
Lucas - Kanade Tracking

This laboratory session is about the local tracking algorithm proposed by Lucas and Kanade
in [2]. We will follow the nine steps presented in slides 59 and 65 (of 79) of the lecture notes, which
are extracted from the detailed description of the tracking algorithm in [1] (shown in Figs. 1 and 2).

Figure 1: Fig. 1 in reference [1].

The provided MATLAB code consists of two files, which are adapted from those written by D.
Kroon (Univ. of Twente):

• LucasKanadeAffine.m : a function that implements a template tracker for one image given a
template and an initial estimate of the warping parameters.

• TTdemo.m : a script that loads a dataset (movie), selects several rectangles in the first image as
templates and tracks them across the image sequence by calling to the function LucasKanadeAffine.m
(one time per frame and template).

In this exercise you are required to complete the code in function LucasKanadeAffine.m. In the
end, by running the script TTdemo.m, the results of the implemented tracker should be similar to
those displayed in Fig. 3, where four templates are tracked across an image sequence.

Recall that the Lucas-Kanade tracker optimizes the warping parameters p between a template
and an image using a Gauss-Newton approach, which approximates the error function locally by a
quadratic model and then finds its minimizer. Since the approximate error model is quadratic, its

1

http://rpg.ifi.uzh.ch/docs/teaching/2016/11_tracking.pdf


Robotics and Perception Group,
University of Zurich.

Figure 2: Fig. 2 in reference [1].

2



Robotics and Perception Group,
University of Zurich.

Figure 3: Results of tracking four templates (each of them displayed with a different color) across
the image sequence, which is displayed in temporal order, from left to right and from top to bottom.

first derivative (i.e., gradient) is linear, and so the minimizer, obtained by setting to zero the first
derivative of the model, is given by a linear system of equations. In our case, the linear system is(∑

x∈T

(
∇I ∂W

∂p

)>(
∇I ∂W

∂p

))
︸ ︷︷ ︸

H

∆p =
∑
x∈T

(
∇I ∂W

∂p

)>
(T (x)− I(W (x;p)))︸ ︷︷ ︸
b

, (1)

that is, more compactly, H ∆p = b, where H is the so-called Hessian matrix. The solution of the
linear system, i.e., the computation of the update ∆p = H−1b (step 8 of Fig. 1) is the heart of the
method.

Fill in the missing code
Take a look at the files TTdemo.m and LucasKanadeAffine.m. You are asked to fill in the missing
code in function LucasKanadeAffine.m. These follow the nine steps in Fig. 1. Specifically, you have
to translate into code steps

• 2: Compute the error image by subtracting I(W (x;p)) from T (x).
I_error = ...;

• 3: Compute the warped gradient ∇I
(
W (x;p)

)
(horizontal and vertical component). Write

code similar to that provided in step 1 to compute the warped image I(W (x;p)):
I_warped = affine_transform_2d_double(I,x,y,W_xp);

• 6: Compute the Hessian matrix H

H =
∑
x∈T

(
∇I ∂W

∂p

)>(
∇I ∂W

∂p

)
,

where
(
∇I ∂W

∂p

)
for the j-th pixel x is stored in the the variable I_steepest(j,:).

3



Robotics and Perception Group,
University of Zurich. REFERENCES

• 7: Compute the right-hand-side vector of the linear system of equations

b =
∑
x∈T

(
∇I ∂W

∂p

)>
(T (x)− I(W (x;p))) ,

where
(
∇I ∂W

∂p

)
for the j-th pixel x is stored in the the variable I_steepest(j,:) and T (x)−

I(W (x;p)) is stored in the j-th component of I_error (computed in step 2). Vector b is
stored in variable sum_xy.

• 8: Compute ∆p by solving the linear system of equations (1). In MATLAB, the best method
to solve linear systems is to use the backslash command \. That is, to solve Ax = b, we use
the command x=A\b; See also:
>> doc mldivide

• Finally, copy the lines of code from steps 6, 7 and 8 to the corresponding lines after the ’else’
statement, which implement the optimization in the simple and commonly used type of affine
transformation: translations.

Run the script TTdemo.m, which is provided to test the Lucas-Kanade tracker. Feel free to select
different regions of the image as templates to be tracked and/or to change the parameter passed to
function LucasKanadeAffine, such as the number of iterations (translation, affine transformation),
the amount of smoothing of the derivatives, etc.

References
[1] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework. Int. J.

Computer Vision, 56(3):221–255, 2004.

[2] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an application
to stereo vision. In International Joint Conferences on Artificial Intelligence (IJCAI), pages 674–
679, 1981.

4


