

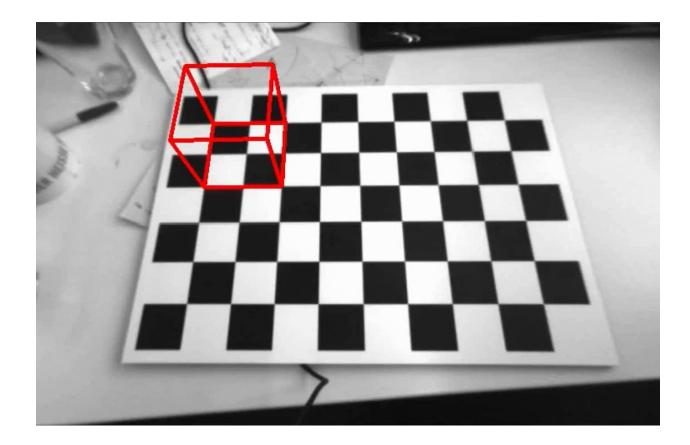
Institute of Informatics – Institute of Neuroinformatics

Lecture 03 Image Formation 2

Davide Scaramuzza

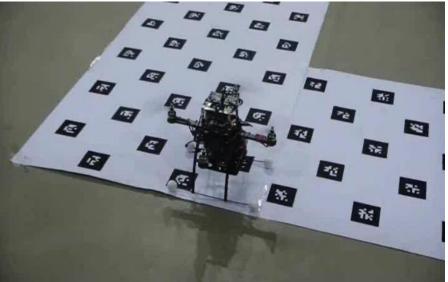
Lab Exercise 1 - Today afternoon

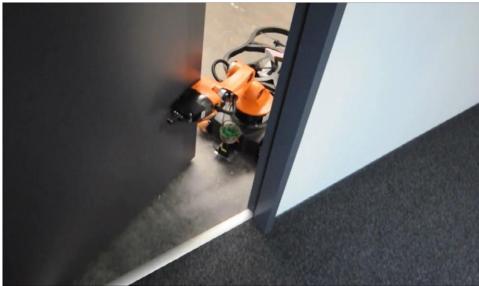
- Room ETH HG E 1.1 from 13:15 to 15:00
- > Work description: implement an augmented reality wireframe cube
 - Practice the perspective projection



Goal of today's lecture

• Study the algorithms behind robot-position control and augmented reality



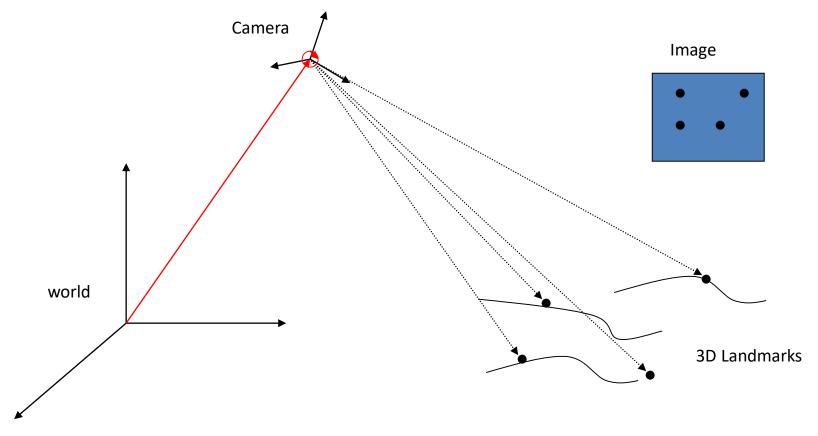


Outline of this lecture

- Camera calibration
 - Non-linear algorithms: P3P and PnP for calibrated cameras
 - From general 3D objects
 - Linear algorithms (DLT) for uncalibrated cameras
 - From 3D objects
 - From planar grids
- Non conventional camera models

Pose determination from n Points (PnP) Problem

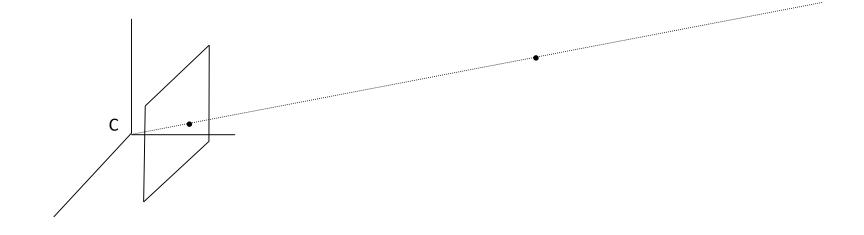
- Assumption: camera intrinsic parameters are known
- Given known 3D landmarks in the world frame and given their image correspondences in the camera frame, determine the 6DOF pose of the camera in the world frame (including the intrinsinc parameters if uncalibrated)



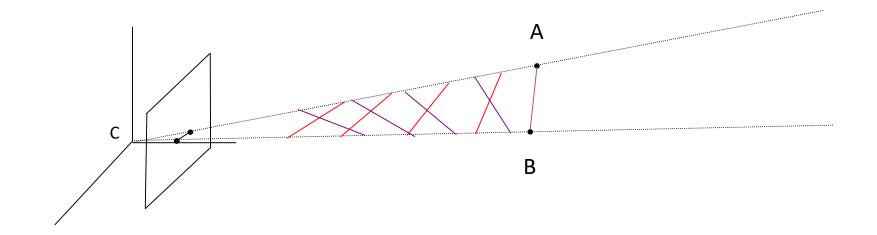
How Many Points are Enough?

