
A Novel Parametrization of the Perspective-Three-Point Problem for a Direct
Computation of Absolute Camera Position and Orientation

Laurent Kneip
laurent.kneip@mavt.ethz.ch

Davide Scaramuzza
davide.scaramuzza@mavt.ethz.ch

Roland Siegwart
rsiegwart@ethz.ch

Autonomous Systems Lab, ETH Zurich

Abstract

The Perspective-Three-Point (P3P) problem aims at de-
termining the position and orientation of the camera in the
world reference frame from three 2D-3D point correspon-
dences. This problem is known to provide up to four solu-
tions that can then be disambiguated using a fourth point.
All existing solutions attempt to first solve for the position
of the points in the camera reference frame, and then com-
pute the position and orientation of the camera in the world
frame, which alignes the two point sets. In contrast, in
this paper we propose a novel closed-form solution to the
P3P problem, which computes the aligning transformation
directly in a single stage, without the intermediate deriva-
tion of the points in the camera frame. This is made pos-
sible by introducing intermediate camera and world refer-
ence frames, and expressing their relative position and ori-
entation using only two parameters. The projection of a
world point into the parametrized camera pose then leads
to two conditions and finally a quartic equation for finding
up to four solutions for the parameter pair. A subsequent
backsubstitution directly leads to the corresponding cam-
era poses with respect to the world reference frame. We
show that the proposed algorithm offers accuracy and pre-
cision comparable to a popular, standard, state-of-the-art
approach but at much lower computational cost (15 times
faster). Furthermore, it provides improved numerical sta-
bility and is less affected by degenerate configurations of
the selected world points. The superior computational ef-
ficiency is particularly suitable for any RANSAC-outlier-
rejection step, which is always recommended before apply-
ing PnP or non-linear optimization of the final solution.

1. Introduction
The Perspective-n-Point (PnP) problem is originated

from camera calibration [1, 10, 17, 28]. Also known as
pose estimation, it aims at retrieving the position and ori-
entation of the camera with respect to a scene object from

n corresponding 3D points. This problem has found many
applications in computer animation [30], computer vision
[16], augmented reality, automation, image analysis, auto-
mated cartography [10], photogrammetry [1, 24], robotics
[35], and model-based machine vision systems [34]. In
1981, Fischler and Bolles [10] summarized the problem as
follows: Given the relative spatial locations of n control
points, and given the angle to every pair of control points
Pi from an additional point called the center of perspective
C, find the lengths of the line segments joining C to each of
the control points. The next step then consists of retrieving
the orientation and translation of the camera with respect to
the object reference frame.

The Direct Linear Transformation was first developed by
photogrammetrists [31] as a solution to the PnP problem—
when the 3D points are in a general configuration—and
then introduced in the computer vision community [7, 16].
When the points are coplanar, the homography transforma-
tion can be exploited [16] instead.

In this paper, we address the particular case of PnP for
n = 3. This problem is also known as Perspective-Three-
Point (P3P) problem. The P3P is the smallest subset of con-
trol points that yields a finite number of solutions. When the
intrinsic camera parameters are known and we have n ≥ 4
points, the solution is generally unique.

The P3P problem was first investigated in 1841 by
Grunert [14] and in 1903 by Finsterwalder [8], who noticed
that for a calibrated camera there can be up to four solu-
tions, which can then be disambiguated using a fourth point.
In the literature, there exist many solutions to this prob-
lem, which can be classified into iterative, non-iterative, lin-
ear, and non-linear ones. In 1991, Haralick et al. [15] re-
viewed the major direct solutions up to 1991, including the
six algorithms given by Grunert (1841) [14], Finsterwalder
(1903)—as summarized by Finsterwalder and Scheufele in
[8]—, Merritt (1949) [25], Fischler and Bolles (1981) [10],
Hung et al. (1985) [20], Linnainmaa et al. (1988) [23],
and Grafarend et al. (1989) [13], respectively. They also
gave the analytical solution for the P3P problem with re-

1

sultant computation. Different solutions to the P3P prob-
lem have been later proposed by Quan and Lan (1999) [28]
and Gao et al. (2003) [12]. A different approach—but
for non-single-viewpoint cameras—was proposed by Nis-
ter and Stewenius in 2006 [27].

