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Lab Exercise bloday afternoon

U Room ETH HG E 33.1 from 14:15 to 16:00
U Work description:8-point algorithm

Estimated poses and 3D structure



2-View Geometry: Recap

0
ADepth from stereo (i.e., stereo vision) ~

AAssumptionsK, T and R are known.
AGoat Recover the 3D structure from images

“"@ ‘ o

A2-view Structure From Motion L hY,Y 0 RY Y

A Assumptions none (K, T, and R are unknown).

AGoat Recover simultaneously 3D scene structure, camera poses (up to acdle),
intrinsic parametersfrom two different views of the scene




Outline

[A wo-View Structure from Motion]
A Robust Structure from Motion




Structure from Motion (SFM)

A Problem formulation:Givent pointscorrespondencbetween two images,
N 6 b 0 6 M}, simultaneouslyestimate the3Dpoints |f

the camera relativemotion parameters 4 k| , and the camerantrinsicst, L
that satisfy:
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Structure from Motion (SFM)

A Two variants exist:

[

I Calibratedcamera(s) L L

are known ]

i Uncalibratedcamera(s) L |

L are unknown

N

A4




Structure from Motion (SFM)
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Scale Ambiguity

If we rescalethe entire scene by constant factor (i.e., similarity
transformationjithe projections (in pixelxf the scene points iboth
Imagesremain exactly the same:

Similarity




Scale Ambiguity

A In monocular vision, isimpossibleto recover the absolute scale of the scéne
A Stereo vision?

A Thus, onl\b degrees of freedonare measurable:
A 3 parameters to describe thetation

A 2 parameters for theranslation up to a scalg¢we can only compute the direction of
translation but not its length)



Structure From Motion (SFM)

A How manyknownsand unknowns?

T = knowns:

A ¢ correspondences; eachoné ) and 6 I h'Q p8¢
I =unknowns
A 5 for the motion up to a scale (rotatien 3, translatior>2)

A o ¢ number of coordinates of thé 3D points

A Does a solution exist?
I If and anly if

number of independent equations number of unknowns

I TE U oa‘-:i



Cross Product (or Vector Product)

G~ C A
asb=c

axb
A Vectorcross product takes two vectors and returns a third vector

. . . A
that is perpendiculato both inputs f

.C
b@=0
Sodkis perpendicular to botd=and{f (whichmeansthat the dot productis 0)
Also, recall that the cross product of two parallel vectors is O

o I

A Thecrossproduct betweenaandb can also bexpressedn matrix form aghe
productbetween theskewsymmetric matrixof aandavectorb
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Epipolar Geometry 0 5,0
plzé_lg P2 = avay
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epipolar plane T
€
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.M H Yare coplanar:

p®=0Y p,A@T3p')=0 Y p,@T3(Rp))=0

P, Ep, =0 epipolar constrain#

Y p[T.Rp,=0 Y

‘ B B essential matrix ‘




Epipolar Geometry

dhg  dho
P =§\713 P, =g\723 Normalized image coordinates
ely  ely

p Ep,=0  Epipolarconstraint orLonguetHiggins equation

E=[TL.R Essential matrix

A The Essential Matrix can be computed from 5 point corresponddtcespa
1913] The more the points, the higher the accuracpnasence of noise

A The Essential Matrix can be decomposed ifi@nd“Yrecalling thatE =[T]. R
Four distinct solutionfor R andl are possible.

H. Christopher Longuet-Higgins (September 1981). "A computer algorithm for reconstructing a
scene from two projections”. Nature 293 (5828): 1331 135. PDF.


https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf

Exercise

A Compute the Essential matrix for the case of two rectified stereo images

Rectified case
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How to compute the Essential Matrix

Image 1 Image 2

U LT ¢S RRsgh@icariwe 2simat&from two images?
U Yes, given at least 5 correspondences



How to compute the Essential Matrix

A The Essential Matrix can semputed from5image correspondencd&ruppa
1913. However, this solution is not simple. It took almost one century until ar
STFAOASY (O &a2fdziA2y004l & F2dzy RH wbAa

A The first popular solution uséspoints and is calle8-point algorithm

Longuet HigginsA computer algorithm for reconstructing a scene from tyoojections Nature
(1987



The8-point algorithm

A The Essential matrix E is defined by
p, Ep, =0

for any pair of matcheg™ andn™ in the two images.

