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Today’s Class

 What is Computer Vision?
 Example of Vision Applications

* Specifics of this course

* Introduction to Visual Odometry



Who am I?

Current positions
A;\ Uniyersity of

e Zurich™ » Professor of Robotics, Dep. of Informatics and Neuroinformatics (UZH & ETH)

Education
ETH > PhDfrom ETH Zurich with Roland Siegwart

&Penn > Post-doc at the University of Pennsylvania with Vijay Kumar & Kostas Daniilidis

Highlights

= » Coordinator of the European project sFly on visual navigation of micro drones

4. Autonomous
“Mobile Robots >

£

Which introduced the PX4 autopilot and visual navigation of drones

> Book “Autonomous Mobile Robots,” 2011, MIT Press

Spinoffs & Tech Transfer
,“b =  Zurich-Eye, enabling machines to see, now Facebook-Oculus Zurich
& ®=  Former strategic advisor of Dacuda, now Magic Leap Zurich

"  Fotokite, aerial filming made simple, incubated in my lab



My Research Background

Computer Vision
> Visual Odometry and SLAM
> Sensor fusion
> Camera calibration

Autonomous Robot Navigation
> Self driving cars
> Micro Flying Robots
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® current position
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ROBATICS &
PERCEPTION

GROUP http://rpg.ifi.uzh.ch
Closed to bahnhof Oerlikon,
Andreasstrasse 15, 2nd floor

AT ST



http://rpg.ifi.uzh.ch/

Our Research Areas

Visual-Inertial State Estimation
[IJCV’11, PAMI'13, RSS’15, TRO'16]

LR

5X

End-to-End Learning

[RAL16-17]

S 5

Vo

Vision-based Navigation of Flying Robots
[AURO’12, RAM'14, JFR’15]

Onboard Image g

— s}

Window at 45° (roll)

Event-based Vision
[IROS’3, ICRA14, RSS’15, PAMI’17]




Parrot: Autonomous Inspection of Bridges and Power Masts

L\
Parrot sensefly  aris arone

5 vision sensors




Dacuda 3D (now Magic Leap Zurich)

» Fully immersive VR (running on iPhone) T Dacudas » ‘. A m09|c
» Powered by SVO 3D divison

leap




Zurich-Eye (now Oculus Zurich)

Vision-based Localization and Mapping Solutions for Mobile Robots

Launched in Sep. 2015, became Facebook-Oculus Zurich in Sep. 2016




Today’s Class

 What is Computer Vision?

 Example of Vision Applications
e Specifics of this course
* Overview of Visual Odometry



What is computer vision?

|)I

Automatic extraction of “meaningful” information from

images and videos

Geometric information
(this course)

o)
>

Semantic informat



Vision Demo?

Terminator 2 We are almost there!



Why study computer vision?

» Relieve humans of boring, easy tasks

» Enhance human abilities: human-computer
interaction, visualization, augmented reality (AR)

» Perception for autonomous robots
» Organize and give access to visual content



Vision in humans

» Vision is our most powerful sense

» Retina is ~1000mm?. Contains 130 million photoreceptors
(120 mil. rods and 10 mil. cones for color sampling)
» Provides enormous amount of information: data-rate of ~3GBytes/s
» Half of primate cerebral cortex is devoted to visual processing!
» To match the eye resolution we would need a 500 Megapixel camera.

But in practice the acuity of an eye is 8 Megapixels within a 15-degree
field of view (around the fovea)!

Ciliary body



What A Baby Can See Every Month For
The First Year Of Its Life

“Your baby sees things best from 15 to 30 cm away. This is the perfect distance for gazing up
into the eyes of mom or dad. Any farther than that, and the newborn sees mostly blurry
shapes because they're nearsighted. At birth, a newborn's eyesight is between 20/200 and
20/400.”

F -

[

http://www.iflscience.com/plants-and-animals/this-gif-shows-what-a-baby-can-see-every-
month-for-the-first-year-of-its-life/



http://www.iflscience.com/plants-and-animals/this-gif-shows-what-a-baby-can-see-every-month-for-the-first-year-of-its-life/

Why is vision hard?