- <u>1 Point</u>: infinitely many solutions.
- <u>2 Points</u>: infinitely many solutions, but bounded.
- <u>3 Points</u>:
 - (no 3 collinear) finitely many solutions (up to 4).
- <u>4 Points</u>:
 - Unique solution

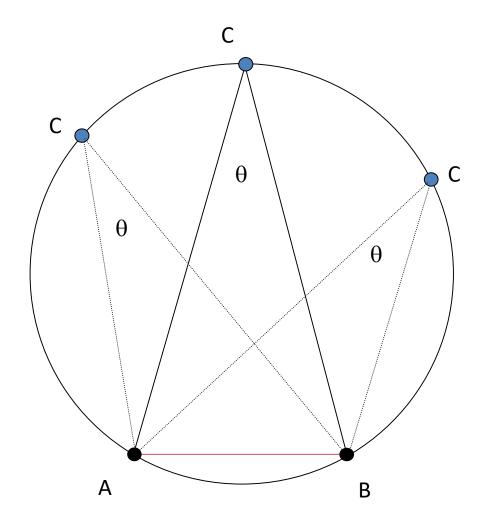
1 Point

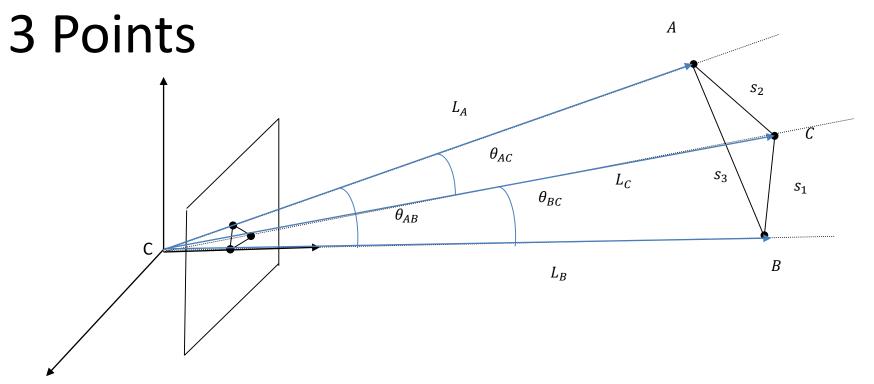


2 Points



Inscribed Angles are Equal





From Carnot's Theorem:

 $s_1^2 = L_B^2 + L_C^2 - 2L_B L_C \cos \theta_{BC}$ $s_2^2 = L_A^2 + L_C^2 - 2L_A L_C \cos \theta_{AC}$ $s_3^2 = L_A^2 + L_B^2 - 2L_A L_B \cos \theta_{AB}$

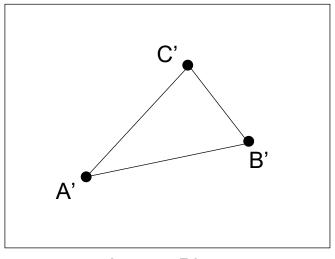


Image Plane

Algebraic Approach: reduce to 4th order equation (Fischler and Bolles, 1981)

$$s_1^2 = L_B^2 + L_C^2 - 2L_B L_C \cos \theta_{BC}$$

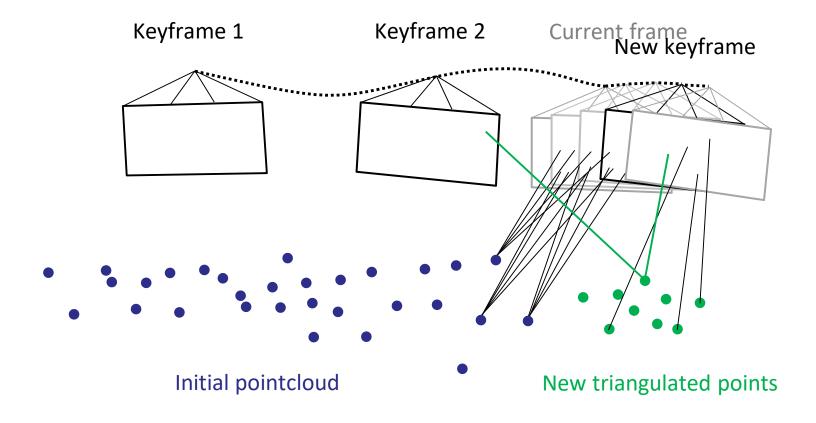
 $s_2^2 = L_A^2 + L_C^2 - 2L_A L_C \cos \theta_{AC}$

- $s_3^2 = L_A^2 + L_B^2 2L_A L_B \cos \theta_{AB}$
- It is known that *n* independent polynomial equations, in *n* unknowns, can have no more solutions than the product of their respective degrees. Thus, the system can have a maximum of 8 solutions. However, because every term in the system is either a constant or of second degree, for every real positive solution there is a negative solution.
- Thus, with 3 points, there are at most 4 valid (positive) solutions.
- A 4th point can be used to disambiguate the solutions.

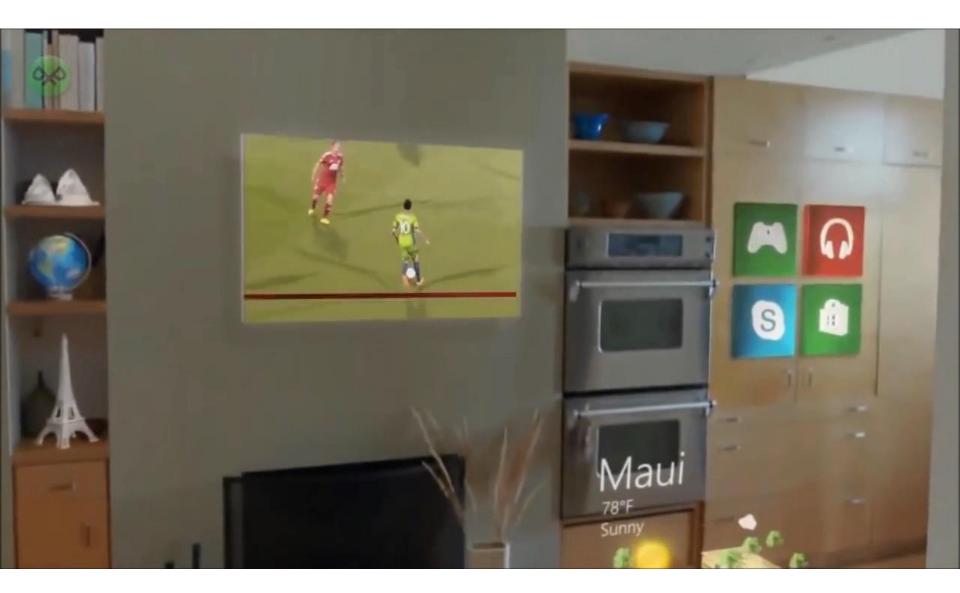
By defining $x = L_B/L_A$, it can be shown that the system can be reduced to a 4th order equation:

$$G_0 + G_1 x + G_2 x^2 + G_3 x^3 + G_4 x^4 = 0$$

Application to Monocular Visual Odometry: camera pose estimation from known 3D-2D correspondences