It is important to remark here that P3P is the most basic
case of the PnP problem. All PnP problems include the
P3P problem as a special case. Among those that handle
arbitrary values of n are those of Fischler and Bolles (1981)
[10], Dhome et al. (1989) [6], Horaud et al. (1989) [17],
Haralick et al. (1991) [15], DeMenthon and Davis (1995)
[4, 5], Quan and Lan (1999) [28], Triggs (1999) [32], Fiore
(2001) [9], Ansar and Daniilidis (2003) [2], and Lepetit et
al. (2009) [22]—this last one, in particular, also works for
deformable objects.

Applications such as feature-point-based camera track-
ing [29, 21], structure from motion, and visual odometry
[26] require dealing with hundreds or even thousands of
noisy feature points and outliers in real-time, which requires
computationally efficient methods. The standard approach
consists of first using P3P in a RANSAC scheme [10]—in
order to remove the outliers—and then PnP on all remain-
ing inliers. If necessary, a further non-linear optimization
can also be applied to refine the final solution.

All existing P3P algorithms cited above first estimate the
distances ‖CPi‖ between the camera center C and the 3D
points Pi from constraints given by the triangles CPiPj
(see Fig. 1). Once the distances are known, the Pi are
expressed in the camera frame as P νi . Then, the orienta-
tion and translation [R|t] of the camera in the world ref-
erence frame is taken to be the transformation that aligns
the points Pi on P νi and can be found in closed-form solu-
tion using quaternions [18] or singular value decomposition
(SVD) [3, 19, 33, 11]. Particularly in RANSAC, the trans-
formation into the world reference frame is a necessary step
as it allows us to compute the camera projection matrix,
which is then used—in combination with the reprojection
error—to validate the RANSAC hypotheses.

In contrast to all previous approaches, in this paper we
provide a closed-form solution for the P3P problem, which
computes directly the position and orientation (i.e., [R|t])
of the camera in the world reference frame as a function of
the image coordinates and the coordinates of the reference
points in the world frame. To the best of our knowledge, this
is the first work in this endeavor. The performance of the
proposed algorithm will be evaluated against Gao-et-al.’s
[12] implementation, which is one of the most popular and
robust P3P solvers. The main advantage of the direct com-
putation of [R|t] is its superior computational efficiency. In
the first stage, we avoid determining the points in the cam-
era reference frame, and in the second stage, the aligning
transformation—which would require SVD [33, 11]. As
we will show in the results section, our algorithm is 15

times faster than Gao’s and requires only 2 microseconds
on a 2.8Ghz Dual Core laptop, which scales very well for
RANSAC implementations. The second advantage is its
superior numerical stability and robustness with respect to
Gao’s solution.

The structure of the paper is as follows. Section 2
presents the derivations that lead to the new solution of the
P3P algorithm for retrieving the camera position and ori-
entation directly. Section 3 provides a thorough analysis
of the algorithm’s performance, including numerical stabil-
ity, computational cost, accuracy, and precision. The results
will be compared to Gao’s implementation [12]. Section 4,
finally, concludes the work.

2. Theory

We consider the problem illustrated in Fig. 1. The goal
is to find the exact position C and orientation matrix R of a
camera with respect to the world frame (O,X, Y, Z), under
the condition that the absolute spatial coordinates of three
observed feature points P1, P2, and P3 are given. We fur-
thermore assume that the intrinsic camera parameters are
known. Hence, we can assume that the unitary vectors ~f1,
~f2, and ~f3—pointing towards the three considered feature
points from the camera frame—are given.

Figure 1. Synopsis of the problem.

Let us denote the original camera frame with ν. The first
step involves the definition of a new, intermediate camera
frame τ from the feature vectors ~f1 and ~f2 inside ν. As
shown in Fig. 2, the new camera frame is defined as τ =
(C,~tx,~ty,~tz), where

~tx = ~f1

~tz =
~f1 × ~f2

||~f1 × ~f2||
~ty = ~tz × ~tx.

Figure 2. Illustration of the intermediate camera frame
τ = (C,~tx,~ty,~tz) and the intermediate world frame
η = (P1, ~nx, ~ny, ~nz).

Via the transformation matrix T = [~tx,~ty,~tz]T , feature
vectors can then be transformed into τ using

~fτi = T · ~fi. (1)

If we are able to define the orientation of τ with respect
to the world frame, the orientation of ν is obviously also
given using T .

