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M. Pizzoli, C. Forster, D. Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA’14. PDF

REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time
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http://rpg.ifi.uzh.ch/docs/ICRA14_Pizzoli.pdf


Dense Reconstruction (or Multi-view stereo)

 Input:  calibrated images from several viewpoints (i.e., 𝐾, 𝑅, 𝑇 are known 
for each camera, e.g., from SFM)

 Output:  3D object dense reconstruction
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Sparse Reconstruction
• Estimate the structure from a “sparse” set of features
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Dense Reconstruction
• Estimate the structure from a “dense” region of pixels
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Dense reconstruction workflow

Step 1: Local methods

– Estimate depth for every pixel 
independently (how do we 
compute correspondences for 
every pixel?)

Step 2: Global methods

– Refine the depth surface as a 
whole by enforcing smoothness 
constraint
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Photometric error (SSD)

error

depth

IDEA: the optimal depth minimizes the photometric error in all 
images as a function of the depth in the first image

This error plot is derived for every combination of the
reference image and any further image
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Aggregated Photometric Error

• Dense reconstruction requires 
establishing dense correspondences

• Correspondences are computed 
based on photometric error:
– SSD between corresponding 

patches of intensity values (min 
patch size: 1x1 pixels)

– What are the pros and cons of 
using small or large patches? 
(recall from stereo: see next 
slide)

• Not all the pixels can be matched 
reliably
– Viewpoint and illumination 

changes, occlusions
• Take advantage of many small-

baseline views where high quality 
matching is possible (why?)

[Newcombe et al. 2011]
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W = 3 W = 20

Review from stereo vision: Effects of window size

• Smaller window
+ More detail

– More noise

• Larger window
+ Smoother disparity maps

– Less detail
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• Aggregated photometric error for flat regions (a) and edges parallel to the epipolar 
line (c) show flat valleys (plus noise)

• For distinctive features (corners as in (b) or blobs), the aggregated photometric 
error has one clear minimum.

• Non distinctive features (e.g., from repetitive texture) will show multiple minima
20
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Disparity Space Image (DSI)

• For a given image point 𝑢, 𝑣 and for 
discrete depth hypotheses 𝑑, the aggregate 
photometric error 𝐶 𝑢, 𝑣, 𝑑 with respect to 
the reference image 𝐼𝑟 can be stored in a 
volumetric 3D grid called the Disparity Space 
Image (DSI), where each voxel has value:

𝐶 𝑢, 𝑣, 𝑑 =

𝑘

𝜌(෩𝐼𝑘 𝑢′, 𝑣′, 𝑑 − 𝐼𝑟(𝑢, 𝑣))

where ෩𝐼𝑘 𝑢′, 𝑣′, 𝑑 is the patch of intensity 
values in the 𝑘-th image centered on the 
pixel 𝑢′, 𝑣′ corresponding to the patch 
𝐼𝑟(𝑢, 𝑣) in the reference image 𝐼𝑟 and depth 
hypothesis 𝑑

• 𝜌(∙) is the photometric error (SSD)

[Szeliski and Golland 1999]
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Disparity Space Image (DSI)
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The solution to the depth estimation problem is a function 𝒅(𝒖, 𝒗) in the DSI 
that satisfies two criteria:

Minimum aggregated photometric error (i.e., 𝑎𝑟𝑔min
𝑑

𝐶)

AND

Piecewise smooth (global methods)

Solution
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• Global methods

– Formulated in terms of energy minimization

– The objective is to find a surface 𝑑(𝑢, 𝑣) that minimizes a global energy

𝐸 𝑑 = 𝐸𝑑 𝑑 + λ𝐸𝑠(𝑑)

𝐸𝑑 𝑑 = σ(𝑢,𝑣)𝐶(𝑢, 𝑣, 𝑑 𝑢, 𝑣 )

𝐸𝑠 𝑑 = σ(𝑢,𝑣)𝜌𝑑 𝑑 𝑢, 𝑣 − 𝑑 𝑢 + 1, 𝑣 +𝜌𝑑 𝑑 𝑢, 𝑣 − 𝑑 𝑢, 𝑣 + 1

– 𝜌𝑑is a norm (e.g. 𝐿2, 𝐿1 or Huber norm)

– λ controls the tradeoff data / regularization. What happens as λ
increases?

Data term Regularization term

Solution
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Regularized depth maps

• The regularization term 𝐸𝑠(𝑑)
• Smooths non smooth surfaces

(results of noisy measurements) as 
well as discontinuities

• Fills the holes

Final depth image for different λ
[Newcombe et al. 2011]
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Regularized depth maps

– Popular assumption: discontinuities in intensity coincide with 
discontinuities in depth

– Control smoothness penalties according to image gradient

𝜌𝑑 𝑑 𝑢, 𝑣 − 𝑑 𝑢 + 1, 𝑣 ∙ 𝜌𝐼 𝐼 𝑢, 𝑣 − 𝐼 𝑢 + 1, 𝑣

– 𝜌𝐼 is some monotonically decreasing function of intensity differences: 
lower smoothness cost for high intensity gradients
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Choosing the stereo baseline

width of 

a pixel

all of these

points project

to the same 

pair of pixels

Solution

• Obtain depth map from small baselines

• When baseline becomes too large, create new reference frame (keyframe) and 
start a new depth computation

What’s the optimal baseline ?

