
Stereo Dense Reconstruction

Titus Cieslewski

Contents

1 Preliminaries 1

1.1 Outline of the exercise . 1
1.2 Provided code . 2
1.3 Conventions . 2

2 Part 1: Calculate pixel disparity 2

3 Part 2: Simple outlier removal 3

4 Part 3: Point cloud triangulation 4

5 Part 4: Sub-pixel re�nement 5

The goal of this laboratory session is to get you familiarized with dense epipolar matching and
3D reconstruction.

1 Preliminaries

1.1 Outline of the exercise

In this exercise, you will reconstruct a 3D scene using dense epipolar matching. As in the previous
exercise, we are making use of the public KITTI dataset.

Figure 1: The �nal product of this exercise is a dense point cloud accumulated over a subsequence
of the KITTI dataset.

You will achieve this with the following steps: First, you will try to determine pixel disparity
between a left and a right stereo frame using SSD matching on a disparity range. You will parallelize
this to save computation time. Second, you will apply some very simple heuristics to remove outliers.
Third, you will backproject the matched pixels and triangulate the corresponding 3D point. Finally,

1

http://www.cvlibs.net/datasets/kitti/

Robotics and Perception Group,
University of Zurich. 2 PART 1: CALCULATE PIXEL DISPARITY

epipolar linep0 p1

I0 I1

P

similarity on the epipolar line

x

y y

x

x

z

y

baseline

Figure 2: The geometry of the problem and notation. I0 and I1 are the recti�ed images of the left
and right frame, respectively.

you will use pose information of the frames to accumulate a global point cloud and visualize it in
Meshlab. A video of the reference �nal product can be found at https://youtu.be/cyPFR61uuHA.

1.2 Provided code

As last time, we provide you with skeletal Matlab code (main.m) with a section for each part of the
exercise. Your job will be to implement the code that does the actual logic. We also provide the
functions stubs with some comments about the input and output formats, so if these are not clear
from this PDF, they should be clear from the function stubs. Again, you do not need to reproduce

the reference outputs exactly.

1.3 Conventions

Because all (square) patches need to be odd-sized, i.e. have a center pixel, we specify their size with
a patch_radius, such that the patch has dimensions (patch_radius ·2 + 1)2. The geometry of the
problem and names of physical sizes are depicted in Fig. 2.

2 Part 1: Calculate pixel disparity

As shown in Fig. 2, the 3D point P projects onto locations p0 and p1 of the recti�ed images I0 and
I1 respectively. Take note of the following properties:

• If the right camera has the same orientation as the left camera and is o�set only in the x axis
of the left camera frame, p1 lies on the epipolar line of p0 on I1 (see class), and this epipolar
line is horizontal, with the same y coordinate as p0.

• In particular, p1 = p0−
[
d
0

]
, where d is the pixel disparity of p0. d ≥ 0 and d→ 0 for Pz →∞.

We will for now assume that d is discrete.

For practical reasons, we will further assume d ∈ {dmin, dmin + 1, ..., dmax}. This has two advantages:
�rst, putting a lower bound on d allows us to avoid noisy triangulations: as d→ 0 , noise and rounding
errors in the estimation of d have an increasing e�ect on the triangulated position of P. Second,
putting an upper bound on d reduces the search space and thus the computational e�ort. It is a valid
thing to do if we know that there are no objects immediately in front of the camera, and provided
that dmax corresponds to the minimum distance between camera and objects.

Similarly to the keypoint matching of the last exercise, the correct disparity is estimated by
minimizing the SSD between image patches around p0 and p1. Formally, we need to �nd the
optimal d? which satis�es:

2

https://youtu.be/cyPFR61uuHA
http://rpg.ifi.uzh.ch/docs/teaching/2016/07_multiple_view_geometry_1.pdf

Robotics and Perception Group,
University of Zurich. 3 PART 2: SIMPLE OUTLIER REMOVAL

Figure 3: Un�ltered disparity image for the �rst stereo pair.

d? = argminSSDpatch,p0(x) = argmin
∑

i∈patch

(I0(p0 + i)− I1(p0 −
[
x
0

]
+ i))2. (1)

For this exercise, you need to implement a function that returns d? for each pixel of I0, given a
patch radius and the bounds on disparity. Note that SSDpatch,p0(x) and thus d? is not de�ned for
border pixels for which the patch would not fully overlap I. It is furthermore not de�ned for dmin

additional columns on the left. Simply use 0 to indicate unde�ned d?. To avoid the hassle of special
cases, you may also set the patch_radius+dmax leftmost columns to 0. Then, you should get a
disparity image similar to the one shown in Fig. 3. Some hints:

• You do not need to worry about undistortion, since the KITTI images are already recti�ed.
Also, note that we de�ne d on the recti�ed (original) image, so no need to use the projection
matrix K yet.

• There is a lot of potential for bugs when writing this code, and at the same time it's computa-
tionally expensive. We recommend to attack it step by step and make sure that you get what
you expect in the intermediate steps. See Fig. 4 for a recommended intermediate result. This
result has been obtained using among others Matlab commands imagesc and pause .

• As in the previous exercise, we recommend stacking patches to compare into a matrix and feed-
ing them to pdist2 for e�ciency. Note that since Matlab 2016b you can use the 'squaredeuclidean'
option to actually calculate the SSD (cheaper than the default 'euclidean').

• As you will see, e�ciency matters. We have implemented this function with three for loops:
One each to iterate over rows and columns of p0 and one to form the matrix representing the
candidate I1 patches we feed to pdist2. pdist2 does not seem to accept integer arguments
and will convert integers to doubles all while printing a warning. To avoid this, while staying
e�cient, we recommend converting the pdist2 inputs to singles using the single command.

