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Lab Exercise 2 - Today afternoon

 Room ETH HG E 1.1 from 13:15 to 15:00

 Work description: your first camera motion estimator using DLT
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Image filtering

• The word filter comes from frequency-domain processing, where “filtering” refers to the 
process of accepting or rejecting certain frequency components

• We distinguish between low-pass and high-pass filtering

– A low-pass filter smooths an image (retains low-frequency components)

– A high-pass filter retains the contours (also called edges) of an image (high frequency)

Low-pass filtered image High-pass filtered image
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Low-pass filtering
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Low-pass filtering
Motivation: noise reduction

• Salt and pepper noise: random 
occurrences of black and white 
pixels

• Impulse noise: random 
occurrences of white pixels

• Gaussian noise: variations in 
intensity drawn from a Gaussian 
normal distribution

Source: S. Seitz
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Gaussian noise

How could we reduce the noise to try to recover the “ideal image”?
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Moving average

• Replaces each pixel with an average of all the values in its neighborhood

• Assumptions: 

– Expect pixels to be like their neighbors

– Expect noise process to be independent from pixel to pixel
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Moving average

• Replaces each pixel with an average of all the values in its neighborhood

• Moving average in 1D:
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Weighted Moving Average

• Can add weights to our moving average

• Weights [1, 1, 1, 1, 1]  / 5 
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Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16
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This operation is called convolution
Example of convolution of two sequences (or “signals”)
 One of the sequences is flipped (right to left) before sliding over the other
 Notation:  a   b
 Nice properties: linearity, associativity, commutativity, etc.
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• Convolution: 
– Flip the filter in both dimensions (bottom to top, right to left)

– Then slide the filter over the image

2D Filtering

F

H

180 deg turn

Filtering an image: replace each pixel 
with a linear combination of its neighbors.

The filter 𝑯 is also called “kernel” or “mask”. 
It allows to have different weights depending on neighboring pixel’s relative position. 13



Example: Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Input image Filtered image

111
111
111

“box filter”
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Box filter: 
white = high value, black = low value

original filtered

Smoothing by averaging
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• What if we want the closest pixels to have higher influence on the output?

Gaussian filter

This kernel is an 
approximation of a 
Gaussian function:
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Smoothing with a Gaussian
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Compare the result with a box filter
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Compare the result with a box filter

This effect is called aliasing
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• What parameters matter?

• Size of the kernel

– NB: a Gaussian function has infinite support, but discrete filters use finite 
kernels

σ = 5 pixels
with 10 x 10 pixel kernel

σ = 5 pixels
with 30 x 30 pixel  kernel

Gaussian filters
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σ = 2 pixels 
with 30 x 30 pixel kernel

σ = 5 pixels
with 30 x 30 pixel kernel

Gaussian filters

Recall: standard deviation =  [pixels],   variance = 2 [pixels2]

• What parameters matter here?

• Variance of Gaussian: determines extent of smoothing

26



…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and controls 
the amount of smoothing.

Smoothing with a Gaussian
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>> hsize = 20;

>> sigma = 5;

>> h = fspecial('gaussian', hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> im = imread('panda.jpg');

>> outim = imfilter(im, h);

>> imshow(outim);

outim

Sample Matlab code

5 10 15 20

5

10

15

20
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Boundary issues
• What about near the edge?

– the filter window falls off the edge of the image

– need to pad the image borders

– methods:

• zero padding (black)

• wrap around

• copy edge

• reflect across edge
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Summary on (linear) smoothing filters

• Smoothing filter
– has positive values (also called coefficients)

– sums to 1  preserve brightness of constant regions

– removes “high-frequency” components; “low-pass” filter
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Non-linear filtering
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Effect of smoothing filters

Linear smoothing filters do not alleviate salt and pepper noise!
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Median filter
• It is a non-linear filter

• Removes spikes: good for impulse, salt & pepper noise

Input image

Output image

Median value

10   15   20   23   27   30   31   33   90

Sort

Replace
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Salt and 
pepper noise

Median 
filtered

Plots of a row of the image

Median filter

39



Median filter
• Median filter preserves sharp transitions (i.e., edges), 

… but it removes small brightness variations.
40



High-pass filtering
(edge detection)
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Edge detection

• Ultimate goal of edge detection: an idealized line drawing. 

• Edge contours in the image correspond to important scene contours. 
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Edges are sharp intensity changes
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Images as functions 𝑓(𝑥, 𝑦)

• Edges look like steep cliffs
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image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

An edge is a place of rapid change in the image intensity function.

Derivatives and edges
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For 2D function, f(x,y), the partial derivative is:

For discrete data, we can approximate using finite differences:

To implement the above as a convolution, what would be the 
associated filter?
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Differentiation and convolution
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Partial derivatives of an image
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Alternative Finite-difference filters

Sample Matlab code

>> im = imread('lion.jpg');

>> My = fspecial('sobel');

>> outim = imfilter(double(im), My); 

>> imagesc(outim);

>> colormap gray;

Prewitt filter

Sobel filter
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Image gradient
The gradient of an image: 

The gradient points in the direction of fastest intensity change

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude
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Effects of noise
Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
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Where is the edge?  

Solution:  smooth first

Look for peaks in 52



Alternative: combined derivative and smoothing filter

Differentiation property of convolution.
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Derivative of Gaussian filters

x-direction y-direction

55



Laplacian of Gaussian
Consider  

Laplacian of Gaussian
operator

Where is the edge?  Zero-crossings of bottom graph 56



2D edge detection filters

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian
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Summary on (linear) filters
• Smoothing filter:

– has positive values

– sums to 1  preserve brightness of constant regions

– removes “high-frequency” components: “low-pass” filter

• Derivative filter:
– has opposite signs used to get high response in regions of high 

contrast

– sums to 0  no response in constant regions

– highlights “high-frequency” components: “high-pass” filter
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The Canny edge-detection algorithm (1986)

• Compute gradient of smoothed image in both directions

• Discard pixels whose gradient magnitude is below a certain threshold

• Non-maximal suppression: identify local maxima along gradient direction
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Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna) 

The Canny edge-detection algorithm (1986)

Take a grayscale image.
If not grayscale (i.g., 
RGB), convert it into a 
grayscale by replacing 
each pixel by the mean 
value of its R, G, B 
components.
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 IGf  

The Canny edge-detection algorithm (1986)

: Edge strength

Convolve the image 
with 𝑥 and 𝑦 derivatives 
of Gaussian filter
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Thresholding f

The Canny edge-detection algorithm (1986)

Threshold it (i.e., set to 
0 all pixels whose value 
is below a given 
threshold)
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Thinning: non-maxima suppression (local-maxima detection) 

along edge direction

The Canny edge-detection algorithm (1986)

Take local maximum 
along gradient direction
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Summary (things to remember)

• Image filtering (definition, motivation, applications)

• Moving average

• Linear filters  and formulation: box filter, Gaussian filter

• Boundary issues

• Non-linear filters

– Median filter and its applications

• Edge detection

– Derivating filters (Prewitt, Sobel)

– Combined derivative and smoothing filters (deriv. of Gaussian)

– Laplacian of Gaussian

– Canny edge detector

• Readings: Ch. 3.2, 4.2.1 of Szeliski book

65


