Augmented reality wireframe cube

Contents
(1__Preliminaries 1
[L1 Outhne of the exercisel 1
I1.2 Description of the mput data] 2
1.3 Notations and coordinate systems|. Lo o 2
2 Part 1: Drawing a cube on the undistorted images| 2
2.1 Reminder: Perspective projection|. L Lo 3
[2.1.1 Equation of perspective projection| 3
2.1.2 xis-angle representation for rotations|o 4
2.2 Writing and testing the projection function| 4
2.3 Drawing the cube|. oL 5
2.4 (Optional) Generating a video from the images| 5
[3 Part 2: Accounting for lens distortion| 5
8.1 Lens distortion modelling| Lo)
3.2 Writing and testing the projection tunction with lens distortion| 5
3.3 Undistorting the images| 6
[4 (Optional) Part 3: Calibrate the camera yourself| 7

The goal of this laboratory session is to get students familiarized with the perspective projection
and camera models, as introduced in the theory lectureEl

1 Preliminaries

1.1 Outline of the exercise

The goal of this exercise is to superimpose a virtual cube on a video of a planar grid viewed from
different orientations. In this exercise, the 3D positions of the checkerboard, and the
relative camera poses are provided, as well as the intrinsics of the camera. You have already
learnt in class how to calibrate a camera (i.e. determine the intrinsics), and you will learn in the
following classes how to estimate the pose of the camera.

For now, the purpose of this exercise is to familiarize you with the basics of perspective projection,
change of coordinate systems and lens distortion, as well as basic image processing with Matlab.

In the first part of the exercise, you will be given images that have already been compensated for
distortion, and you will write a function that draws a virtual cube on the compensated image.

In the second part, you will implement a simple distortion and use it to undistort the camera
image.

Uhttp://rpg.ifi.uzh.ch/docs/teaching/2015/02 _image formation 1.pdf

http://rpg.ifi.uzh.ch/docs/teaching/2015/02_image_formation_1.pdf

Robotics and Perception Group,
University of Zurich. 2 PART 1: DRAWING A CUBE ON THE UNDISTORTED IMAGES

> P \ 7 —

Figure 1: Input image (left) and expected output (right): undistorted image with a virtual cube
superimposed

1.2 Description of the input data
The data/ folder contains the inputs that you will need to complete these exercises.

e images,/ contains a sequence of images recorded by a camera moving around a checkerboard
pattern.

e images_undistorted/ contains images that have been processed to compensate for lens
distortion. You will use them in the first part of the exercise. In the second part, you will write
code to generate these compensated images from the original images yourself.

e K.txt and D.txt contain the intrinsics of the camera

e poses.txt contains the poses of the camera for each image, given as the transformation “*™T,
that maps points in the world coordinate system (defined below) to the camera coordinate
system. Specifically, line 7 contains the pose of the camera ¢, given as a tuple: (wg,wy w. tz ty t.)
where (wg,wy,w,) = w is an axis-angle representation (section of the rotational part of
the transformation, and (t,,t,,t,) = t the translational part.

1.3 Notations and coordinate systems
In this exercise, we use the following conventions:
e P, denotes that the point P is expressed in the coordinate frame A.
e BT, denotes the transformation that maps points in frame A to frame B, such that:

Py =BTuP4

The reference (or world) coordinate system, denoted W, is right-handed, and centered on the upper
left corner of the checkerboard, as illustrated in Figure[2] The size of each square if the checkerboard
is 4 cm.

2 Part 1: Drawing a cube on the undistorted images

In this section, you will work with an image that has been already compensated for lens distortion.
Your goal will be to create a 3D cube lying on the checkerboard and project it into the image (Figure
3.

You will first write a function that projects world points to a given image (knowing the corre-
sponding camera pose), and test it by reprojecting the checkerboard corners on the image. Once
your projection function works properly, you will create a cube in the world frame and draw it on
the image.

Robotics and Perception Group,
University of Zurich. 2 PART 1: DRAWING A CUBE ON THE UNDISTORTED IMAGES

Figure 2: World coordinate system W (left), and superimposed cube lying on the checkerboard
(right).

2.1 Reminder: Perspective projection

Figure [3|is a reminder of the different steps involved in projecting a 3D point P, (expressed in the
world coordinate frame) to the image plane of camera C, when the intrinsics (camera matrix K and
transformation [R|t]) are known.