• To squeeze out even more performance, you can try replacing the outermost for-loop with
parfor (problematic with debug output, do this only as the �nal step). Monitor the CPU usage
to ensure that you squeeze out as much as possible. You might need to increase the default
maximum of parallel workers. We recommend leaving one thread for the operating system to
prevent crashes. We achieve ∼ 1.6s with �fteen 4GHz threads, which should correspond to
∼ 6s for seven 2.5GHz threads.

3 Part 2: Simple outlier removal

While the results of a naive implementation as seen in Fig. 3 provide a d estimate for every pixel for
which the SSD is de�ned, they contain many outliers (e.g. sky, yellow blobs). Implement two simple
outlier �lters (set the corresponding d? to 0):

3

http://ch.mathworks.com/matlabcentral/answers/125161-hyperthreading-number-of-cores-parallel-computing-toolbox
http://ch.mathworks.com/matlabcentral/answers/125161-hyperthreading-number-of-cores-parallel-computing-toolbox

Robotics and Perception Group,
University of Zurich. 4 PART 3: POINT CLOUD TRIANGULATION

Figure 4: Debugging disparity matching. From left to right: patch around the �rst valid p0, excerpt
from I1 against which the left-hand patch can be matched, and SSDs for di�erent values of d.

Figure 5: Filtered stereo disparity for the �rst stereo pair. Might look less appealing, but has far
less outliers.

1. Reject all ambiguous matches, i.e. matches where several d candidates exhibit a score similar
to the smallest score. In the reference implementation, we reject a match if more than two d
candidates have an SSD less than or equal 1.5× the minimum (manually tuned to this dataset).
Why two? This happens to be nicely illustrated in Fig. 4. Because a continuous d (see section
5) would lie pretty much in the middle between two pixels, both of these pixels exhibit a low
score, so we can still accept one of them as inlier. When implementing this �lter, pay attention
to the case where several SSDs are 0, which is the case in over-exposed regions of the image.

2. If the lowest SSD occurs at dmin or dmax, this might indicate that there is a local minimum
outside of the provided disparity range. Having rather less false positives than many true
positives, we also reject these d estimates.

After applying these �lters in the same function as Part 1, you should get a disparity image similar
to Fig.5. At this point, if your code is fast enough, you can enjoy running the disparity estimation
on the entire sequence. Compare to https://www.youtube.com/watch?v=czEo6XEtwAQ.

4 Part 3: Point cloud triangulation

Now that we have determined p1 for each p0 (or that there is none), we can triangulate P. As
illustrated in Fig. 2, P projects into p0 and p1, which can be expressed as:

λ0

[
p0

1

]
= KP, λ1

[
p1

1

]
= K(P−

b0
0

) (2)

4

https://www.youtube.com/watch?v=czEo6XEtwAQ

Robotics and Perception Group,
University of Zurich. 5 PART 4: SUB-PIXEL REFINEMENT

Figure 6: Point cloud of �rst stereo match, rotated into the world frame, downsampled by a factor
of 10 for rendering speed, and limited to a 30× 16× 10 bounding box to reject outliers.

where b stands for the baseline between the stereo frames. By applying K−1 on the left and
re-arranging terms, we get

P = λ0K
−1
[
p0

1

]
= λ1K

−1
[
p1

1

]
+

b0
0

 (3)

The right equation in (3) can be written as a linear system A ·
[
λ0
λ1

]
:= Aλ = b. Write this system

down, introducing new variables if convenient. You should notice that this system is overconstrained,
i.e. A is 3 × 2 and cannot be inverted (the last row simply ensures that λ0 = λ1, which is implied
in the geometry of the problem). So in order to obtain the most �tting λ, apply the least squares
approximation: ATAλ = ATb. Once you have solved this system, you can recover P using the left
equation in (3). Do this for every p0 in I0 with a valid d?. In the code, we also ask you to associate
the correct image intensity to each point. Simply pick it from I0.

Be careful with indices in this exercise! As speci�ed in Fig. (2), x corresponds to the image
column and y to the image row! The point cloud you get should roughly look like the one in Fig.
(6) (note that there is a rotate button in the scatter3 plot). Can you identify the di�erent parts of
the scene?

5 Part 4: Sub-pixel re�nement

As you can see in Fig. (6), the resulting pointcloud exhibits distinct layers. This is a consequence
of our choice to make d discrete. We can, however, look for a continuous disparity by apllying
a very simple trick to (1): We can interpolate SSDpatch,p0(x) at x = {d? − 1, d?, d? + 1} using a
second-order polynomial �t, then replace d? with the argmin of the polynome. Modify the function
getDisparity to do this using the Matlab function polyfit, then re-run the disparity matching (the
disparity image should look similar, but with smoother color transitions) and point cloud generation
parts of main.m . You should now get a point cloud similar to the one in Fig. 7.

Once you have the point cloud for the �rst stereo pair triangulated properly, you are ready to
create the point cloud of the full scene, as shown in Fig. (1.1) and the preview video. No need for
additional code, but you will need time (probably an hour or more) and Meshlab (sudo apt-get

install meshlab un Ubuntu). Once the corresponding part in main.m has �nished, a PLY �le
points.ply is created that you can view in Meshlab.

5

https://youtu.be/cyPFR61uuHA
http://meshlab.sourceforge.net/

Robotics and Perception Group,
University of Zurich. 5 PART 4: SUB-PIXEL REFINEMENT

Figure 7: Same as Fig. 6, but with sub-pixel re�nement.

6

	Preliminaries
	Outline of the exercise
	Provided code
	Conventions

	Part 1: Calculate pixel disparity
	Part 2: Simple outlier removal
	Part 3: Point cloud triangulation
	Part 4: Sub-pixel refinement