AR Application: Microsoft HoloLens



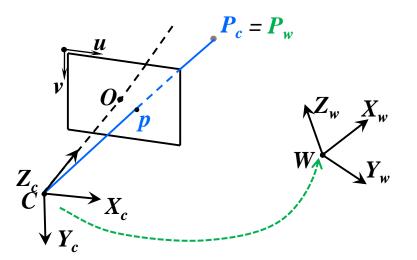
Outline of this lecture

- Camera calibration
 - Non-linear algorithms: P3P and PnP for calibrated cameras
 - From general 3D objects
 - Linear algorithms (DLT) for uncalibrated cameras
 - From 3D objects
 - From planar grids
- Non conventional camera models

Camera calibration

- Calibration is the process to determine the **intrinsic and extrinsic** parameters of the camera model
- A method proposed in 1987 by Tsai consists of measuring the 3D position of n ≥ 6 control points on a three-dimensional calibration target and the 2D coordinates of their projection in the image. This problem is also called "Resection", or "Perspective from n Points", or "Camera pose from 3D-to-2D correspondences", and is one of the most widely used algorithms in Computer Vision and Robotics
- Solution: The intrinsic and extrinsic parameters are computed directly from the perspective projection equation; let's see how!

3D position of control points is assigned in a reference frame specified by the user



Our goal is to compute K, R, and T that satisfy the perspective projection equation (we neglect the radial distortion)

$$\widetilde{p} = \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} R \mid T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \implies$$

$$\Rightarrow \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} \alpha_{u} & 0 & u_{0} \\ 0 & \alpha_{v} & v_{0} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \end{bmatrix} \cdot \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} \alpha_{u}r_{11} + u_{0}r_{31} & \alpha_{u}r_{12} + u_{0}r_{32} & \alpha_{u}r_{13} + u_{0}r_{33} & \alpha_{u}t_{1} + u_{0}t_{3} \\ \alpha_{v}r_{21} + v_{0}r_{31} & \alpha_{v}r_{22} + v_{0}r_{32} & \alpha_{v}r_{23} + v_{0}r_{33} & \alpha_{v}t_{2} + v_{0}t_{3} \\ r_{31} & r_{32} & r_{33} & t_{3} \end{bmatrix} \cdot \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}$$

Our goal is to compute K, R, and T that satisfy the perspective projection equation (we neglect the radial distortion)

$$\widetilde{p} = \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} R \mid T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \implies$$

$$\Rightarrow \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} \alpha_{u} & 0 & u_{0} \\ 0 & \alpha_{v} & v_{0} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \end{bmatrix} \cdot \begin{bmatrix} X_{w} \\ Z_{w} \\ 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \cdot \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}$$

Our goal is to compute K, R, and T that satisfy the perspective projection equation (we neglect the radial distortion)

$$\left[\begin{array}{c} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{array} \right] = \left[\begin{array}{ccc} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{array} \right] \cdot \left[\begin{array}{c} X_w \\ Y_w \\ Z_w \\ 1 \end{array} \right]$$
$$\Rightarrow \left[\begin{array}{c} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{array} \right] = M \cdot \left[\begin{array}{c} X_w \\ Y_w \\ Z_w \\ 1 \end{array} \right]$$
$$\Rightarrow \left[\begin{array}{c} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{array} \right] = \left[\begin{array}{c} m_1^T \\ m_2^T \\ m_3^T \end{array} \right] \cdot \left[\begin{array}{c} X_w \\ Y_w \\ Z_w \\ 1 \end{array} \right]$$

where m_i^T is the i-*th* row of M

$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} m_1^T \\ m_2^T \\ m_3^T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \rightarrow P$$

Conversion back from homogeneous coordinates to pixel coordinates leads to:

$$u = \frac{\widetilde{u}}{\widetilde{w}} = \frac{m_1^T \cdot P}{m_3^T \cdot P} \implies v = \frac{\widetilde{v}}{\widetilde{w}} = \frac{m_2^T \cdot P}{m_3^T \cdot P} \implies$$

$$(m_1^T - u_i m_3^T) \cdot P_i = 0$$

$$(m_2^T - v_i m_3^T) \cdot P_i = 0$$

By re-arranging the terms, we obtain

$$\begin{pmatrix} m_1^T - u_i m_3^T \end{pmatrix} \cdot P_i = 0 \\ (m_2^T - v_i m_3^T) \cdot P_i = 0 \end{pmatrix} \Rightarrow \begin{pmatrix} P_1^T & 0^T & -u_1 P_1^T \\ 0^T & P_1^T & -v_1 P_1^T \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

For *n* points, we can stack all these equations into a big matrix:

$$\begin{pmatrix} P_1^T & 0^T & -u_1 P_1^T \\ 0^T & P_1^T & -v_1 P_1^T \\ \cdots & \cdots & \cdots \\ P_n^T & 0^T & -u_n P_n^T \\ 0^T & P_n^T & -v_n P_n^T \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

By re-arranging the terms, we obtain

$$\begin{pmatrix} m_1^T - u_i m_3^T \end{pmatrix} \cdot P_i = 0 \\ (m_2^T - v_i m_3^T) \cdot P_i = 0 \end{pmatrix} \Rightarrow \begin{pmatrix} P_1^T & 0^T & -u_1 P_1^T \\ 0^T & P_1^T & -v_1 P_1^T \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

For n points, we can stack all these equations into a big matrix:

$\mathbf{Q} \cdot \mathbf{M} = \mathbf{0}$

Minimal solution

- $Q_{(2n \times 12)}$ should have rank 11 to have a unique (up to a scale) non-trivial solution M
- Each 3D-to-2D point correspondence provides 2 independent equations
- Thus, $5 + \frac{1}{2}$ point correspondences are needed (in practice **6 point** correspondences!)