Extrinsic Parameters

Figure 3: Perspective projection: the point P, is first expressed in the camera frame C' through [R\t}
(to P. = (X, Ye, Z.)T), then mapped to the image plane by perspective projection (to p = (z,y)7),
and finally converted to discretized pixel coordinates (u,v).

2.1.1 Equation of perspective projection

Assuming the lens distortion has already been compensated (which is the case in this section), the
perspective projection can be written linearly in homogeneous coordinates as shown in the lecture:

U Xu
A o] = KRl Z (1)
1
where (u,v)T is the desired projection given in pixel coordinates, and P, = (X, Ya, Zu)T.

K[RJt] is a 3 x 4 matrix also called the projection matriz. This matrix is provided to you in K.txt.

Robotics and Perception Group,
University of Zurich. 2 PART 1: DRAWING A CUBE ON THE UNDISTORTED IMAGES

2.1.2 Axis-angle representation for rotations

In this exercise, the rotation R from the world frame to the camera frame is given using the |axis-
angle representation for rotations. Specifically, a 3D rotation is parameterized by a 3D vector w =
(wa, wy,w;)T, where k = Mo is @ unit vector indicating the axis of rotation, and lwl]| = 6 is
the magnitude of the rotation about the axis. Rodrigues’ rotation formulal allows to convert this
representation to a rotation matrix:

R =1+ (sin)[k], + (1 —cosf) [k’

X

0 —k. ky
where k], = | k. 0 —ky| is the cross-product matriz for the vector k.
—ky kg 0

2.2 Writing and testing the projection function
We will work with the first image, located in /data/images undistorted/img 0001.jpg .
e Read the image into Matlab (imread) and convert it to grayscale (rgh2gray)).

e Create a matrix containing the 3D positions of all the checkerboard corners P,,. You can use
the function 'meshgrid from Matlab to achieve this.

e Write a function to project the corners P, on the image plane. You will need the transformation
[R|t] from world coordinates to camera coordinates, which you can read from the first line of
the file poses.txt, as a tuple (wy, wy, w,, 5, ty,t.) = (w,t) . You will find it convenient to write
two functions pose VectorTo TransformationMatriz and projectPoints.

e Superimpose the projected corners to the undistorted image (using scatter for example). The
output should look like Figure [4] if your code works properly.

\ -

Figure 4: Expected output: the checkerboard corners are reprojected (in red) at their correct position
on the undistorted image.

https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation
https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation
https://en.wikipedia.org/wiki/Rodrigues'_rotation_formula
https://ch.mathworks.com/help/matlab/ref/imread.html
https://ch.mathworks.com/help/matlab/ref/rgb2gray.html
https://ch.mathworks.com/help/matlab/ref/meshgrid.html
https://ch.mathworks.com/help/matlab/ref/scatter.html

Robotics and Perception Group,
University of Zurich. 3 PART 2: ACCOUNTING FOR LENS DISTORTION

2.3 Drawing the cube

e Write some code to create a matrix containing the 8 vertices of a cube lying on the checker-
board’s plane. The position of the cube on the checkerboard and its size should be customizable.

e Project the cube’s vertices on the image and draw a line (line) for each edge of the cube.

Figure |1] illustrates the expected output.

2.4 (Optional) Generating a video from the images

Repeat the process above for all the images in the sequence and generate a small movie (at 30 frames
per second). https://ch.mathworks.com/help/matlab/examples/convert-between-image-sequences-
and-video.html

3 Part 2: Accounting for lens distortion

3.1 Lens distortion modelling

Real camera lenses are not ideal and introduce some distortion in the image. To account for these
non-idealities, it is necessary to add a distortion model to the equations of perspective projection. A
simple radial distortion model was introduced during the lecture. In this exercise, we use this model,
and simply add a higher-order term, parameterized by an additional variable k2. The distortion
model is therefore fully parameterized by two variables (k1, k2) that are provided in the file D.txt.

Because the distortion model is not linear, the projection function is not linear in homogeneous
coordinates anymore (as opposed to Equation , thus the projection function needs to be split into
several steps as follows:

X X

e Map the world point P, to the camera frame: ? =[R t }Z/w
1 1

Project the point to the image plane to get the normalized coordinates p = (z,y)T:
T S
_ |z

Apply lens distortion to p to get the distorted normalized coordinates pg = (2',y’

(;;) = (14 k1r® + kor™) (z) (2)

where 72 = 22 + y? is the radial component of p.