How do we go from an array of number to recognizing a

fruit?
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What a computer sees

What we see



Origins of computer vision

L. G. Roberts, Machine Perception of
Three Dimensional Solids, Ph.D.
thesis, MIT Department of Electrical
Engineering, 1963.

(a) Original picture. (b) Differentiated _ni‘ ture.

He is the inventor of ARPANET, the
current Internet



http://en.wikipedia.org/wiki/Lawrence_Roberts_(scientist)
http://www.packet.cc/files/mach-per-3D-solids.html

Related disciplines

Artificial
intelligence

Computer
vision

processing science

Robotics



Computer Vision vs Computer Graphics

mages Computer Vision  Model

ﬁ‘l\; Comer Granhic ﬁ]\}

Inverse problems: analysis and synthesis.



Today’s Class

* About me

 What is Computer Vision?
* Specifics of this course

* Image Formation



Optical character recognition (OCR)

Technology to convert scanned docs to text
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Digit recognition, AT&T labs, using CNN, License plate readers
by Yann LeCun (1993), http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

now head of Deep Learning at Facebook
http://yann.lecun.com/



http://yann.lecun.com/
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Face detection

—
LI

Now in all new digital cameras and smartphones

P. Viola, M. Jones: Robust Real-time Object Detection, Int. Journal of Computer Vision 2001
(NB. Paul Viola is now Vice President of Amazon Prime Air)



Object recognition (in mobile phones)
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* This is becoming real:
— Lincoln Microsoft Research
— Point & Find, Nokia
— SnapTell.com (Amazon)
— Google Goggles



Special effects: shape and motion capture




Sports

* Augmented Reality

FINAL LEG

The AC Liveline system is bringing augmented
reality to sailing.

2013 America’s Cup



Medical imaging

3D imaging Image guided surgery
MRI, CT Grimson et al., MIT



http://groups.csail.mit.edu/vision/medical-vision/surgery/surgical_navigation.html

3D Reconstruction by Multi-View Stereo

YouTube Video



http://www.youtube.com/watch?v=ofHFOr2nRxU

3D Reconstruction: Multi-View Stereo

YouTube Video



http://www.youtube.com/watch?v=ofHFOr2nRxU

Microsoft Photosynth

* gmlfa?ynth

“What if your photo collection was an entry point into the world,
s Tryit

*« What is Photosynth?
« Collections

* Team blog

* Videos

* System requirements
* About us

* FAQ

/Ilﬁ' wormbhole that you could:j j v(mp through and explore

Tryit

The Photosynth Technology Preview is 3
to view photos on a compt

or an cbject, analyzes then
ed three dlmensmnal Space showing you |

http://labs.live.com/photosynth/

Based on Photo Tourism technology developed
by Noah Snavely, Steve Seitz, and Rick Szeliski



http://labs.live.com/photosynth/
http://phototour.cs.washington.edu/

Pix4D

* EPFL startup — Now a company




Automotive safety

-» manufacturer products
e Qur V|s|o|'|__;

* Mobileye: Vision systems in high-end Tesla, BMW, GM, Volvo
models. Bought by Intel in 2017 for 15 billion USD!

— Pedestrian collision warning

— Forward collision warning

— Lane departure warning

— Headway monitoring and warning

(- EyeQ Yionan =Vision Applications * AWS Advance

Warning System
Road, Vehicle,
‘ Pedestrian Protection
*~  and more

> read more

> read more > read more



http://www.mobileye.com/

Vision-based interaction: Xbox Kinect

MOTORIZED TILT

MULTI-ARRAY MIC




Lot of Computer Vision in Modern Smartphones

iPhone X

Ambient light sensor Speaker

Proximity sensor Microphone
Flood illuminator Front camera
Infrared camera Dot projector

c[net



Vision In space

,,,,,,

s’

NASA'S Mars Exploration Rover Spirit captured this westward view from atop
a low plateau where Spirit spent the closing months of 2007.