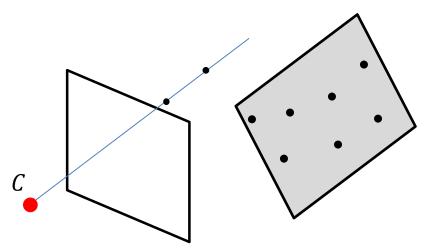
Over-determined solution

- $n \ge 6$ points
- A solution is to minimize $||QM||^2$ subject to the constraint $||M||^2 = 1$. It can be solved through Singular Value Decomposition (SVD). The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix Q^TQ (because it is the unit vector x that minimizes $||Qx||^2 = x^TQ^TQx$).
- Matlab instructions:
 - [U,S,V] = svd(Q);
 - M = V(:, 12);

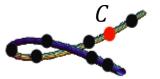
 $\mathbf{Q} \cdot \mathbf{M} = \mathbf{0}$

Degenerate configurations

1. Points lying on a **plane** and/or along a single **line** passing through the **projection center**



2. Camera and points on a twisted cubic (i.e., smooth curve in 3D space of degree 3)



 Once we have the M matrix, we can recover the intrinsic and extrinsic parameters by remembering that

```
\mathbf{M} = \mathbf{K}(\mathbf{R} \mid \mathbf{T})
\begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}
```

• Once we have the M matrix, we can recover the intrinsic and extrinsic parameters by remembering that

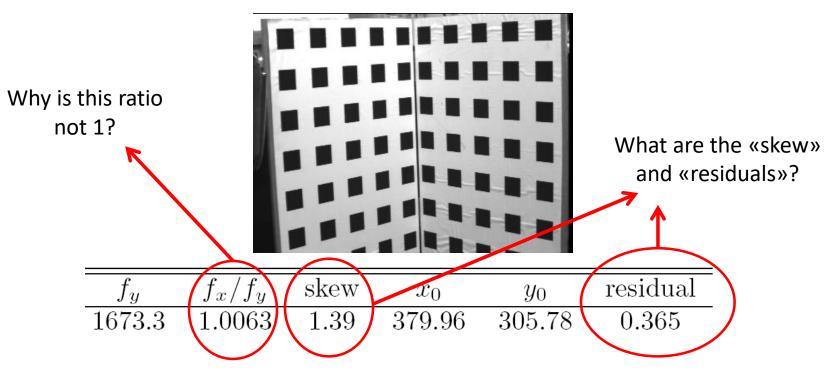
 $\mathbf{M} = \mathbf{K}(\mathbf{R} \mid \mathbf{T})$

 $\begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} = \begin{bmatrix} \alpha r_{11} + u_0 r_{31} & \alpha r_{12} + u_0 r_{32} & \alpha r_{13} + u_0 r_{33} & \alpha t_1 + u_0 t_3 \\ \alpha r_{21} + v_0 r_{31} & \alpha r_{22} + v_0 r_{32} & \alpha r_{23} + v_0 r_{33} & \alpha t_2 + v_0 t_3 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}$

- However, notice that we are not enforcing the constraint that R is orthogonal, i.e., $R \cdot R^T = I$
- To do this, we can use the so-called QR factorization of *M*, which decomposes *M* into a *R* (orthogonal), T, and an upper triangular matrix (i.e., *K*)

Tsai's (1987) Calibration example

- 1. Edge detection
- 2. Straight line fitting to the detected edges
- 3. Intersecting the lines to obtain the image corners (corner accuracy < 0.1 pixels)
- 4. Use more than 6 points (ideally more than 20) and not all lying on a plane

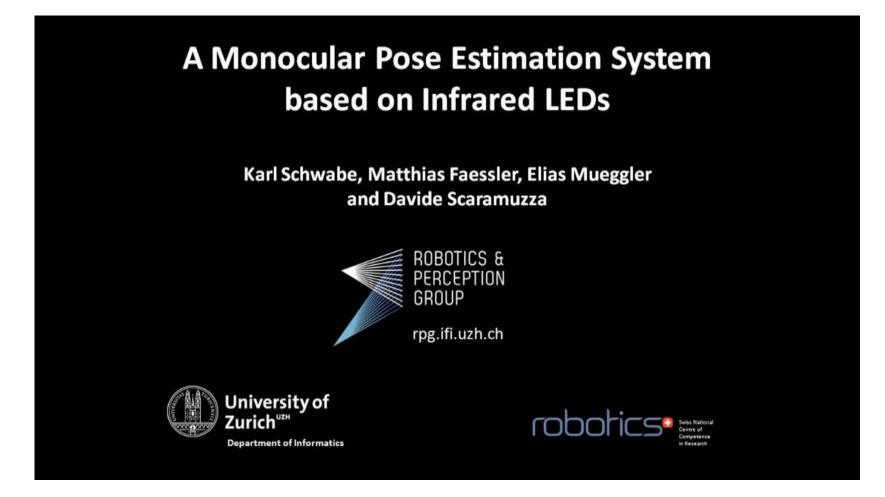


Tsai's (1987) Calibration example

- The original Tsai calibration (1987) used to consider two different focal lengths α_u , α_v (which means that the pixels are not squared) and a skew factor ($K_{12} \neq 0$, which means the pixels are parallelograms instead of rectangles) to account for possible misalignments (small x, y rotation) between image plane and lens
- Most today's cameras are well manufactured, thus, we can assume $\frac{\alpha_u}{\alpha_n} = 1$ and $K_{12} = 0$
- What is the residual? The residual is the *average* "reprojection error". The reprojection error is computed as the distance (in pixels) between the observed pixel point and the camera-reprojected 3D point. The reprojection error gives as a quantitative measure of the accuracy of the calibration (ideally it should be zero).