The second step involves the definition of a new world
frame η from the world points P1, P2, and P3. The new
spatial frame is defined as η = (P1, ~nx, ~ny, ~nz), where

~nx =

−→
P1P2

||
−→
P1P2 ||

~nz =
~nx×

−→
P1P3

||~nx×
−→
P1P3 ||

~ny = ~nz × ~nx.

Via the transformation matrix N = [~nx, ~ny, ~nz]T , world
points can finally be transformed into η using

P ηi = N · (Pi − P1). (2)

Again, if we are able to define the orientation of τ with
respect to η, the orientation of τ is given automatically in-
side the world frame via N , and thus via T also the orien-
tation of ν. A similar matter accounts for the camera center
C that is—if defined inside η—recovered inside the world
frame via a straightforward linear transformation. The re-
sulting situation is illustrated in Fig. 2. The condition of
existance of η is that P1, P2, and P3 are not colinear. This

can be easily avoided by verifying that
−→
P1P2 ×

−→
P1P3 is not

zero.

In the following, we will focus on the transformation be-
tween η and τ . We define the semi-plane Π that contains
points P1, P2, and C, and hence also the unitary vectors ~nx,
~tx, ~ty , ~f1, and ~f2, as shown in Fig. 3. Points P1, P2, and C
form a triangle of which two parameters are known, namely
the distance d12 between P1 and P2, and the angle β be-
tween ~f1 and ~f2. The latter can be easily obtained via the
dot-product cosβ = ~f1 · ~f2. Since the later parametrization
will only depend on cotβ, we define

b = cotβ = ±
r

1

1− cos2 β
− 1 = ±

s
1

1− (~f1 · ~f2)2
− 1.

(3)
The sign of b is given by the sign of cosβ. We define the

free parameter α ∈ [0;π] as the angle ∠P2P1C. Using the
sine-law, we obtain

||
−→
CP1 ||
d12

=
sin(π − α− β)

sinβ
.

The position of the camera center C inside the plane Π
is then given by

CΠ(α) =

cosα · ||
−→
CP1 ||

sinα · ||
−→
CP1 ||

0


=

d12 cosα sin(α+ β) sin−1 β
d12 sinα sin(α+ β) sin−1 β

0


=

d12 cosα(sinα cotβ + cosα)
d12 sinα(sinα cotβ + cosα)

0



Figure 3. Semi-plane Π containing the triangle (P1, P2, C). The
blue trajectory indicates the possible locations of the camera centre
C depending on the free parameter α, and the fixed parameters d12

and β.

⇒ CΠ(α) =

d12 cosα(sinα · b+ cosα)
d12 sinα(sinα · b+ cosα)

0

 . (4)

The basis vectors of τ inside Π are easily given with
~tΠ
x = (− cosα,− sinα, 0)T , ~tΠ

y = (sinα,− cosα, 0)T ,
and ~tΠ

z = (0, 0, 1)T .
In order to have C, ~tx, ~ty , and ~tz expressed inside η, we

need to take into account a second free parameter, namely
the rotation θ of Π around ~nx, as illustrated in Fig. 4. The
corresponding rotation matrix is given by

Rθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

Note that θ ∈ [0;π] if fτ3,z < 0, and θ ∈ [−π; 0] if
fτ3,z > 0, where ~fτ3 is obtained from ~f3 via (1). This con-
straint is given very intuitively by the condition that ~f3 and
P3 need to lie on the same side of Π. It follows that the
camera center C inside η is given with

Cη(α, θ) = Rθ · CΠ

=

 d12 cosα(sinα · b+ cosα)
d12 sinα cos θ(sinα · b+ cosα)
d12 sinα sin θ(sinα · b+ cosα)

 ,

(5)

and the transformation matrix from η to τ is given by

Q(α, θ) =
[
Rθ ·

(
~tΠ
x
~tΠ
y
~tΠ
z

)]T
=

− cosα − sinα cos θ − sinα sin θ
sinα − cosα cos θ − cosα sin θ

0 − sin θ cos θ

 .

(6)

Figure 4. Rotation of the plane Π around ~nx by the angle θ.