Vision systems (made by JPL) used for several tasks

e Panorama stitching

e 3D terrain modeling

e QObstacle detection, position tracking

e For more, read “Computer Vision on Mars” by Matthies et al.



http://www.ri.cmu.edu/pub_files/pub4/matthies_larry_2007_1/matthies_larry_2007_1.pdf
http://marsrovers.jpl.nasa.gov/gallery/images.html
http://upload.wikimedia.org/wikipedia/commons/d/d8/NASA_Mars_Rover.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d8/NASA_Mars_Rover.jpg

Vision-based Autonomous Drone Navigation

Works in GPS-denied Environments (EU project SFLY)

[Scaramuzza et al., Vision-Controlled Micro Flying Robots: from System Design to Autonomous Navigation and Mapping in
GPS-denied Environments, IEEE RAM, September, 2014



Dacuda’s mouse scanner ‘5';‘? Dacuda

» World’s first mouse scanner,
Distributed by LG, Logitech, etc.

» Dacuda was bought by Magic Leap in 2017 and is now Magic Leap Zurich
(focusing on Augmented Reality)




Microsoft HoloLens




Google Tango
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Augmented Reality with Google Tango and Apple ARKit




Current state of the art

 These were just few examples of current systems
— Many of these are less than 5 years old

 Computer Vision is a very active field of research, and rapidly
changing

— Many new applications and phone apps in the next few years

 To learn more about vision applications and companies

— David Lowe maintained an excellent overview of vision
companies until 2015

* http://www.cs.ubc.ca/spider/lowe/vision.html



http://www.cs.ubc.ca/~lowe/
http://www.cs.ubc.ca/spider/lowe/vision.html

Let’s have a 10 minute break
with Google Tango and
Microsoft Hololens Demos



Today’s Class

* About me
 What is Computer Vision?
 Example of Vision Applications

* Specifics of this course

* Overview of Visual Odometry



Organization of this Course

> Lectures:
e 10:15to 12:00 every week
e Room: ETH LFW C5, Universitatstrasse 2

» Exercises:
e 13:15 to 15:00: Starting from the 37 week. Then almost every week.

* Room:ETHHGE1.1

> Official course website: http://rpg.ifi.uzh.ch/teaching.html

e Check it out for the PDFs of the lecture slides and updates


http://rpg.ifi.uzh.ch/teaching.html

Learning Objectives

High-level goal: learn to implement current visual odometry pipelines used in
mobile robots (drones, cars, Mars rovers), and Virtual-reality (VR) and
Augmented reality (AR) products: e.g., Google Tango, Microsoft HoloLens

You will also learn to implement the fundamental computer vision algorithms
used in mobile robotics, in particular: feature extraction, multiple view
geometry, dense reconstruction, object tracking, image retrieval, visual-inertial
fusion, event-based vision.

In order to learn these competences, participation in the exercise sessions is
critical although not mandatory!



Course Schedule

For updates, slides, and additional material: http://rpg.ifi.uzh.ch/teaching.html

Date Time Description of the lecture/exercise Lecturer
21.09.2017 10:15-12:00 01 - Introduction Davide Scaramuzza
28.09.2017 10:15-12:00 02 - Image Formation 1: perspective projection and camera models Guillermo Gallego
05.10.2017 10:15-12:00 03 - Image Formation 2: camera calibration algorithms Davide Scaramuzza
13:15-15:00 Exercise 1: Augmented reality wireframe cube . Cieslewski/H. Rebecq/A. Loquercio
12.10.2017 10:15-12:00 04 - Filtering & Edge detection Davide Scaramuzza
13:15-15:00 Exercise 2: PnP problem . Cieslewski/H. Rebecqg/A. Loquercio
19.10.2017 10:15-12:00 05 - Point Feature Detectors 1: Harris detector Davide Scaramuzza
13:15-15:00 Exercise 3: Harris detector + descriptor + matching . Cieslewski/H. Rebecq/A. Loquercio
26.10.2017 10:15-12:00 06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK Davide Scaramuzza
02.11.2017 10:15-12:00 07 - Multiple-view geometry 1 Guillermo Gallego
13:15-15:00 Exercise 4: Stereo vision: rectification, epipolar matching, disparity, triangulation . Cieslewski/H. Rebecqg/A. Loguercio
09.11.2017 10:15-12:00 08 - Multiple-view geometry 2 Davide Scaramuzza
13:15-15:00 Exercise 5: Eight-point algorithm and RANSAC . Cieslewski/H. Rebecq/A. Loquercio
16.11.2017 10:15-12:00 09 - Multiple-view geometry 3 Davide Scaramuzza
13:15-15:00 Exercise 6: P3P algorithm and RANSAC . Cieslewski/H. Rebecq/A. Loquercio
23.11.2017 10:15-12:00 10 - Dense 3D Reconstruction (Multi-view Stereo) Davide Scaramuzza
13:15-15:00 Exercise 7: Intermediate VO Integration . Cieslewski/H. Rebecq/A. Loquercio
30.11.2017 10:15-12:00 11 - Optical Flow and Tracking (Lucas-Kanade) Davide Scaramuzza
13:15-15:00 Exercise 8: Lucas-Kanade tracker . Cieslewski/H. Rebecq/A. Loquercio
07.12.2017 10:15-12:00 12 — Place recognition Davide Scaramuzza
13:15-15:00 Exercise 9: Recognition with Bag of Words . Cieslewski/H. Rebecq/A. Loquercio
10:15-12:00 13 — Visual inertial fusion Davide Scaramuzza
14.12.2017 13:15-15:00 Exercise 10: Pose graph optimization and Bundle adjustment . Cieslewski/H. Rebecg/A. Loquercio
21.12.2017 10:15-12:00 14 - Event based vision + lab visit and live demonstrations Davide Scaramuzza
13:15-15:00 Exercise 11: final VO integration

