The Perspective-n-Point (PnP) problem

Contents
0 Preliminaries| 1
L1 Outhine of the exercisel e 1
I1.2 Description of the mput data] 1
1.3 Notations and coordinate systems|.o 2
2 Implementing DLT]| 2
2.1 Reminder: The DLT algorithm.|. 2
211 Derivation of the linear system of equations to solve] 2
[2.1.2 Solving the over-determined system of equations| 3
2.1.3 Extracting R,t from M with the correct scale| 4
2.2 Implementation of DLT| o o 4

The goal of this laboratory session is to implement the Direct Linear Transform (DLT) algorithm
to estimate the pose of a camera, given a set of 2D-3D correspondences. El

1 Preliminaries

1.1 Outline of the exercise

You will be given a dataset of images, with a set of 2D-3D correspondences for each image, as well
as the camera matrix K. Your goal will be to implement the DLT algorithm described during the
course to estimate the camera pose [R]t] for each image.

1.2 Description of the input data

The data/ folder contains the inputs that you will need to complete these exercises.

e images_undistorted/ contains images that have been processed to compensate for lens
distortion (using the function undistortImage from the previous exercise). This allows you to
completely ignore the effect of lens distortion when solving the PnP problem.

e K.txt contains the camera matrix

e p W_corners.trt contains the positions of the n reference 3D points (illustrated in Figure
[1), given in the world coordinate system (defined below), in centimeters. n = 12 in this exercise.

e detected corners.txt contains m lines (where m is the number of images). Each line ¢ gives
the 2D coordinates p; = (u;, v;) of the projections of the reference 3D points in the undistorted
image 7 given as a tuple: (u1,v1, ..., Un, Up)-

Uhttp://rpg.ifi.uzh.ch/docs/teaching,/2017/03 image formation 2.pdf

http://rpg.ifi.uzh.ch/docs/teaching/2017/03_image_formation_2.pdf

Robotics and Perception Group,
University of Zurich. 2 IMPLEMENTING DLT

1.3 Notations and coordinate systems
In this exercise, we use the following conventions:
e P, denotes that the point P is expressed in the coordinate frame A.

e BT, denotes the transformation that maps points in frame A to frame B, such that:

Pp=5T,P,4

The reference (or world) coordinate system, denoted W, is right-handed, and illustrated in Figure

Figure 1: Left: 3D world points P! and the camera pose in space. Right: Image from a camera with
the corresponding 2D projections p; marked in blue.

2 Implementing DLT

In this section, you will implement the DLT algorithm to determine the camera pose for each image
in the dataset, using the 2D-3D correspondences provided for each image.

The DLT algorithm is described in the lecture slides. We first briefly remind here how it works
(and define the notations that we use).

2.1 Reminder: The DLT algorithm.
2.1.1 Derivation of the linear system of equations to solve

As opposed to the lecture slides where the camera calibration matrix K was not given (and therefore
had to be estimated jointly with the camera pose R,t), in this exercise K is given. We briefly derive
here a slightly modified version of the DLT algorithm presented in the course that takes into account
the fact that K is known.

Our goal is to compute R,t that satisfy the perspective projection equation:

U U Xu
ol = |v| = KR | 2
- 1 Zw
v 1
Multiplying each side by K ! on the left, we get:
u i(,w
A 0| = (R | T
Zy
1 1

Robotics and Perception Group,
University of Zurich. 2 IMPLEMENTING DLT

where we can identify [z,y,1]7 = K~ '[u,v,1]7 as being the calibrated coordinates (sometimes also
called normalized coordinates) corresponding to pixel (u,v). Denoting M = [R]t] the projection
matriz (for normalized coordinates), the problem amounts to finding M and the scale factors A; that
satisfy:

Aipi = M P;
Xi
€T, YZ
for every 2D-3D correspondence i = 1,...,n, where p; = |y; | and P; = Z’ are respectively the
1 w
1

it" corresponding 2D and 3D points.

However, as it was shown in the lecture, by considering ratios of pairs of equations (such as

N T p.
&= 77;1 P") the scale factors \; are cancelled, i.e. removed from the equations and the problem

reduces to ﬁndlng M alone. The scale factors can be recovered, if desired, once M is known. It is
shown in the lecture that M can be recovered by solving the following homogeneous system of linear
equations for the unknown [12 x 1] matrix M:

Q-M=0 (1)
where
X, vh ozt o0 0 0 0 —mXL —mV) -2zl —x
0 0 0 0 XL v! zL 1 —puXl —yYl —yzl -y
Q:

Xryr zr 10 0 0 0 —x, X" —x,Y" —x,2" —x,
0 0 0 0 X2 Yr Z 1 —y, X0 -y Y! —ynZl —uyn

can be built from the known 2D-3D point correspondences and
T
M =[my1 miz miz mis M1 oz Mog Mgy M3 M3z M3z M3
is an unknown projection matrix which we wish to recover. Hint: You may use Matlab’s function
kron to build @ (although that is not strictly necessary). Note that M here is a [12 x 1] vector
obtained by unrolling the matrix:

mi1 Mmi2 M1z Mg
mo1 22 23 124
m31 32 MM33 1M34

in a row-wise fashion, i.e. by unrolling it row by row. Keep that in mind when you later convert M
back to a [3 x 4] matrix, since Matlab usually reshapes matrices in a column-wise fashion.