The two conditions for finding the correct values of the
parameters α and θ are then established by transforming
the third point P η3 into τ , and imposing that the direction of
this point is equal to the one of ~fτ3 . Respecting that P η3 =
(p1, p2, 0)T , we obtain

P τ3 = Q(α, θ) · (P η3 − Cη(α, θ))

=

0@− cosα · p1 − sinα cos θ · p2 + d12(sinα · b+ cosα)
sinα · p1 − cosα cos θ · p2

− sin θ · p2

1A .

(7)

After defining

φ1 =
fτ3,x
fτ3,z

and φ2 =
fτ3,y
fτ3,z

, (8)

the two conditions finally result in

φ1 = P τ3,x
P τ3,z

φ2 = P τ3,y
P τ3,z

⇔

{
φ1 = − cosα·p1−sinα cos θ·p2+d12(sinα·b+cosα)

− sin θ·p2
φ2 = sinα·p1−cosα cos θ·p2

− sin θ·p2

⇔

{
sin θ
sinαp2 = − cotα·p1−cos θ·p2+d12(b+cotα)

−φ1
sin θ
sinαp2 = p1−cotα cos θ·p2

−φ2

⇒ cotα =
φ1
φ2
p1 + cos θ · p2 − d12 · b
φ1
φ2

cos θ · p2 − p1 + d12

. (9)

Furthermore, we have

φ2 =
P τ3,y
P τ3,z

⇔ sin2 θ · f2
2 p

2
2 = sin2 α(p1 − cotα cos θ · p2)2

⇔ (1− cos2 θ)(1 + cot2 α)f2
2 p

2
2

= p2
1 − 2 cotα cos θ · p1p2 + cot2 α cos2 θ · p2

2.

(10)

Replacing (9) in (10), expanding, and collecting then
easily leads to a fourth order polynomial of the form

a4·cos4 θ+a3·cos3 θ+a2·cos2 θ+a1·cos θ+a0 = 0, (11)

where,

a4 = −φ2
2p

4
2 − φ2

1p
4
2 − p4

2

a3 = 2p3
2d12b+ 2φ2

2p
3
2d12b− 2φ1φ2p

3
2d12

a2 = −φ2
2p

2
1p

2
2 − φ2

2p
2
2d

2
12b

2 − φ2
2p

2
2d

2
12 + φ2

2p
4
2

+φ2
1p

4
2 + 2p1p

2
2d12 + 2φ1φ2p1p

2
2d12b

−φ2
1p

2
1p

2
2 + 2φ2

2p1p
2
2d12 − p2

2d
2
12b

2 − 2p2
1p

2
2

a1 = 2p2
1p2d12b+ 2φ1φ2p

3
2d12

−2φ2
2p

3
2d12b− 2p1p2d

2
12b

a0 = −2φ1φ2p1p
2
2d12b+ φ2

2p
2
2d

2
12 + 2p3

1d12

−p2
1d

2
12 + φ2

2p
2
1p

2
2 − p4

1 − 2φ2
2p1p

2
2d12

+φ2
1p

2
1p

2
2 + φ2

2p
2
2d

2
12b

2.

Up to four real solutions for cos θ are then obtained by
simply applying Ferrari’s closed form solution for finding
the roots of a fourth order polynomial. Via replacement in
(9), each value for cos θ will then also lead to exactly one
value for cotα. Each real (α, θ)-pair is then backsubstituted
into (5) and (6), and the camera center and orientation with
respect to the world reference frame are finally given as

C = P1 +NT · Cη (12)

and

R = NT ·QT · T. (13)

Note that a proper implementation of the algorithm ex-
cludes the use of any computationally expensive trigono-
metric functions. Using the restricted domains of parame-
ters α and θ, all appearing trigonometric forms of the pa-
rameters can be directly derived from cotα and cos θ us-
ing simple trigonometric relationships. Furthermore, dur-
ing the tests we observed that, due to noise, we sometimes
get complex solutions with small imaginary parts instead of
real ones. In this case, it is better to retain the real part of
these solutions instead of ignoring them completely.