- €, €, €30
p, =(0,,V,,1) E:ge21 e, 6233

A Y

&, &, esf

w Let P, =(T,V,,1)7,

each match gives a linear equation

p, Ep,=0

U2U1e11 + UZ\_/lelZ + UZelB + \_/2U1621 + \_/2\_/1e22 + \_/ZeZS + l'_’Ile\%l T \_/1632 + 63;3 = O



The8-point algorithm

A For¢ points, we can write

838

w

H
-
&

<
N
I
N
» <<
/?f
N
o e e e el eng e el el eng eni el e
|l
o

—
XD~ (D (D (D
P

S
c
H
S
<
<
|—\
|_\
(E/
P
H

N
N
N
> c
N
N
NP

>

3

<
<l
|_\
<l
N/
=

~—

w

Q (this matrix i&nown)

1

O(this matrix isunknown)



The 8point algorithm
QE=0

Minimal solution

A 0 should have rank & have a unique (up to a scale) ntivial solutiorO

A Each point correspondence provides 1 independent equation
A Thus, 8 point correspondences are needed
Overdetermined solution

A n>8 points

A A solution is to minimizd0'Ols subjectto the constraintOls  p8
Thesolution is the eigenvector corresponding to the smallest eigenvalue of the matrix
0 0 (because it is the unit vect@bthat minimizesg0als @O 0O G

A It can be solved through Singular Value Decomposition (SM&tJab instructions:

A [USV 1= svd(Q);
A Eh=V(,9);
A F= reshape(Eh,3,3 );



8-point algorithm: Matlab code

A A few lines of code. Go to the exercise this
afternoon to learn to implement if



Interpretation of the 8point algorithm

The 8point algorithm seeks to minimize the followiatgebraic error

3 (p'2E p'1)?

=1

Using the definition of dot product, it can be observed that

= O wd l==(llll F A T -0

We can see that this product depends on the angletween=s and the normal
- =0 the epipolar plane. It is non zero Whﬂ.BZ-EZandﬂ are not coplanar.




Extract R and T from E

(this slide will not be asked at the exam)

A Singular Value Decompositiofg =U & V'

A Enforcing rani2 constraint: set smallest singular value&of
¢, 0 0s &, 0 Og
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4 possible solutionsof Rand T
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Onlyone solution where pointarein front of bothcameras

e
Ui

=

>

These two views are rotated @80
(c) (d)



Structure from Motion (SFM)

A Two variants exist:

I Calibratedcamera(s) L L

A Uses the Essentidatrix

are known

[

i Uncalibratedcamera(s) L |

L are unknown ]

A Uses the Fundamental Matrix

N




The Fundamental Matrix

A Before, we assumed to know the camera intrinsic parameters and we used

normalized image coordinates
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The 8point Algorithm for the Fundamental Matri

A The same-point algorithm to compute the essential matrix from ¢
set of normalized image coordinates can also be used to determ
the Fundamental matrix
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Problem with 8point algorithm
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Problem with8-point algorithm
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Orders of magnitude difference gfssﬂ

between column of data matrix
- least-squares yields poor results

Poor numerical conditioning, which makes results very sensitive to noise
Can be fixed by rescaling the datbormalized &oint algorithm[Hartley, 1995]



Normalized &oint algorithm (1/3)

A This can be fixed using a normalizedd@nt algorithm which estimates the
Fundamental matrion a set oNormalizedcorrespondencegwith better
numerical properties) anthen unnormalizesthe result to obtain the
fundamental matrix for theyiven gnnormalized correspondences

A Idea: Transform image coordinates so that they are in the rangsp o
A One way is to apply the following rescaling and shift
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Normalized &oint algorithm (2/3)

A A more popular way is to rescale the two point sets such ti@tentroid of each
setis Oand the mean standardeviation/c.

A This can be done for every pointfafiows:

. VG,

n —n

A Where ©* —B 1 isthecentroid ofthesetang —-B || ‘| isthe
mean standard deviation.