. Cieslewski/H. Rebecqg/A. Loquercio



http://rpg.ifi.uzh.ch/teaching.html

Exercises

* Almost every week starting from the 374 week (check out course schedule)
* Bring your own laptop

* Each exercise will consist of coding a building block of a visual odometry
pipeline. At the end of the course there will be one additional exercise
dedicated to assembling all the blocks together into a full pipeline.

 Have Matlab pre-installed!
— ETH
* Download: https://idesnx.ethz.ch/
— UZH

* Download: http://www.id.uzh.ch/dl/sw/angebote 4.html

* Info on how to setup the license can be found there.

— An introductory tutorial on Matlab can be found here:
http://rpg.ifi.uzh.ch/docs/teaching/2017/MatlabPrimer.pdf

— Please install all the toolboxes included in the license.


https://idesnx.ethz.ch/
http://www.id.uzh.ch/dl/sw/angebote_4.html
http://rpg.ifi.uzh.ch/docs/teaching/2017/MatlabPrimer.pdf

Exercises

Learning Goal of the exercises: Implement a full visual odometry pipeline
(similar to that running on Mars rovers and on current AR/VR devices (but
actually much better ©)).

Each week you will learn how to implement a building block of visual
odometry. The building blocks are:

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization




Outcome of last year exercises

Visual Odometry Pipeline - Sandro Losa & Franz Thurnhofer - Robotics & Perception Group (UZH) - Prof. D. Scaramuzza
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Recommended Textbook

» Robotics, Vision and Control: Fundamental Algorithms, by
Peter Corke 2011. The PDF of the book can be freely
downloaded (only with ETH VPN) from Springer or
alternatively from Library Genesys

» Computer Vision: Algorithms and Applications, by Richard
Szeliski, 2009. Can be freely downloaded from the author
webpage: http://szeliski.org/Book/

» Other books:

* An Invitation to 3D Vision: Y. Ma, S. Soatto, J. Kosecka, S.S.
Sastry

* Multiple view Geometry: R. Hartley and A. Zisserman

Peter Corke

Robotics,
Vision
and
Control

u lllllllllllllllllllll
Computer Vision

Algorithms and Applications



http://www.springer.com/us/book/9783642201431
http://gen.lib.rus.ec/
http://szeliski.org/Book/

Instructors

e Lecturer

— Davide Scaramuzza: sdavide (at) ifi (dot) uzh (dot) ch
— Receving hours: Thursday afternoon (announce yourself by email)

e Exercises

~
-

Henri Rebecq
rebecq (at) ifi (dot) uzh (dot) ch

Titus Cieslewski
titus (at) ifi (dot) uzh (dot) ch

Antonio Loquercio
loquercio (at) ifi (dot) uzh (dot) ch



Prerequisites

* Linear algebra
* Matrix calculus

* No prior knowledge of computer vision and image processing
required



Grading and Exam

The final grade is based on the oral exam (30 minutes)

In addition, strong class participation can offset negative performance at the
oral exam.