The full procedure may be summarized as follows:

• compute the transformation matrix T and the feature
vector ~fτ3 using (1)

• compute the transformation matrix N and the world
point P η3 using (2)

• extract p1 and p2 from P η3

• compute d12 and b using (3)

• compute φ1 and φ2 using (8)

• compute the factors a4, a3, a2, a1, and a0 of polyno-
mial (11)

• find the real roots of the polynomial (values for cos θ)

• for each solution, find the values for cotα using (9)

• compute all necessary trigonometric forms of α and
θ using trigonometric relationships and the restricted
parameter domains

• for each solution, computeCη andQ using (5) and (6),
respectively

• for each solution, compute the absolute camera center
C and orientation R using (12) and (13), respectively

• backproject a fourth point for disambiguation

Please note that the final version of the Matlab- and C++-
implementations used during the experiments can be down-
loaded at

• http://www.laurentkneip.de

3. Results

The algorithm presented in Section 2 has been thor-
oughly tested by means of synthetic data, and compared to
Gao’s [12] solution to the P3P-problem. The code for the
comparison algorithm is available online. In order to have
a fair comparison, Gao’s solution for finding the three dis-
tances between the camera centerC and the world points Pi
has been extended by Arun’s method [3] to find the aligning
transformation between the two point sets. This is needed in
order to derive the absolute position and orientation of the
camera frame from the relative position of the three points,
and thus obtain comparable entities. Gao’s method, obvi-
ously, also returns up to four possible solutions. For both al-
gorithms, the disambiguation of the four possible solutions
has been done using the same fourth point, and exactly the
same method.

The synthetic data consists of 1’000 3D points that are
uniformly distributed in a volume of 4×4×4, centered
around the origin of the world frame. The position of the
camera is fixed at C =

(
0 0 6

)T
, and the orientation is

kept at R =

1 0 0
0 −1 0
0 0 −1

, thus perfectly downlooking.

For each experimental run, synthetic 2D-3D correspon-
dences are created by randomly selecting three points from
the entire point set, and projecting them into image space
using a virtual calibrated camera with resolution 640×480,
principal point (uc, vc) = (320, 240), and effective focal
lengths fu = fv = 800. Depending on the experiment, a
different level of white Gaussian noise ranging from 0 to
5 pixels is then added to the 2D coordinates before finally
reprojecting the features on the unit sphere.

3.1. Numerical stability

To analyse the numerical stability of the proposed algo-
rithm, we perform 50’000 runs without any noise added to
the 2D coordinates. The results are shown in Fig. 5. It can
be observed that the distribution of the numerically-caused
imprecisions provide a significantly higher concentration
around the smallest errors for our new solution in compar-
ison to Gao’s standard solution. Note that the range of the
y-scale had to be cropped for a proper visualization. The ac-
tual peak value for our new solution lies around 8’000. The
range of the x-scale is also cropped, meaning that Gao’s so-
lution is quite uniform and the number of votes decreases
only slowly toward higher error values.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−13

0

500

1000

1500

2000

2500

3000

error in x

proposed solution
Gao’s solution

Figure 5. Numerical stability of the proposed algorithm and Gao’s
solution.

3.2. Computational complexity

This experiment targets the evaluation of the computa-
tional cost of both approaches. In order to have a fair com-
parison, both algorithms have been implemented in C++.
The experiment consists of 1’000 runs, where one run com-
prises 1’000 evaluations of the same set of 3D world points.
Measuring the time of 1’000 executions instead of only one
allows us to obtain a relatively precise value for the exe-
cution time not suffering from any quantization errors, or
errors caused by any other computational overhead. The re-
sults are shown in Fig. 6. The difference in the execution
time is significant, which is mainly due to the fact that the
proposed solution directly computes the absolute position
and orientation instead of having to rely on a least squares
solution for the point set alignment in a postprocessing step.
The proposed solution is 15 times faster than Gao’s solu-
tion, and takes only 2 microseconds to be executed on a
2.8GHz Dual Core laptop.

3.3. Noise sensitivity

This last experiment evaluates the effects of noise on the
accuracy and precision of the computation, that is, mean
and standard deviation of the absolute value of the trans-

1.5 2 2.5 3

x 10
−6

0

100

200

300

400

500

600

execution time [s]

proposed solution

3 3.5 4 4.5 5

x 10
−5

0

100

200

300

400

500

600

700

800

900

execution time [s]

Gao’s solution

Figure 6. Average execution time of the proposed algorithm and
Gao’s standard solution.

lational and rotational errors. 1’000 runs have been per-
formed for different Gaussian noise levels ranging from 0
to 5 pixels, and the results are shown in Fig. 7. This figure
shows that mean and standard deviation for both methods
behave in a very similar way, and increase almost linearly
with the noise level. One exception is given with the trans-
lational error of Gao’s method, where several peaks appear
in the mean and standard deviation for increased noise lev-
els. This behavior is caused by single outlier results with
very high error. The fact that our algorithm does not show
these peaks shows that it is more stable in degenerate con-
figurations than Gao’s standard solution.

