Int. Conf. Robot. Autom. (ICRA), pp 15–22, DOI 10.1109/ICRA.2014.6906584

Forster C, Carlone L, Dellaert F, Scaramuzza D (2017a) On-manifold preintegration for real-time
visual-inertial odometry. IEEE Trans Robot 33(1):1–21, DOI 10.1109/TRO.2016.2597321

Forster C, Zhang Z, Gassner M, Werlberger M, Scaramuzza D (2017b) SVO: Semidirect visual
odometry for monocular and multicamera systems. IEEE Trans Robot 33(2):249–265, DOI
10.1109/TRO.2016.2623335

Furgale P, Rehder J, Siegwart R (2013) Unified temporal and spatial calibration for multi-sensor
systems. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS)

Gallego G, Lund JEA, Mueggler E, Rebecq H, Delbruck T, Scaramuzza D (2017) Event-based, 6-
DOF camera tracking from photometric depth maps. IEEE Trans Pattern Anal Machine Intell
DOI 10.1109/TPAMI.2017.2658577

Harris C, Stephens M (1988) A combined corner and edge detector. In: Proc. Fourth Alvey Vision
Conf., Manchester, UK, vol 15, pp 147–151

Hartley R, Zisserman A (2003) Multiple View Geometry in Computer Vision. Cambridge Univer-
sity Press, second Edition

Hesch JA, Kottas DG, Bowman SL, Roumeliotis SI (2014) Camera-IMU-based localization: Ob-
servability analysis and consistency improvement. Int J Robot Research 33(1):182–201

Huang GP, Mourikis AI, Roumeliotis SI (2008) A first-estimates jacobian EKF for improving
SLAM consistency. In: Int. Symp. Experimental Robotics (ISER)

Huang GP, Mourikis AI, Roumeliotis SI (2011) An observability-constrained sliding window filter
for SLAM. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pp 65–72

Indelman V, Wiliams S, Kaess M, Dellaert F (2013) Information fusion in navigation systems via
factor graph based incremental smoothing. J Robot and Auton Syst 61(8):721–738

Jones ES, Soatto S (2011) Visual-inertial navigation, mapping and localization: A scalable real-
time causal approach. Int J Robot Research 30(4)

Jung SH, Taylor C (2001) Camera trajectory estimation using inertial sensor measurements and
structure fom motion results. In: IEEE Int. Conf. Comput. Vis. Pattern Recog. (CVPR)

Kaess M, Ranganathan A, Dellaert F (2008) iSAM: Incremental smoothing and mapping. IEEE
Trans Robot 24(6):1365–1378



Aerial Robots, Visual-Inertial Odometry of 11

Kaess M, Johannsson H, Roberts R, Ila V, Leonard J, Dellaert F (2012) iSAM2: Incremental
smoothing and mapping using the Bayes tree. Int J Robot Research 31:217–236

Kelly J, Sukhatme GS (2011) Visual-inertial sensor fusion: Localization, mapping and sensor-to-
sensor self-calibration. Int J Robot Research 30(1):56–79, DOI 10.1177/0278364910382802

Kelly J, Sukhatme GS (2014) A General Framework for Temporal Calibration of Multiple
Proprioceptive and Exteroceptive Sensors, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp 195–209. DOI 10.1007/978-3-642-28572-1 14, URL https://doi.org/10.1007/
978-3-642-28572-1_14

Kim H, Handa A, Benosman R, Ieng SH, Davison AJ (2014) Simultaneous mosaicing and tracking
with an event camera. In: British Machine Vis. Conf. (BMVC), DOI 10.5244/C.28.26

Kim H, Leutenegger S, Davison A (2016) Real-time 3d reconstruction and 6-dof tracking with an
event camera. In: Eur. Conf. Comput. Vis. (ECCV)

Klein G, Murray D (2009) Parallel tracking and mapping on a camera phone. In: IEEE ACM Int.
Sym. Mixed and Augmented Reality (ISMAR)

Kottas DG, Hesch JA, Bowman SL, Roumeliotis SI (2012) On the consistency of vision-aided
inertial navigation. In: Int. Symp. Experimental Robotics (ISER)