– Too small:  large depth error

– Too large:  difficult search problem

Large Baseline Small Baseline
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depth map 1 depth map 2 combination

Fusion of multiple depth maps

Sensor Sensor
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Fusion of multiple depth maps
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16 images (ring)47 images (ring)

Depth map fusion

317 images

(hemisphere)
input image ground truth model

Goesele, Curless, Seitz, 2006
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http://www.gris.informatik.tu-darmstadt.de/~mgoesele/download/Goesele-2006-MSR.pdf


GPGPU
• GPGPU = General Purpose computing on Graphics 

Processing Unit

• Perform demanding calculations on the GPU instead 
of the CPU

• On the GPU: high processing power in parallel on 
thousands of cores

– On a CPU a few cores optimized for serial processing

• More transistors devoted to data processing

• More info: http://www.nvidia.com/object/what-is-
gpu-computing.html#sthash.bW35IDmr.dpuf

ALU: Arithmetic Logic Unit

https://www.youtube.com/watch?v=-P28LKWTzrI43

http://www.nvidia.com/object/what-is-gpu-computing.html#sthash.bW35IDmr.dpuf
https://www.youtube.com/watch?v=-P28LKWTzrI


GPU Capabilities
• Fast pixel processing

– Ray tracing, draw textures, shaded 
triangles faster than CPU

• Fast matrix / vector operations

– Transform vertices

• Programmable

– Shading, bump mapping

• Floating-point support

– Accurate computations

• Deep Learning

Shaded trianglesBump mapping
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GPU for 3D Dense Reconstruction

• Image processing

– Filtering & Feature extraction (i.e., convolutions)

– Warping (e.g., epipolar rectification, homography)

• Multiple-view geometry

– Search for dense correspondences

• Pixel-wise operations (SAD, SSD, NCC)

• Matrix and vector operations (epipolar geometry)

– Aggregated Photometric Error

• Global optimization

– Variational methods (i.e., regularization (smoothing))

• Parallel, in-place operations for gradient / 
divergence computation
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Why GPU
• GPUs run thousands of lightweight 

threads in parallel

– Typically on consumer hardware: 
1024 threads per multiprocessor; 30 
multiprocessor => 30k threads.

– Compared to CPU: 4 cores support 
32 threads (with HyperThreading).

• Well suited for data-parallelism

– The same instructions executed on 
multiple data in parallel

– High arithmetic intensity: arithmetic 
operations / memory operations

[Source: nvidia]
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DTAM: Dense Tracking and Mapping in Real-Time, ICCV’11
by Newcombe, Lovegrove, Davison
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REMODE:

Regularized Monocular Dense 
Reconstruction

[M. Pizzoli, C. Forster, D. Scaramuzza, REMODE: Probabilistic, Monocular Dense 
Reconstruction in Real Time, 

IEEE International Conference on Robotics and Automation 2014]

Open source: https://github.com/uzh-rpg/rpg_open_remode
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https://github.com/uzh-rpg/rpg_open_remode


REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, 
ICRA’14, by Pizzoli, Forster, Scaramuzza
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[M. Pizzoli, C. Forster, D. Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA’14]

REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, 
ICRA’14, by Pizzoli, Forster, Scaramuzza
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[Pizzoli, Forster, Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time ICRA’14]

 Tracks every pixel (like DTAM) but Probabilistically
 Runs live on video streamed from MAV (50 Hz on GPU)
 Copes well with low texture surfaces

REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, 
ICRA’14, by Pizzoli, Forster, Scaramuzza
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 Tracks every pixel (like DTAM) but Probabilistically
 Runs live on video streamed from MAV (50 Hz on GPU)
 Copes well with low texture surfaces

REMODE applied to autonomous flying 3D scanning

Live demonstration at the Firefighter Training Area of Zurich
Featured on ARTE Tv channel on November 22 and SRF 10vo10 56



2x

Faessler, Fontana, Forster, Mueggler, Pizzoli, Scaramuzza, Autonomous, Vision-based Flight and Live Dense 3D Mapping with 
a Quadrotor Micro Aerial Vehicle, Journal of Field Robotics, 2015.

REMODE applied to autonomous flying 3D scanning
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Faessler, Fontana, Forster, Mueggler, Pizzoli, Scaramuzza, Autonomous, Vision-based Flight and Live Dense 3D Mapping with 
a Quadrotor Micro Aerial Vehicle, Journal of Field Robotics, 2015.
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[Pizzoli, Forster, Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time ICRA’14]

Live demonstration at the Firefighter Training Area of Zurich
Featured on ARTE Tv channel on November 22 and SRF 10vo10

REMODE applied to autonomous flying 3D scanning
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3DAround iPhone App
Dacuda
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Things to remember

 Aggregated Photometric Error

 Disparity Space Image

 Effects of regularization

 Handling discontinuities

 GPU

 Readings:

– Chapter: 11.6 of Szeliski’s book
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