Optional mini project: you have the option (not mandatory) to do a mini
project, which consists of implementing a working visual odometry algorithm in
Matlab. If the algorithm runs properly producing a reasonable result, you will be
rewarded with an up to 0.5 grade increase on the final grade. However, notice
that the mini project can be quite time consuming! The deadline to hand the
mini project is 07.01.2018. Group work (up to 4) possible.



Class Participation

e C(Class participation includes
— showing up
— being able to articulate key points from last lecture



Today’s Class

* About me

 What is Computer Vision?

* Example of Vision Applications
e Specifics of this course

* Overview of Visual Odometry



What is Visual Odometry (VO) ?

VO is the process of incrementally estimating the pose of the vehicle by
examining the changes that motion induces on the images of its onboard

cameras
input output

Image sequence (or video stream)
from one or more cameras attached to a moving vehicle
RU! Rl! ’ Rl
tU! tlr ) tl

Camera trajectory (3D structure is a plus)




Why VO?

» Contrary to wheel odometry, VO is not affected by wheel slippage on uneven
terrain or other adverse conditions.

» More accurate trajectory estimates compared
to wheel odometry (relative position error 0.1% - 2%

» VO can be used as a complement to
= wheel encoders (wheel odometry)
= GPS

inertial measurement units (IMUs)

laser odometry

"N RTK GPS
S [N Misual Odometry

z(m)
(=)

» Crucial for flying, walking, and
underwater robots



Assumptions

> Sufficient illumination in the environment

> Dominance of static scene over moving objects

> Enough texture to allow apparent motion to be extracted
> Sufficient scene overlap between consecutive frames

' i Tt
Lt W . S .'.;;7. ‘
e 2 - e
B, -

SN |
Is any of these scenes good for VO? Why?

¢ S\ 3



A Brief history of VO

» 1980: First known VO real-time implementation on a robot by Hans Moraveck PhD
thesis (NASA/JPL) for Mars rovers using one sliding camera (sliding stereo).




A Brief history of VO

» 1980: First known VO real-time implementation on a robot by Hans Moraveck PhD
thesis (NASA/JPL) for Mars rovers using one sliding camera (sliding stereo).

» 1980 to 2000: The VO research was dominated by NASA/JPL in preparation of the
2004 mission to Mars

» 2004: VO was used on a robot on another planet: Mars rovers Spirit and Opportunity
(see seminal paper from NASA/JPL, 2007)

» 2004. VO was revived in the academic environment
by David Nister’s «Visual Odometry» paper.
The term VO became popular.

Davide Scaramuzza — University of Zurich — Robotics and Perceptices


https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi8_ufr-6DPAhURkRQKHclVCfcQFggcMAA&url=https://www-robotics.jpl.nasa.gov/publications/Mark_Maimone/rob-06-0081.R4.pdf&usg=AFQjCNESCPJ04fnuKuoGvk2N1QnUwr-Z4w&sig2=JweSv5bBU1U7w6kanVTxpw&bvm=bv.133387755,d.bGg

More about history and tutorials

»Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part | - The First 30 Years and
Fundamentals, IEEE Robotics and Automation Magazine, Volume 18, issue 4, 2011.

» Fraundorfer, F., Scaramuzza, D., Visual Odometry: Part Il - Matching, Robustness, and
Applications, IEEE Robotics and Automation Magazine, Volume 19, issue 1, 2012.

»C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I.D. Reid, J.J. Leonard,
Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-
Perception Age, IEEE Transactions on Robotics, Vol. 32, Issue 6, 2016.


http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/VO_Part_II_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_cadena.pdf

VO vs VSLAM vs SFM

SFM

Davide Scaramuzza — University of Zurich — Robotics and Perception Group - rpg.ifi.uzh.ch



Structure from Motion (SFM)

SFM is more general than VO and tackles the problem of 3D
reconstruction and 6DOF pose estimation from unordered image sets

Reconstruction from 3 million images from Flickr.com
Cluster of 250 computers, 24 hours of computation!
Paper: “Building Rome in a Day”, ICCV’09



VO vs SFM

» VO is a particular case of SFM

» VO focuses on estimating the 3D motion of the camera
sequentially (as a new frame arrives) and in real time.