-	f_y	f_x/f_y	skew	x_0	y_0	residual
-	1673.3	1.0063	1.39	379.96	305.78	0.365

DLT algorithm applied to mutual robot localization

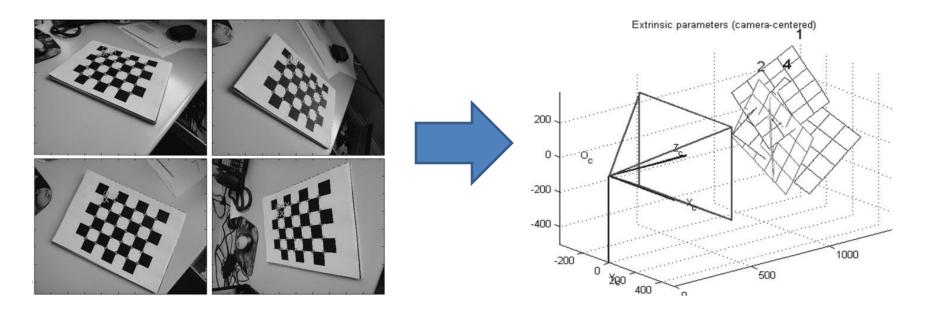


In this case, the camera has been pre-calibrated (i.e., K is known). Can you think of how the DLT algorithm could be modified so that only R and T need to determined and not K?

Outline of this lecture

- Camera calibration
 - Non-linear algorithms: P3P and PnP for calibrated cameras
 - From general 3D objects
 - Linear algorithms (DLT) for uncalibrated cameras
 - From 3D objects
 - From planar grids
- Non conventional camera models

- Tsai calibration is based on DLT algorithm, which requires points not to lie on the same plane
- An alternative method (today's standar camera calibration method) consists of using a planar grid (e.g., a chessboard) and a few images of it shown at different orientations
- This method was invented by Zhang (1999) @Microsoft Research



- Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we neglect the radial distortion)
- Since the points lie on a plane, we have $Z_w = 0$

$$\widetilde{p} = \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} R \mid T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 0 \\ 1 \end{bmatrix} \implies$$
$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & t_1 \\ r_{21} & r_{22} & t_2 \\ r_{31} & r_{32} & t_3 \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 1 \end{bmatrix}$$

- Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we neglect the radial distortion)
- Since the points lie on a plane, we have $Z_w = 0$

$$\begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = H \cdot \begin{bmatrix} X_w \\ Y_w \\ 1 \end{bmatrix}$$
This matrix is called Homography
$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} h_1^T \\ h_2^T \\ h_3^T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 1 \end{bmatrix}$$

where h_i^T is the i-*th* row of *H*

$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} h_1^T \\ h_2^T \\ h_3^T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 1 \end{bmatrix}$$

Conversion back from homogeneous coordinates to pixel coordinates leads to:

$$u = \frac{\widetilde{u}}{\widetilde{w}} = \frac{h_1^T \cdot P}{h_3^T \cdot P} \implies v = \frac{\widetilde{v}}{\widetilde{w}} = \frac{h_2^T \cdot P}{h_3^T \cdot P} \implies$$

$$(h_1^T - u_i h_3^T) \cdot P_i = 0$$
$$(h_2^T - v_i h_3^T) \cdot P_i = 0$$

where P = $(X_w, Y_w, 1)^T$

By re-arranging the terms, we obtain

For *n* points, we can stack all these equations into a big matrix:

$$\begin{pmatrix} P_{1}^{T} & 0^{T} & -u_{1}P_{1}^{T} \\ 0^{T} & P_{1}^{T} & -v_{1}P_{1}^{T} \\ \cdots & \cdots \\ P_{n}^{T} & 0^{T} & -u_{n}P_{n}^{T} \\ 0^{T} & P_{n}^{T} & -v_{n}P_{n}^{T} \end{pmatrix} \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \implies \mathbf{Q} \cdot \mathbf{H} = \mathbf{0}$$

Q (this matrix is known) H (this matrix is unknown)

$\mathbf{Q} \cdot \mathbf{H} = \mathbf{0}$

Minimal solution

- $Q_{(2n \times 9)}$ should have rank 8 to have a unique (up to a scale) non-trivial solution H
- Each point correspondence provides 2 independent equations
- Thus, a minimum of **4 non-collinear points** is required

Over-determined solution

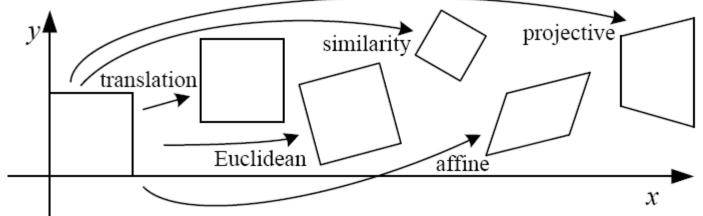
- $n \ge 4$ points
- It can be solved through Singular Value Decomposition (SVD) (same considerations as the case before apply)

Solving for K, R and T

• H can be decomposed by recalling that

$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & t_1 \\ r_{21} & r_{22} & t_2 \\ r_{31} & r_{32} & t_3 \end{bmatrix}$$

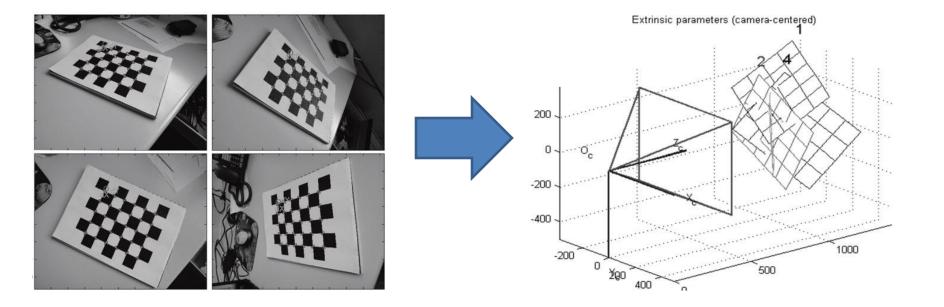
Types of 2D Transformations



Name	Matrix	# D.O.F.	Preserves:	Icon	
translation	$igg[egin{array}{c c} I & t \end{array} igg]_{2 imes 3}$	2	orientation $+ \cdots$		
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{2 imes 3}$	3	lengths $+ \cdots$	\Diamond	
similarity	$\left[\left. s R \right t ight. ight]_{2 imes 3}$	4	angles + This tra	This transformation is called	
affine	$\left[egin{array}{c} A \end{array} ight]_{2 imes 3}$	6	parallelis m + · · ·	Homo	graphy
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines		