4. Conclusion
In this paper, we proposed a new method for solving the

P3P-problem as a direct computation of the absolute camera
position and orientation, which is novel in the domain. The
derivations are easy to understand, and the final algorithm is
more lightweight than existing P3P-solutions since it does
not depend on any postprocessing step for the alignment of
two point sets. It leads to a comparable accuracy and pre-
cision at a substantially lower computational cost. Further-
more, the algorithm has improved numerical stability, and
is affected less by degenerate configurations of the selected
world points. It represents a very compact algorithm, par-
ticularly suitable for any RANSAC-outlier-rejection step,
which is always recommended before applying PnP or non-
linear optimization of the final solution.

References
[1] M. Abidi and T. Chandra. A new efficient and direct solution

for pose estimation using quadrangular targets: Algorithm
and evaluation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(5):534–538, 1995. 1

Translation Error Mean Translation Error Std. Dev. Rotation Error Mean Rotation Error Std. Dev.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pixel noise

x
er

ro
r

m
ea

n

proposed solution
Gao’s solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

pixel noise

x
er

ro
r

st
d.

 d
ev

.

proposed solution
Gao’s solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

pixel noise

ro
ll

an
gl

e
er

ro
r

m
ea

n
[r

ad
]

proposed solution
Gao’s solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

pixel noise

ro
ll

an
gl

e
er

ro
r

st
d.

 d
ev

. [
ra

d]

proposed solution
Gao’s solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pixel noise

y
er

ro
r

m
ea

n

proposed solution
Gao’s solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

pixel noise

y
er

ro
r

st
d.

 d
ev

.

proposed solution
Gao’s solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

pixel noise

pi
tc

h
an

gl
e

er
ro

r
m

ea
n

[r
ad

]

proposed solution
Gao’s solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

pixel noise

pi
tc

h
an

gl
e

er
ro

r
st

d.
 d

ev
. [

ra
d]

proposed solution
Gao’s solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pixel noise

z
er

ro
r

m
ea

n

proposed solution
Gao’s solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

pixel noise

z
er

ro
r

st
d.

 d
ev

.

proposed solution
Gao’s solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

pixel noise

ya
w

 a
ng

le
 e

rr
or

 m
ea

n
[r

ad
]

proposed solution
Gao’s solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

pixel noise

ya
w

 a
ng

le
 e

rr
or

 s
td

. d
ev

. [
ra

d]

proposed solution
Gao’s solution

Figure 7. Mean error and standard deviation of position and orientation of the camera for the proposed solution and Gao’s standard solution.
Results are obtained over 1000 runs and in function of the pixel noise.

[2] A. Ansar and K. Daniilidis. Linear pose estimation from
points or lines. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(5):578–589, 2003. 2

[3] K. Arun, T. Huang, and S. Blostein. Least-squares fitting of
two 3-d points sets. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 9(5):698–700, 1987. 2, 5

[4] D. De Menthon and L. Davis. Exact and approximate
solutions of the perspective-three-point problem. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
14(11):1100–1105, 1992. 2

[5] D. De Menthon and L. Davis. Model-based object pose in
25 lines of code. International Journal of Computer Vision,
15:123–141, 1995. 2

[6] M. Dhome, M. Richetin, and J. Lapreste. Determination of
the attitude of 3D objects from a single perspective view.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 11(12):1265–1278, 1989. 2

[7] O. Faugeras. Three-Dimensional Computer Vision: A Geo-
metric Viewpoint. MIT Press, Cambridge, MA, USA, 1993.
1

[8] S. Finsterwalder and W. Scheufele. Das
Rückwärtseinschneiden im Raum. Verlag Herbert Wich-
mann, Berlin, Germany, 1937. 1

[9] P. Fiore. Efficient linear solution of exterior orientation.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 23(2):140–148, 2001. 2

[10] M. A. Fischler and R. C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image anal-
ysis and automated cartography. Commun. ACM, 24(6):381–
395, 1981. 1, 2

