Lecture 12
Recognition

Davide Scaramuzza
Lab exercise today replaced by Deep Learning Tutorial

- Room ETH HG E 1.1 from 13:15 to 15:00
- Optional lab exercise is online: K-means clustering and Bag of Words place recognition
Outline

• Recognition applications and challenges
• Recognition approaches
• Classifiers
• K-means clustering
• Bag of words
Application: large-scale image retrieval

Query image

Closest results from a database of 100 million images
Application: recognition for mobile phones

- Smartphone:
 - Lincoln Microsoft Research
 - Point & Find, Nokia
 - SnapTell.com (Amazon)
 - Google Goggles
Application: Face recognition

See iPhoto, Google Photos, Facebook
Application: Face recognition

• Detection works by using four basic types of feature detectors
 – The white areas are subtracted from the black ones.
 – A special representation of the sample called the **integral image** makes feature extraction faster.

Application: Optical character recognition (OCR)

Technology to convert scanned docs to text

- If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs, using CNN, by Yann LeCun (1993)
http://yann.lecun.com/

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition
Application: pedestrian recognition

- Detector: Histograms of oriented gradients (HOG)

Credit: Van Gool’s lab, ETH Zurich
Challenges: object intra-class variations

- How to recognize ANY car

- How to recognize ANY cow
Challenges: object intra-class variations

- How to recognize ANY chair
Challenges: context and human experience
Outline

• Recognition applications and challenges
 • Recognition approaches
• Classifiers
• K-means clustering
• Bag of words
Research progress in recognition

1960-1990
Polygonal objects

1990-2000
Faces, characters, planar objects

2000-today
Any kind of object
Two schools of approaches

- **Model based**
 - Tries to fit a model (2D or 3D) using a set of corresponding features (lines, point features)
 - Example: SIFT matching and RANSAC for model validation

- **Appearance based**
 - The model is defined by a set of images representing the object
 - Example: template matching can be thought as a simple object recognition algorithm (the template is the object to recognize)
Example of 2D model-based approach

Q: Is this Book present in the Scene?
Example of 2D model-based approach

Q: Is this Book present in the Scene?

Extract keypoints in both images
Example of 2D model-based approach

Q: Is this Book present in the Scene?

Look for corresponding matches

Most of the Book’s keypoints are present in the Scene

⇒ A: The Book is present in the Scene
Example of appearance-based approach: Simple 2D template matching

- The model of the object is simply an image
- A simple example: Template matching
 - Shift the template over the image and compare (e.g. NCC or SSD)
 - Problem: works only if template and object are identical
Example of appearance-based approach: Simple 2D template matching

- The model of the object is simply an image
- A simple example: Template matching
 - Shift the template over the image and compare (e.g. NCC or SSD)
 - Problem: works only if template and object are identical
Outline

• Recognition applications and challenges
• Recognition approaches
 • Classifiers
 • K-means clustering
• Bag of words
What is the goal of object recognition?

Goal: **classify**!

- **Binary classifier**
 - say yes/no as to whether an object is present in an image
- **Multi-class classifier**
 - categorize an object: determine what class it belongs to (e.g., car, apple, etc.)

How to display the result to the user

- Bounding box on object
- Full segmentation

Is this or is this not a car? Bounding box on object Full segmentation
Detection via classification: Main idea

Basic component: a **binary** classifier
Detection via classification: Main idea

More in detail, we need to:

1. Obtain training data
2. Define features
3. Define classifier
Detection via classification: Main idea

• Consider all subwindows in an image
 – Sample at multiple scales and positions

• Make a decision per window:
 – “Does this contain object X or not?”

Car/non-car Classifier
Generalization: the machine learning approach
Generalization: the machine learning approach

- Apply a prediction function to a feature representation of the image to get the desired output:

\[
\begin{align*}
 f(\text{apple}) &= \text{“apple”} \\
 f(\text{tomato}) &= \text{“tomato”} \\
 f(\text{cow}) &= \text{“cow”}
\end{align*}
\]
The machine learning framework

\[y = f(x) \]

- **Training**: given a *training set* of labeled examples \(\{(x_1, y_1), \ldots, (x_N, y_N)\} \), estimate the prediction function \(f \) by minimizing the prediction error (\(\text{loss} = y - f(x) \)) on the training set.
- **Testing**: apply \(f \) to a *never-before-seen test example* \(x \) and output the predicted value \(y = f(x) \).
Recognition task and supervision

- Images in the training set must be *labeled* with the “correct answer” that the model is expected to produce.

Contains a motorbike.
Examples of possible features

- Blob features

- Image Histograms

- Histograms of oriented gradients (HOG)
Classifiers: Nearest neighbor

Features are represented in the descriptor space
(Ex. What is the dimensionality of the descriptor space for SIFT features?)

\[f(x) = \text{label of the training example nearest to } x \]

- **No training required!**
- All we need is a distance function for our inputs
- Problem: need to compute distances to all training examples! (what if you have 1 million training images and 1 thousand features per image?)
Classifiers: Linear

• Find a *linear function* to separate the classes:

\[f(x) = \text{sgn}(\mathbf{w} \cdot \mathbf{x} + b) \]
Classifiers: non-linear

Good classifier

Bad classifier (over fitting)
Outline

• Recognition applications and challenges
• Recognition approaches
• Classifiers
 • K-means clustering
• Bag of words
How do we define a classifier?