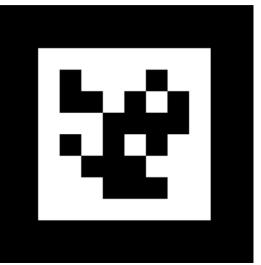
Camera calibration from planar grids: homographies

 Demo of Camera Calibration Toolbox for Matlab (world's standard toolbox for calibrating perspective cameras): <u>http://www.vision.caltech.edu/bouguetj/calib_doc/</u>



Application of calibration from planar grids

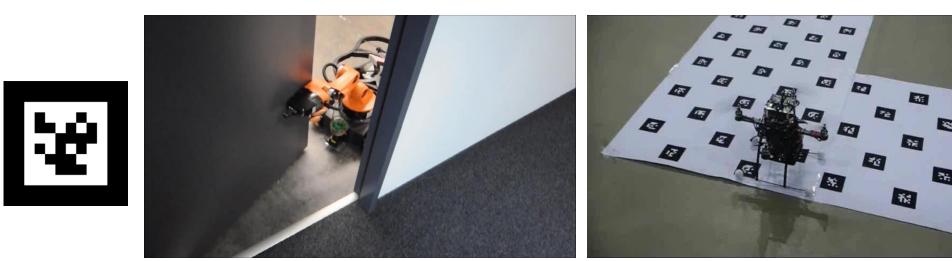
- Today, there are thousands of application of this algorithm:
 - Augmented reality



AR Tags: <u>http://april.eecs.umich.edu/wiki/index.php/April_Tags</u>

Application of calibration from planar grids

- Today, there are thousands of application of this algorithm:
 - Augmented reality
 - Robotics (beacon-based localization)
- Do we need to know the metric size of the tag?
 - For Augmented Reality?
 - For Robotics?



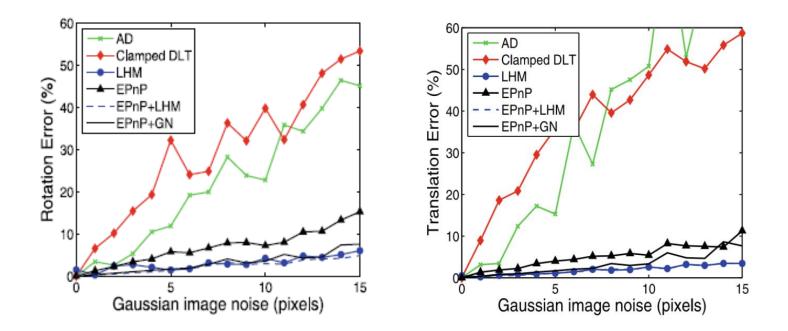
RPG (us) 2013

ETH, Pollefeys group, 2010

AR Tags: <u>http://april.eecs.umich.edu/wiki/index.php/April_Tags</u>

DLT vs PnP: Accuracy vs noise

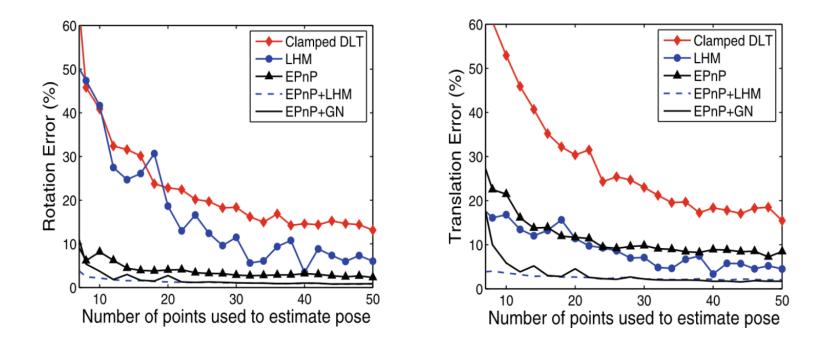
If the camera is calibrated, only R and T need to be determined. In this case, should we use DLT (linear system of equations) or PnP (non linear)?



Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, IJCV'09

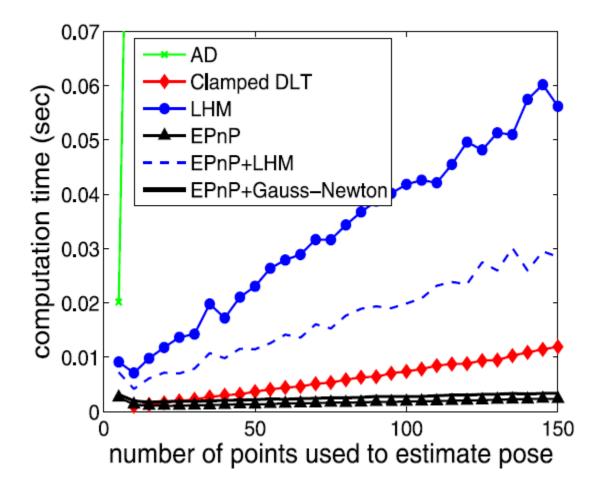
DLT vs PnP: Accuracy vs number of points

If the camera is calibrated, only R and T need to be determined. In this case, should we use DLT (linear system of equations) or PnP (non linear)?



Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, IJCV'09

DLT vs PnP: Timing



Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, IJCV'09

Outline of this lecture

- Camera calibration
 - From 3D objects
 - From planar grids
- Non conventional camera models

Omnidirectional Cameras

Rome, St. Peter's square

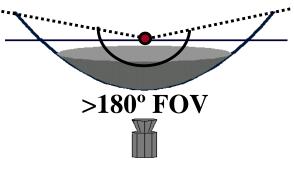
Overview on Omnidirectional Cameras

Omnidirectional sensors come in many varieties, but by definition must have a wide field-of-view.