» Terminology: sometimes SFM is used as a synonym of VO



VO vs. Visual SLAM

> Visual Odometry E N

consistency -

> Visual SLAM: Simultaneous Localization And B8 VU RO WO NN O SO W
Mapping Visual odometry

= Focus on globally consistent estimation

= Visual SLAM = visual odometry + loop detection
+ graph optimization

R T S
: B f
E 20

» The choice between VO and V-SLAM depends on
the tradeoff between performance and
consistency, and simplicity of implementation. __,r_—u

» VO trades off consistency for real-time Viésua| SLAM | |

performance, without the need to keep track of all
the previous history of the camera.

Image courtesy from [Clemente et al., RSS’07]



VO Working Principle

Compute the relative motion T}, from images [,_4 to image I},

=

Rik-1 Crp-
Tkzlk,(l)cl k,11<1

2. Concatenate them to recover the full trajectory

Cp=Cph1Ty

3.  An optimization over the last m poses can be done to refine locally
the trajectory (Pose-Graph or Bundle Adjustment)

m — poses windowed bundle adjustment



How do we estimate the relative motion T}, ?

Tk: arngin././ﬁp []k (:T(T.yr—l(u?du))) —Ikl(u)] dua



Direct Image Alignment

/;\‘l

It minimizes the per-pixel intensity difference [1]

Tk k-1 = arngin ; I (u'y) — Le—s (u)le

Dense Semi-Dense Sparse

DTAM [Newcombe et al. ‘11] LSD [Engel et al. 2014] SVO [Forster et al. 2014]
300’000+ pixels ~10’000 pixels 100-200 features x 4x4 patch
~ 2,000 pixels

D. Cremers, Direct methods for 3D reconstruction and visual SLAM, International Conference on Machine
Vision Applications, 2017, PDFE



http://ieeexplore.ieee.org/abstract/document/7986766/?reload=true

Direct Image Alignment

0

It minimizes the per-pixel intensity difference [1]
Tigr = argmin ) 1) = Ly (u)II3
i

Dense Semi-Dense Sparse

00:00:00.040 [l

SVO with a single camera on Euroc dataset

Live incremental reconstruction of a large scene

Texture mapped model Inverse depth solution fv
G o ok
DTAM [Newcombe ‘11] REMODE [Pizzoli’14] LSD-SLAM [Engel’14] SVO [Forster’14]
300’000+ pixels ~10,000 pixels 100-200 x 4x4 patches = 2,000 pixels

D. Cremers, Direct methods for 3D reconstruction and visual SLAM, International Conference on Machine
Vision Applications, 2017, PDFE


http://ieeexplore.ieee.org/abstract/document/7986766/?reload=true

VO Flow Chart

VO computes the camera path incrementally (pose after pose)

Image sequence

Feature detection Front-end

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D
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VO computes the camera path incrementally (pose after pose)
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VO Flow Chart

VO computes the camera path incrementally (pose after pose)

Image sequence

Feature detection Front-end

Feature matching (tracking)

Motion estimation
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Course Topics

* Principles of image formation

* I[mage Filtering

* Feature detection and matching
* Multi-view geometry

* Visual place recognition

* Event-based Vision

* Dense reconstruction

* Visual inertial fusion



Course Topics
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* Principles of image formation l
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Course Topics

* Feature detection and matching




Course Topics

* Multi-view geometry and 3D reconstruction




Course Topics

* Multi-view geometry and 3D reconstruction

San Marco square, Venice
14,079 images, 4,515,157 points
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e Dense reconstruction
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Course Topics

e Dense reconstruction

Monocular dense reconstruction
in real-time from a hand-held camera

M. Pizzoli, C. Forster, D. Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA'14



Course Topics

* Visual place recognition
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Course Topics

* Visual place recognition

Query
image

N}

Most similar places from a database of millions of images
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* Visual-inertial fusion

IMU Measurements
Camera Frames

'
't
!

3D Landmark
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e Event-based vision

A
v

standard
camera
output:
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Course Topics

* Visual odometry

Time s:: 18.98
FPS: 46.62
Updates: 23
Inliers: M

Path length im: 5.1

Position im:: 0.01, 1.08, -0.07

Dist. to origin m" L1 (216 % of path)
Status: 3