[11] W. Gander. Least squares fit of point clouds. Solving Prob-
lems in Scientific Computing using MAPLE and MATLAB,
pages 339–349, 2004. 2

[12] X. Gao, X. Hou, J. Tang, and H. Cheng. Complete solution
classification for the perspective-three-point problem. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
25(8):930–943, 2003. 2, 5

[13] E. Grafarend, P. Lohse, and B. Schaffrin. Dreidimension-
aler Rückwärtsschnitt, Teil 1: Die projektiven Gleichun-
gen. Zeitschrift für Vermessungswesen, Geodätisches Insti-
tut, Universität Stuttgart, pages 1–37, 1989. 1

[14] J. A. Grunert. Das pothenotische Problem in erweiterter
Gestalt nebst über seine Anwendungen in Geodäsie. In
Grunerts Archiv für Mathematik und Physik, 1841. 1

[15] R. Haralick, C. Lee, K. Ottenberg, and M. Nolle. Analysis
and solutions of the three point perspective pose estimation
problem. In IEEE International Conference on Computer
Vision and Pattern Recognition, Maui, USA, 1991. 1, 2

[16] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, New York,
NY, USA, second edition, 2004. 1

[17] R. Horaud, B. Conio, and O. Leboulleux. An analytic solu-
tion for the perspective 4-point problem. Computer Vision,
Graphics, and Image Processing, 47:32–44, 1989. 1, 2

[18] B. Horn. Closed-form solution of absolute orientation using
unit quaternions. Journal of the Optical Society of America,
4:629–642, 1987. 2

[19] B. Horn, H. Hilden, and S. Negahdaripour. Closed-form
solution of absolute orientation using orthonormal matrices.
Journal of the Optical Society of America, 5(7):1127–1135,
1988. 2

[20] Y. Hung, P. Yeh, and D. Harwood. Passive ranging to known
planar point sets. In IEEE International Conference on
Robotics and Automation, San Francisco, CA, USA, 1986.
1

[21] V. Lepetit and P. Fua. Keypoint recognition using random-
ized trees. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 28(9):1465–1479, 2006. 2

[22] V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An accurate
O(n) solution to the pnp problem. International Journal of
Computer Vision, 81(2):578–589, 2009. 2

[23] S. Linnainmaa, D. Harwood, and L. Davis. Pose estima-
tion of a three-dimensional object using triangle pairs. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
10(5):634–647, 1988. 1

[24] C. McGlove, E. Mikhail, and J. Bethel. Manual of pho-
togrametry. American society for photogrammetry and re-
mote sensing, Bethesda, Maryland, USA, fifth edition, 2004.
1

[25] E. Merritt. Explicit three-point resection in space. Pho-
togrammetric Engineering, 15(4):649–655, 1949. 1

[26] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry
for ground vehicle applications. Journal of Field Robotics,
23(1), 2006. inaugural issue. 2

[27] D. Nistér and H. Stewenius. A minimal solution to the gener-
alized 3-point pose problem. Journal of Mathematical Imag-
ing and Vision, 27(1):67–79, 2006. 2

[28] L. Quan and Z. Lan. Linear n-point camera pose determi-
nation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(8):774–780, 1999. 1, 2

[29] I. Skrypnyk and D. Lowe. Scene modelling, recognition and
tracking with invariant image features. In International sym-
posium on mixed and augmented reality, Washington, DC,
USA, 2004. 2

[30] C. Su, Y. Xu, H. Li, and S. Liu. Application of Wu’s method
in computer animation. In Fifth International Conference on
CAD/CG, Shenzhen, China, 1997. 1

[31] I. Sutherland. Sketchpad: A man machine graphical commu-
nications system, 1963. Technical Report 296, MIT Lincoln
Laboratories. 1

[32] B. Triggs. Camera pose and calibration from 4 or 5 known
3D points. In IEEE International Conference on Computer
Vision, Kerkyra, Greece, 1999. 2

[33] S. Umeyama. Least-squares estimation of transformation pa-
rameters between two point patterns. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 13(4):376–380,
1991. 2

[34] W. Wolfe, D. Mathis, C. Weber, and M. Magee. The per-
spective view of three points. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(1):66–73, 1991. 1

[35] J. Yuan. A general photogrammetric method for determin-
ing object position and orientation. IEEE Transactions on
Robotics and Automation, 5(2):129–142, 1989. 1