A This transformation can be expressed in matrix form using homogeneous
coordinates:

V¢ Ve,
—_— T[ —_—

n V¢ Vg [0
‘r[ — —
oM p



Normalized &oint algorithm (3/3)

The Normalized-®oint algorithm can be summarized in three steps:

1. Normalize point correspondencest 0 n , n 0 N
2. Estimate’Ousing normalized coordinatep hT)
3. Compute&from™0 g " g"
no&n T
n o &| 0 n




Comparison between Normalized and moormalized algorithm

8-point Normalized 8-point Nonlinear least squares

Av. Reprojection error 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Reprojection error 2 2.18 pixels 0.85 pixel 0.80 pixel




Error Measures

U The quality of the estimateBundamentamatrix canbe measuredising different
costfunctions.

U The first one is the algebraic error that is defined directly in the Epipolar

Constraint: \

nm T 1

ernr=Qq ( p' > F p'1)2 What is the physical meaning of this error?
-1 What is the drawback with it?
1=

U This error will exactly b@if Fis computed from jus8 points (because in this cas
a solutionexists).For more tharB points, itwill not be0 (due to image noise or
outliers (overdetermined system)).

U There are alternativerror functionsthat canbe used to measure the quality of
the estimated Fundamental matrithe Directional Error the EpipolarLine
Distance or the Reprojection Error



DirectionalError

U Sum of the Angular Distances to the Epipolar pladeO O

N
(i Fromthe previous slide, we obtaini i © |‘< == = )
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epipolar plane
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Epipolar Line Distance

U Sum ofSquaredEpipolarLineto-point Distances

err =g d*(py, 1) +d*(p;,15)
i=1
U Cheaper than reprojection error because does not require point triangulation

—cT i
= F P, epipolar plane




Reprojection Error

U Sum of theSquaredReprojection Errors
N
err =3 [p.- ()| +[p.- (PRI
i=1

U Computation is expensive because requires point triangulation
U However it is the most popular because more accurate

Reprojected pt Reprojected point

_ . Observed point
rrved point @ P,

R, T



Outline

A Two-View Structure from Motion
[A Robust Structure from Motion ]




Robust Estimation

u Matched points are usually contaminated @wtliers (i.e., wrong image matches
u Causes of outliers are:
A image noise
A occlusions
A blur
A changes in view point (including scale) and illumination
u For the camera motioto be estimated accurately, outliers must lEmoved
u This is the task dRobust Estimation

Image 1 Image 2



Robust Estimation

u Matched points are usually contaminated @wtliers (i.e., wrong image matches
u Causes of outliers are:
A image noise
A occlusions
A blur
A changes in view point (including scale) and illumination
u For the camera motioto be estimated accurately, outliers must lEmoved
u This is the task dRobust Estimation

Image 1 Image 2



Influence of Outliers on Motion Estimation
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== After removmg the outliers
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U Error at the loop closure: 6.5 m
U Error in orientation: 5 deg
U Trajectory length: 400 m

Outliers can be removed using RANSAC [Fishler & Bolles, 1981]

Davide Scaramuzza i University of Zurich T Robotics and Perception Group

- rpg.ifi.uzh.ch



RANSAC (RAndom SAmple Conser

A RANSAC is thlegandard method for model fitting in the presence of outliers
(very noisy points or wrong data)

A It can be applied to all sorts of problems where the goal isstamate the
parameters of a model from the datée.g., camera calibration, Structure from
Motion, DLT, PnP, P3P, Homography, etc.)

ATSGiQa NBOASE w!b{!/ F2NItAYS FAOGOA
from Motion

M. A.Fischler and R. C.Bolld&eandom sample consensésparadigmfor model fitting withapphcatlongo image
analysisand automatedcartography. Graphics and Image Processing, 38&)395, 1981.



RANSAC



wSelect sample o2 points at
random



wSelect sample of 2 points &
random

wCalculate model
parameters that fit the data
In the sample
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RANSAC

wSelect sample of 2 points &
random

wCalculate model parametel
that fit the data in the sample

wCalculate error function for
each data point

wSelect data thasupports
current hypothesis