)

e Convert the distorted normalized coordinates py to get the discretized pixel coordinates (u,v)7:
u x’
Ao =K |y
1 1

3.2 Writing and testing the projection function with lens distortion

e Read the image /data/images/img 0001.jpg which is, this time, not compensated for
distortion.

e Modify your function project points to take into account the lens distortion, as described
above.

e Project the checkerboard corners in the distorted image. The expected output is shown in
Figure [f

https://ch.mathworks.com/help/matlab/examples/convert-between-image-sequences-and-video.html
https://ch.mathworks.com/help/matlab/examples/convert-between-image-sequences-and-video.html

Robotics and Perception Group,
University of Zurich. 3 PART 2: ACCOUNTING FOR LENS DISTORTION

-

Figure 5: Expected output: the checkerboard corners are reprojected (in red) at their correct position
on the non-corrected image.

3.3 Undistorting the images

We will now use the new projection function (that takes distortion into account) to generate an undis-
torted image from the original image. Let I; and I,, be respectively the distorted and undistorted
images.

A naive way to undistort Iy would be through forward warping, i.e warp every pixel (u’,v’)
I, to I, as follows:

T in
LD/, v") = Iy(u/,v")

where I'(u,v) = (u/,v’) is the distortion function that maps undistorted pixel coordinates (u,v)T

to distorted pixel coordinates (u/,v’)7.

)T

Figure 6: Distorted pixel coordinates (u’,v’)T are undistorted to (u,v)? through the distortion

function I

However, due to the undistorted pixel locations being non-integer, the resulting image would
have some artifacts. Moreover, inverting the distortion function I' amounts to solving a system of
polynomial system of equations, which is costly.

In image processing, this is commonly solved by doing backward warping, i.e. warping pixel
locations from the destination image (undistorted image in our case) to the source image (distorted

Robotics and Perception Group,
University of Zurich. 4 (OPTIONAL) PART 3: CALIBRATE THE CAMERA YOURSELF

image in our case):

IH(U,U) - Id(F(uvv)) (3)
Since T'(u,v) = (u’,v’)T are non-integer pixel locations, the image intensity I;(u’,v’) must be esti-
mated at the non-integer pixel location (u/,v’). The most simple way to do it is through nearest-
neighbor interpolation, i.e. approximating I;(u’,v") ~ I4(|u'], |v']), where |x] denotes the closest
integer to x.

e Write a function undistortImage that performs the image undistortion using Equation [3] and
nearest-neighbor interpolation. Keep in mind that the distortion function (defined by Equation
2) works with normalized pizel coordinates and not pixel coordinates. The expected output is
shown in Figure [7] (left image).

Note for loops are very inefficient in Matlab, although we do it here for simplicity. As an additional
question, you can try to implement the undistortImage function using vectorization (hint: Matlab’s
reshape function might be handy). The resulting code will be faster.

Note Matlab has a imwarp function dedicated to this kind of operations.

Bonus exercise Implement [bilinear interpolation to get rid of the artifacts introduced by nearest-
neighbor interpolation (see Figure [7| for comparison).

e
3
\

\/\\ . —l
¥

Figure 7: Undistorted images. Left: nearest-neighbor interpolation (observe the artifacts on the
edges). Right: bilinear interpolation.

4 (Optional) Part 3: Calibrate the camera yourself

Use the Camera Calibration Toolbox for Matlab (http://www.vision.caltech.edu/bouguetj/calib doc/)
to calibrate the camera using a subset of the checkerboard images provided (make sure you select im-
ages featuring different checkerboard positions and orientations). You can even print a checkerboard
pattern and calibrate, for example, your smartphone’s camera.

https://en.wikipedia.org/wiki/Bilinear_interpolation
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://docs.opencv.org/2.4/_downloads/pattern.png
http://docs.opencv.org/2.4/_downloads/pattern.png

	Preliminaries
	Outline of the exercise
	Description of the input data
	Notations and coordinate systems

	Part 1: Drawing a cube on the undistorted images
	Reminder: Perspective projection
	Equation of perspective projection
	Axis-angle representation for rotations

	Writing and testing the projection function
	Drawing the cube
	(Optional) Generating a video from the images

	Part 2: Accounting for lens distortion
	Lens distortion modelling
	Writing and testing the projection function with lens distortion
	Undistorting the images

	(Optional) Part 3: Calibrate the camera yourself