~180° FOV

Wide FOV dioptric cameras (e.g. fisheye)

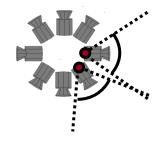
Dioptric



Catadioptric cameras (e.g. cameras and mirror systems)

Catadioptric

~360° FOV



Polydioptric cameras (e.g. multiple overlapping cameras)

Polydioptric

Catadioptric Cameras

Dioptric Cameras (fisheye)

FC-E9 0.2x MADE IN J

Nikon Coolpix FC-E9 Lens 360°×183° Canon EOS-1 Sigma Lens 360°×180°

Same scene viewed by three different camera models:

Perspective

Fisheye

Catadioptric

http://rpg.ifi.uzh.ch/fov.html

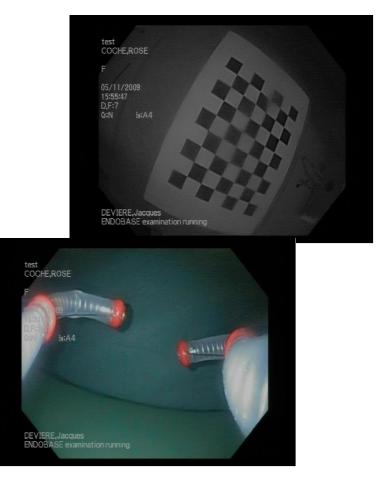
Z. Zhang et al. (RPG), Benefit of Large Field-of-View Cameras for Visual Odometry, ICRA 2016

 Daimler, Bosch: for car driving assistance systems

- Daimler, Bosch: for car driving assistance systems
- Meteorology: for sky observation



- Daimler, Bosch: for car driving assistance systems
- Meteorology: for sky observation
- Endoscopic Imagery: distortion removal (for the surgeon)



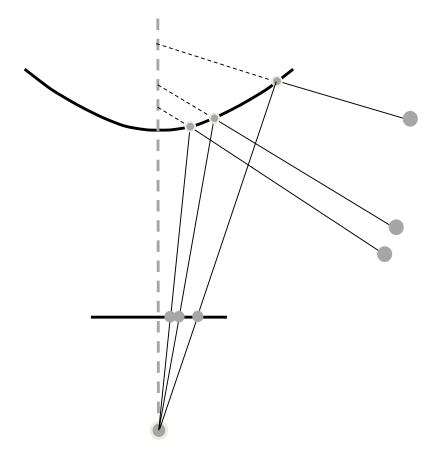
(Courtesy of Endo Tools Therapeutics, Brussels)

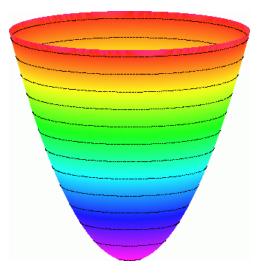
- Daimler, Bosch: for car driving assistance systems
- Meteorology: for sky observation
- Endoscopic Imagery: distortion removal (for the surgeon)
- RoboCup domain

- Daimler, Bosch: for car driving assistance systems
- Meteorology: for sky observation
- Endoscopic Imagery: distortion removal (for the surgeon)
- RoboCup domain
- Google Street View

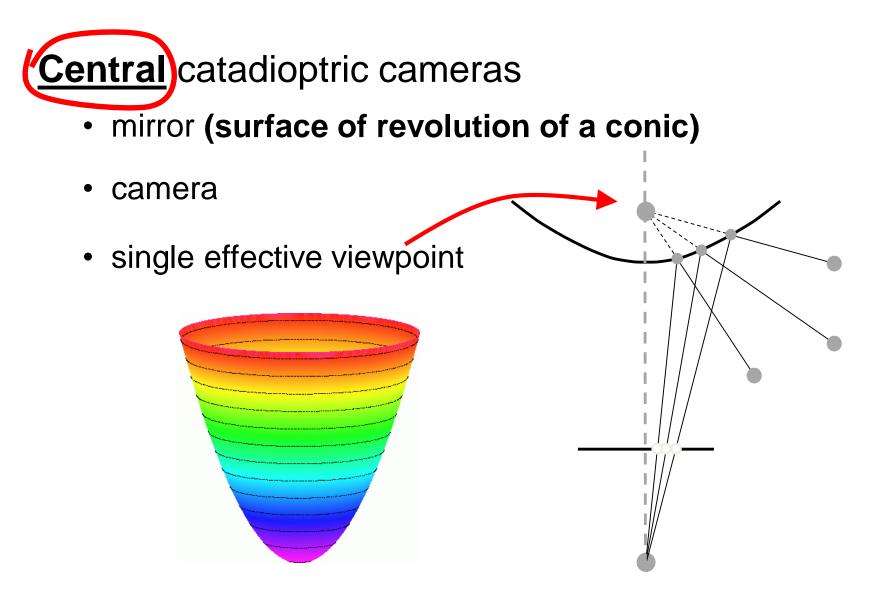
Catadioptric cameras

- mirror
- perspective camera



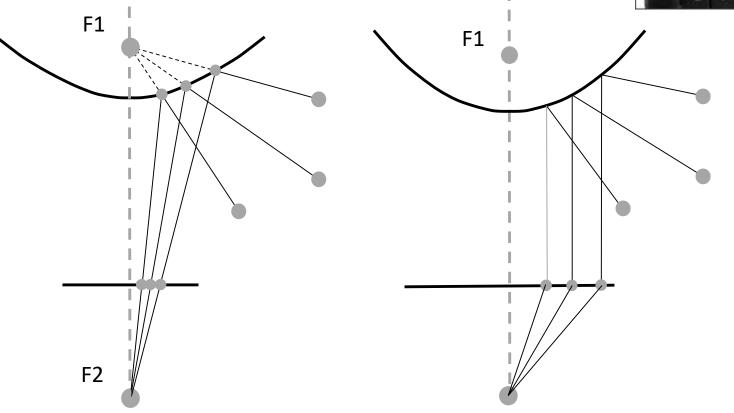


Catadioptric cameras



Catadioptric cameras

- hyperbola + perspective camera
- parabola + orthographic lens

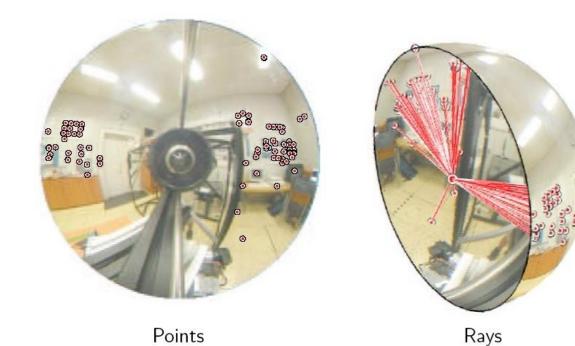


Why is it important that the camera be central (i.e., have a single effective viewpoint)?

