

Institute of Informatics – Institute of Neuroinformatics

Lecture 04 Image Filtering

Davide Scaramuzza

Lab Exercise 2 - Today afternoon

- Room ETH HG E 1.1 from 13:15 to 15:00
- Work description: your first camera motion estimator using DLT

Image filtering

- The word *filter* comes from frequency-domain processing, where "filtering" refers to the process of accepting or rejecting certain frequency components
- We distinguish between low-pass and high-pass filtering
 - A low-pass filter smooths an image (retains low-frequency components)
 - A high-pass filter retains the contours (also called edges) of an image (high frequency)

High-pass filtered image

Low-pass filtering

Low-pass filtering Motivation: noise reduction

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Original

Salt and pepper noise

Impulse noise

Gaussian noise 5 Source: S. Seitz

Gaussian noise

How could we reduce the noise to try to recover the "ideal image"?

Moving average

- Replaces each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise process to be independent from pixel to pixel

Moving average

- Replaces each pixel with an average of all the values in its neighborhood
- Moving average in 1D:

Weighted Moving Average

- Can add weights to our moving average
- Weights [1, 1, 1, 1, 1] / 5

Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16

This operation is called *convolution*

Example of convolution of two sequences (or "signals")

- One of the sequences is flipped (right to left) before sliding over the other
- Notation: $a \star b$
- Nice properties: linearity, associativity, commutativity, etc.

This operation is called *convolution*

Example of convolution of two sequences (or "signals")

- One of the sequences is flipped (right to left) before sliding over the other
- Notation: $a \star b$
- Nice properties: linearity, associativity, commutativity, etc.

2D Filtering

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then slide the filter over the image

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v]$$

$$G = H \star F$$

$$I = 180 \text{ deg turn}$$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The **filter** *H* is also called "**kernel**" or "**mask**". It allows to have different weights depending on neighboring pixel's relative position. 13

Input image

"box filter" F[x, y]

1	1	1	1	0	0	0	0	0	0	0
<u>т</u> а	1	1	1	0	0	0	0	0	0	0
9	1	1	1	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	0	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	90	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

G[x, y]

Input image

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

Input image

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

Input image

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

0	10	20	30			

Input image

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

0	10	20	30	30		

Input image

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Smoothing by averaging

Box filter: white = high value, black = low value

original

filtered

Gaussian filter

• What if we want the closest pixels to have higher influence on the output?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

H[u, v]

2

This kernel is an approximation of a Gaussian function:

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

Smoothing with a Gaussian

Compare the result with a box filter

Compare the result with a box filter

Gaussian filters

- What parameters matter?
- Size of the kernel
 - NB: a Gaussian function has infinite support, but discrete filters use finite kernels

 σ = 5 pixels with 10 x 10 pixel kernel

 σ = 5 pixels with 30 x 30 pixel kernel

Gaussian filters

- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing

Recall: standard deviation = σ [pixels], variance = σ^2 [pixels²]

Smoothing with a Gaussian

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.

Sample Matlab code

- >> mesh(h);
- >> imagesc(h);
- 0
- >> im = imread('panda.jpg');
- >> outim = imfilter(im, h);
- >> imshow(outim);

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to pad the image borders
 - methods:
 - zero padding (black)
 - wrap around
 - copy edge
 - reflect across edge

Summary on (linear) smoothing filters

- <u>Smoothing filter</u>
 - has positive values (also called coefficients)
 - sums to 1 \rightarrow preserve brightness of constant regions
 - removes "high-frequency" components; "low-pass" filter

Non-linear filtering

Effect of smoothing filters

Linear smoothing filters do not alleviate salt and pepper noise!

Median filter

- It is a non-linear filter
- Removes spikes: good for impulse, salt & pepper noise

Median filter

Plots of a row of the image

Median filter

• Median filter preserves sharp transitions (i.e., edges),

... but it removes small brightness variations.

High-pass filtering (edge detection)

Edge detection

- Ultimate goal of edge detection: an idealized line drawing.
- Edge contours in the image correspond to important scene contours.

Edges are sharp intensity changes

Images as functions f(x, y)

• Edges look like steep cliffs

Derivatives and edges

An edge is a place of rapid change in the image intensity function.

Differentiation and convolution

For 2D function, f(x,y), the partial derivative is:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$$

To implement the above as a convolution, what would be the associated filter?

Partial derivatives of an image

Alternative Finite-difference filters

Prewitt filter
$$\mathbf{G}_{\mathbf{x}} = \begin{bmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{bmatrix}$$
 and $\mathbf{G}_{\mathbf{y}} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ +1 & +1 & +1 \end{bmatrix}$
Sobel filter $\mathbf{G}_{\mathbf{x}} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix}$ and $\mathbf{G}_{\mathbf{y}} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix}$

Sample Matlab code
>> im = imread('lion.jpg');
>> My = fspecial('sobel');
>> outim = imfilter(double(im), My);
>> imagesc(outim);
>> colormap gray;

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of fastest intensity change

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Alternative: combined derivative and smoothing filter

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

Differentiation property of convolution.

Derivative of Gaussian filters

Laplacian of Gaussian

Where is the edge?

Zero-crossings of bottom graph

2D edge detection filters

• ∇^2 is the Laplacian operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Summary on (linear) filters

- <u>Smoothing filter:</u>
 - has positive values
 - sums to 1 \rightarrow preserve brightness of constant regions
 - removes "high-frequency" components: "low-pass" filter
- Derivative filter:
 - has opposite signs used to get high response in regions of high contrast
 - sums to $0 \rightarrow$ no response in constant regions
 - highlights "high-frequency" components: "high-pass" filter

- Compute gradient of smoothed image in both directions
- Discard pixels whose gradient magnitude is below a certain threshold
- Non-maximal suppression: identify local maxima along gradient direction

Take a grayscale image. If not grayscale (i.g., RGB), convert it into a grayscale by replacing each pixel by the mean value of its R, G, B components.

Original image (Lenna image: <u>https://en.wikipedia.org/wiki/Lenna</u>)

Take a grayscale image. If not grayscale (i.g., RGB), convert it into a grayscale by replacing each pixel by the mean value of its R, G, B components.

Original image (Lenna image: <u>https://en.wikipedia.org/wiki/Lenna</u>)

Convolve the image with x and y derivatives of Gaussian filter

$$\nabla f = \nabla \big(G_{\sigma} * I \big)$$

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$
: Edge strength

Threshold it (i.e., set to 0 all pixels whose value is below a given threshold)

Thresholding $|\nabla f|$

Take local maximum along gradient direction

Thinning: non-maxima suppression (local-maxima detection) along edge direction

Summary (things to remember)

- Image filtering (definition, motivation, applications)
- Moving average
- Linear filters and formulation: box filter, Gaussian filter
- Boundary issues
- Non-linear filters
 - Median filter and its applications
- Edge detection
 - Derivating filters (Prewitt, Sobel)
 - Combined derivative and smoothing filters (deriv. of Gaussian)
 - Laplacian of Gaussian
 - Canny edge detector
- Readings: Ch. 3.2, 4.2.1 of Szeliski book