2.1.2 Solving the over-determined system of equations

Since @ should have rank 11, and each 2D-3D point correspondence provides 2 independent equations,
at least 6 point correspondences (in general position, thus avoiding degenerate configurations, such
as all 3D points lying on a plane) are needed. In this exercise, n = 12 point correspondences are
provided, thus the system of equations is over-determined. The trivial solution M = 0 is obviously of
no interest for us. We can further observe that if M is a solution of , then o - M is also a solution
(for any scalar «; thus we will recover the projection matrix M up to an unknown scale factor). So,
we look for a solution that minimizes ||@ - M|| subject to the constraint ||M|| = 1. This can be done
using the Singular Value Decomposition (SVD) of Q: Q = USV? where U,V are unitary matrices
and S is diagonal.

It can be shown that the solution of this problem is the eigenvector corresponding to the smallest
eigenvalue of Q7 Q, which simply corresponds to that the last column of V if S has its diagonal
entries sorted in descending order. The svd function from Matlab provides such a guarantee.

Robotics and Perception Group,
University of Zurich. 2 IMPLEMENTING DLT

2.1.3 Extracting R,t from M with the correct scale

Enforcing detR =1 After solving the linear system , you will need to convert back the [12 x 1]
vector M to its corresponding [3 x 4] projection matrix M = [R|t]. Make sure that the z component
of the recovered translation: ¢, = Mj, is positive. If that is not the case, you will need to multiply
M by —1. This is to ensure that the rotation matrix R that will be extracted from M is a proper
rotation matrix with determinant +1.

Extracting a rotation matrix from R When we solved the system of linear equations (1|, we did
not impose any constraint on R to ensure it is actually a rotation matrix (i.e. we have no guarantee
that R € SO(3), the space of rotation matrices). In this step, we will extract a true rotation matrix
R € SO(3) from our current estimate R. To do that, we will compute the matrix R € SO(3) which
is the closest to R (in the sense of the Frobenius norm). This is known as the Orthogonal Procrustes
Problem. R can be obtained by first decomposing R using the SVD: R = ULV, and then forcing
all the eigenvalues to be 1 as follows: R=UVT,

Recovering the scale of the projection matrix M As explained above, what can be estimated
by solving the system of linear equations above is not directly M, but aM = [aR|at], where « is
an unknown scale factor. In the previous step, we have computed the nearest (true) rotation matrix
R from the given matrix R, which can be used to improve our estimate of the projection matrix:
M = [R|ot] . The projection of R on SO(3) implicitly recovered the unknown scale factor a by

ensuring that R is an orthogonal matrix. We can take advantage of this to explicitly estimate a as:
IR]|r
[1RIF
the command norm(A, ’fro’).

a= where ||A||r is the Frobenius norm of matrix A - which can be computed in Matlab using

Wrapping up Finally, the final projection matrix can be recovered as: M = [R|at].

2.2 Implementation of DLT

e Write a function M = estimatePoseDLT(p, P, K) that implements the steps of the DLT al-
gorithm as described above, to solve for the projection matrix M = [R|t], given the n 2D-3D
point correspondences p; and P;. Pay a particular attention to the fact that the matrix
Q@ 1is built using the calibrated coordinates p; and not directly the pixel coordinates
p;. After you have computed the [12 x 1] matrix M, you will need to reshape it into a [3 x 4]
matrix. You can use the reshape function from Matlab to achieve this. Pay attention, how-
ever, that this function works column-wise and not row-wise, so will need to first reshape M
to a [4 x 3] matrix and then take its transpose. Check that the resulting rotation R is a valid
rotation matrix (i.e. det R =1 and RT = R71).

o Write a function [p_reprojected] = reprojectPoints(P, M, K) that reprojects the 3D
points P; in the current image using the estimated projection matrix M and camera ma-
trix K. Check that the reprojected points p fall close to the points p;. The output should look
like Figure

e Write a function that estimates the camera pose (using your implementation of DLT) for each
image in the dataset, and create an animation which shows the motion of the camera. You may
use the provided function plotTrajectory3D and the utility function rotMatrix2Quat. You
can use a framerate of 30 frames per second. Warning: the function plotTrajectory3D expects
to be given the transformation [Rc|"tc] that maps points from the camera coordinate
frame to the world coordinate frame. In this exercise, you actually estimated its inverse:
M = [°R¢|“tc]. Do not forget to inverse M to get the correct transformation matrix before
feeding it into plotTrajectory3D. Finally, the units (for the translational part and the
3D points) should be meters (whereas you worked with centimeters throughout
this exercise). Do not forget to convert to meters before calling the function.

https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem

Robotics and Perception Group,
University of Zurich. 2 IMPLEMENTING DLT

O Original points
Reprojected points
S

Figure 2: Original 2D points p; and reprojected points p} using the estimated R,t

	Preliminaries
	Outline of the exercise
	Description of the input data
	Notations and coordinate systems

	Implementing DLT
	Reminder: The DLT algorithm.
	Derivation of the linear system of equations to solve
	Solving the over-determined system of equations
	Extracting R,t from M with the correct scale

	Implementation of DLT