- We first need to **cluster** the training data
- Then, we need a distance function to determine to which cluster the query image belongs to
K-means clustering

- *k-means clustering* is an algorithm to partition *n* observations into *k* clusters in which each observation *x* belongs to the cluster *S*_ᵢ with center *m*_ᵢ
- It minimizes the sum of squared Euclidean distances between points *x* and their nearest cluster centers *m*_ᵢ

\[
D(X, M) = \sum_{i=1}^{k} \sum_{x \in S_i} (x - m_i)^2
\]

Algorithm:
- Randomly initialize *k* cluster centers
- Iterate until convergence:
 - Assign each data point *x*_ⱼ to the nearest center *m*_ᵢ
 - Recompute each cluster center as the mean of all points assigned to it
K-means demo

Source: http://shabal.in/visuals/kmeans/1.html
Outline

• Recognition applications and challenges
• Recognition approaches
• Classifiers
• K-means clustering
 • Bag of words
Application: large-scale image retrieval

Query image | Results on a database of 100 million images
Fast visual search

- Query of 1 image in a database of 100 million images in 6 seconds

“Video Google”, Sivic and Zisserman, ICCV 2003
“Scalable Recognition with a Vocabulary Tree”, Nister and Stewenius, CVPR 2006.
Bag of Words

- Extension to scene/place recognition:
 - Is this image in my database?
 - Robot: Have I been to this place before?
Visual Place Recognition

- **Goal**: find the most similar images of a *query* image in a database of *N* images

- **Complexity**: \(\frac{N^2 \cdot M^2}{2} \) feature comparisons (assumes each image has *M* features)

 - Each image must be compared with all other images!

 - *N* is the number of all images collected by a robot

 - Example: assume your Roomba robot takes 1 image every meter to cover a 100 m\(^2\) house; assume 100 SIFT features per image → *M* = 100, *N* = 100 → \(N^2 M^2/2 \approx 50\) Million feature comparisons!

Solution: Use an inverted file index!

Complexity reduces to *N* \(\cdot \) *M*

[“Video Google”, Sivic & Zisserman, ICCV’03]

[“Scalable Recognition with a Vocabulary Tree”, Nister & Stewenius, CVPR’06]

See also FABMAP and Galvez-Lopez’12’s (DBoW2)]
Indexing local features: inverted file text

- For text documents, an efficient way to find all pages in which a word occurs is to use an index.

- We want to find all images in which a feature occurs.

- How many distinct SIFT or BRISK features exist?
 - SIFT → Infinite
 - BRISK-128 → $2^{128} = 3.4 \cdot 10^{38}$

- Since the number of image features may be infinite, before we build our visual vocabulary we need to map our features to “visual words”.

- Using analogies from text retrieval, we should:
 - Define a “Visual Word”
 - Define a “vocabulary” of Visual Words
 - This approach is known as “Bag of Words” (BOW)
Building the Visual Vocabulary

Image Collection

Extract Features

Cluster Descriptors

What is a visual word? A visual word is the centroid of a cluster!

Examples of Features belonging to the same clusters
Inverted File index

- **Inverted File Index** lists all visual words in the vocabulary (extracted at training time).
- Each word points to a list of images, from the all image Data Base (DB), in which that word appears. The DB grows as the robot navigates and collects new images.
- **Voting array**: has as many cells as the images in the DB. Each word in the query image votes for an image.
Populating the vocabulary

Feature descriptor space
Populating the vocabulary
Building the inverted file index
Recognition
Robust object/scene recognition

- Visual Vocabulary discards the spatial relationships between features
 - Two images with the same features *shuffled around* will return a 100% match when using only appearance information.

- This can be overcome using **geometric verification**
 - Test the h most similar images to the query image for geometric consistency (e.g. using 5- or 8-point RANSAC) and retain the image with the smallest reprojection error and largest number of inliers

 - Further reading (out of scope of this course):
 - [Cummins and Newman, IJRR 2011]
 - [Stewénius et al, ECCV 2012]
Video Google System

1. Collect all words within query region
2. Inverted file index to find relevant frames
3. Compare word counts
4. Spatial verification

Sivic & Zisserman, ICCV 2003

- Demo online at:
 http://www.robots.ox.ac.uk/~vgg/research/vgoogle/
More words is better

Improves Retrieval

Improves Speed

![Graph showing performance increase with more words and higher branch factors](image-url)
FABMAP [Cummins and Newman IJRR 2011]

- Place recognition for robot localization
- Uses training images to build the BoW database
- **Captures the spatial dependencies of visual words** to distinguish the most characteristic structure of each scene
- Probabilistic model of the world. At a new frame, compute:
 - $P($being at a known place$)$
 - $P($being at a new place$)$
- Very high performance
- Binaries available [online](https://example.com)
- [Open FABMAP](https://example.com)
Things to remember

• Appearance-based object recognition
 – Classifiers
 – K-means clustering

• Bag of Words approach
 – What is visual word
 – Inverted file index
 – How it works

• Chapter 14 of the Szeliski’s book