Leutenegger S, Chli M, Siegwart R (2011) BRISK: Binary robust invariant scalable keypoints. In:
Int. Conf. Comput. Vis. (ICCV), pp 2548–2555, DOI 10.1109/ICCV.2011.6126542

Leutenegger S, Furgale P, Rabaud V, Chli M, Konolige K, Siegwart R (2013) Keyframe-based
visual-inertial SLAM using nonlinear optimization. In: Robotics: Science and Systems (RSS)

Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P (2015) Keyframe-based visual-inertial
SLAM using nonlinear optimization. Int J Robot Research

Li M, Mourikis AI (2013) 3-d motion estimation and online temporal calibration for camera-imu
systems. In: 2013 IEEE International Conference on Robotics and Automation, pp 5709–5716,
DOI 10.1109/ICRA.2013.6631398

Lichtsteiner P, Posch C, Delbruck T (2008) A 128×128 120 dB 15 µs latency asynchronous tem-
poral contrast vision sensor. IEEE J Solid-State Circuits 43(2):566–576, DOI 10.1109/JSSC.
2007.914337

Lupton T, Sukkarieh S (2012) Visual-inertial-aided navigation for high-dynamic motion in built
environments without initial conditions. IEEE Trans Robot 28(1):61–76

Lynen S, Achtelik M, Weiss S, Chli M, Siegwart R (2013) A robust and modular multi-sensor
fusion approach applied to MAV navigation. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS)

Martinelli A (2013) Observability properties and deterministic algorithms in visual-inertial struc-
ture from motion. Foundations and Trends in Robotics pp 1–75

Maybeck P (1979) Stochastic Models, Estimation and Control, vol 1. Academic Press, New York
Meier L, Tanskanen P, Heng L, Lee GH, Fraundorfer F, Pollefeys M (2012) PIXHAWK: A micro

aerial vehicle design for autonomous flight using onboard computer vision. Auton Robots 33(1–
2):21–39

Mourikis AI, Roumeliotis SI (2007) A multi-state constraint Kalman filter for vision-aided inertial
navigation. In: IEEE Int. Conf. Robot. Autom. (ICRA), pp 3565–3572

Mourikis AI, Roumeliotis SI (2008) A dual-layer estimator architecture for long-term localization.
In: Proc. of the Workshop on Visual Localization for Mobile Platforms at CVPR, Anchorage,
Alaska

Nerurkar E, Wu K, Roumeliotis S (2014) C-KLAM: Constrained keyframe-based localization and
mapping. In: IEEE Int. Conf. Robot. Autom. (ICRA)

Nikolic J, Rehder J, Burri M, Gohl P, Leutenegger S, Furgale P, Siegwart R (2014) A synchronized
visual-inertial sensor system with FPGA pre-processing for accurate real-time SLAM. In: IEEE
Int. Conf. Robot. Autom. (ICRA)

Patron-Perez A, Lovegrove S, Sibley G (2015) A spline-based trajectory representation for sen-
sor fusion and rolling shutter cameras. Int J Comput Vis 113(3):208–219, DOI 10.1007/
s11263-015-0811-3

Posch C, Matolin D, Wohlgenannt R (2011) A QVGA 143 dB dynamic range frame-free PWM
image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J Solid-
State Circuits 46(1):259–275, DOI 10.1109/JSSC.2010.2085952

https://doi.org/10.1007/978-3-642-28572-1_14
https://doi.org/10.1007/978-3-642-28572-1_14


12 Davide Scaramuzza and Zichao Zhang

Qin T, Li P, Shen S (2017) VINS-Mono: A robust and versatile monocular visual-inertial state
estimator. arXiv e-prints URL https://arxiv.org/abs/1708.03852

Rebecq H, Gallego G, Mueggler E, Scaramuzza D (2017a) EMVS: Event-based multi-view
stereo—3D reconstruction with an event camera in real-time. Int J Comput Vis pp 1–21, DOI
10.1007/s11263-017-1050-6
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