• We can unwrap parts or all omnidirectional image into a perspective one

Why is it important that the camera be central (i.e., have a single effective viewpoint)?

- We can unwrap parts or all omnidirectional image into a perspective one
- We can transform image points normalized vectors in the unit sphere
- We can apply standard algorithms valid for perspective geometry.



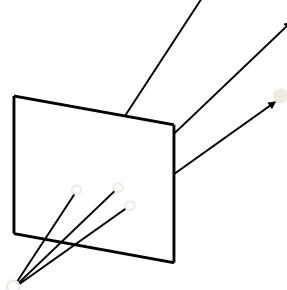
Omnidirectional camera calibration toolbox for Matlab (Scaramuzza, 2006)

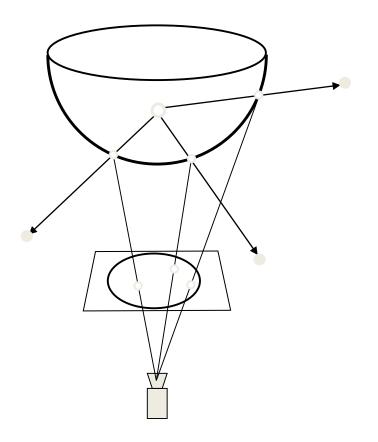
- World's standard toolbox for calibrating omnidirectional cameras (used at NASA, Daimler, IDS, Volkswagen, Audi, VW, Volvo, ...)
- Main applications are in robotics, endoscopy, video-surveillance, sky observation, automotive (Audi, VW, Volvo, ...)

https://sites.google.com/site/scarabotix/ocamcalib-toolbox

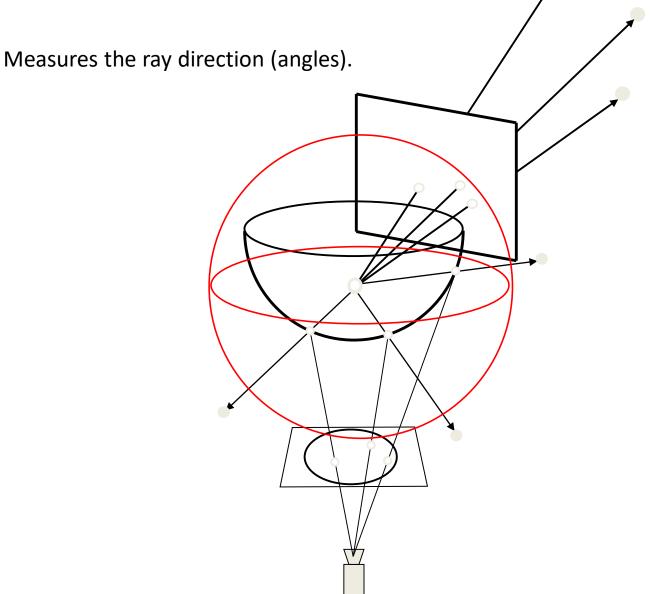
Omnidirection			
Image names	Read images	Extract grid corners	Calibration
Show Extrinsic	Reproject on images	Analyse error	Recomp. corners
Add/Suppress images	Save	Load	Exit
Comp. Extrinsic	Undistort image	Export calib data	Show calib results

Equivalence between Perspective and Omnidirectional model

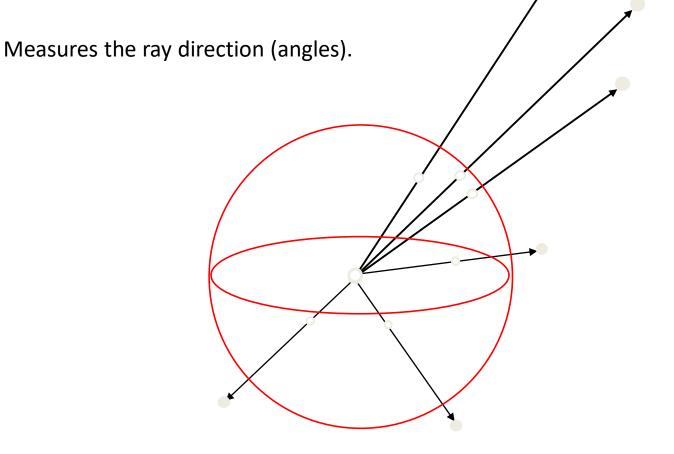




Equivalence between Perspective and Omnidirectional model

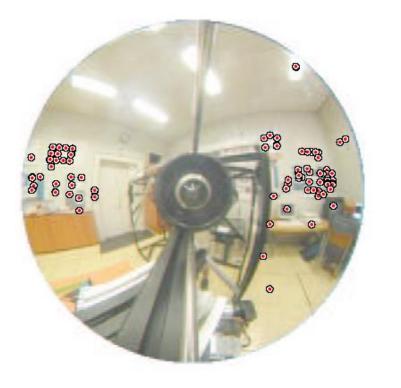


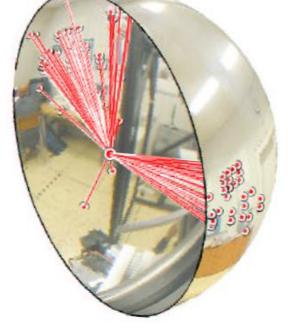
Equivalence between Perspective and Omnidirectional model:



Representation of image points on the unit sphere

Always possible after the camera has been calibrated!





Points

Rays

Summary (things to remember)

- P3P and PnP problems
- DLT algorithm
- Calibration from planar grid (Homography algorithm)
- Readings: Chapter 2.1 of Szeliski book
- Omnidirectional cameras
 - Central and non central projection
 - Dioptric
 - Catadioptric (working principle of conic mirrors)
- Unified (spherical) model for perspective and omnidirectional cameras
- Reading: Chapter 4 of Autonomous Mobile Robots book