

Institute of Informatics - Institute of Neuroinformatics

Tutorial on Event-based Cameras:

Davide Scaramuzza

http://rpg.ifi.uzh.ch/

Reference: T-PAMI 2020 paper

Event-based Vision: A Survey

Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger, Andrew Davison, Jörg Conradt, Kostas Daniilidis, Davide Scaramuzza

Abstract— Event cameras are bio-inspired sensors that work radically different from traditional cameras. Instead of capturing images at a fixed rate, they measure per-pixel brightness changes asynchronously. This results in a stream of events, which encode the time, location and sign of the brightness changes. Event cameras posses outstanding properties compared to traditional cameras: very high dynamic range (140 dB vs. 60 dB), high temporal resolution (in the order of μ s), low power consumption, and do not suffer from motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as high speed and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world.

Index Terms-Event Cameras, Bio-Inspired Vision, Asynchronous Sensor, Low Latency, High Dynamic Range, Low Power.

1 INTRODUCTION AND APPLICATIONS

I HE brain is imagination, and that was exciting to me; I wanted to build a chip that could imagine something¹." that is how Misha Mahowald, a graduate student at Caltech in 1986, started to work with Prof. Carver Mead on the stereo problem from a joint biological and engineering per-

as well as new computer vision and robotic tasks. Sight is, by far, the dominant sense in humans to perceive the world, and, together with the brain, learn new things. In recent years, this technology has attracted a lot of attention from both academia and industry. This is due to the availability of prototype event cameras and the advantages that these dovices offer to tackle problems that are currently unfeasible

http://rpg.ifi.uzh.ch/docs/EventVisionSurvey.pdf

Open Challenges in Computer Vision

The past 60 years of research have been devoted to frame-based cameras ...but they are not good enough!

Latency & Motion blur

Dynamic Range

Event cameras do not suffer from these problems!

What is an event camera?

- Novel sensor that measures only motion in the scene
- First commercialized in 2008 by T. Delbruck (UZHÐ) unde the name of Dynamic Vision Sensor (DVS)
- Low-latency (~ 1 μs)
- No motion blur
- High dynamic range (140 dB instead of 60 dB)
- Ultra-low power (mean: 1mW vs 1W)

Image of the solar eclipse captured by a DVS

Traditional vision algorithms cannot be used because:

- Asynchronous pixels
- No intensity information (only binary intensity changes)

Video from here: https://youtu.be/LauQ6LWTkxM?t=30

[Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, 2008

Camera vs Event Camera

• A traditional camera outputs frames at fixed time intervals:

By contrast, a DVS outputs asynchronous events at microsecond resolution. An event is generated each time a single pixel detects an intensity changes value

Event polarity (or sign) (-1 or 1): increase or decrease of brightness

[Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, 2008

Generative Event Model

Consider the intensity at a **single pixel...**

$$\pm C = \log I(\mathbf{x}, t) - \log I(\mathbf{x}, t - \Delta t)$$

 $\log I(\mathbf{x},t)$

Events are triggered asynchronously

Lichtsteiner et al., A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, IEEE Journal of Solid-State Circuits, 2008

Event cameras are inspired by the Human Eye

Human retina:

- 130 million photoreceptors
- But only 2 million axons!

Event Camera Output with No Motion

Without motion, only background noise is output

Standard Camera

Event Camera (ON, OFF events)

ΔT = 40 ms

Event Camera Output with Relative Motion

Standard Camera

Event Camera (ON, OFF events)

ΔT = 10 ms

Event Camera Output with Relative Motion

Standard Camera

Event Camera (ON, OFF events)

ΔT = 40 ms

Examples

Pencil balancing robot

Conradt, Cook, Berner, Lichtsteiner, Douglas, Delbruck, **A pencil balancing robot using a pair of AER dynamic vision sensors**, IEEE International Symposium on Circuits and Systems. 2009

Low-light Sensitivity (night drive)

GoPro Hero 6

Event Camera by Prophesee White = Positive events Black = Negative events

Video courtesy of Prophesee: https://www.prophesee.ai

High-speed vs Event Cameras

	High speed camera	Standard camera	Event Camera		
Max fps or measurement rate	Up to 1MHz	100-1,000 fps	1MHz		
Resolution at max fps	64x16 pixels	>1MpxI	>1MpxI		
Bits per pixels (event)	12 bits	8-10 per pixel	~40 bits/event {t,(x,y),p)}		
Weight	6.2 Kg	30 g	30 g		
Active cooling	yes	No cooling	No cooling		
Data rate	1.5 GB/s	32MB/s	~1MB/s on average (depends on dynamics)		
Mean power consumption	150 W + external light	1 W	1 mW		
Dynamic range	n.a.	60 dB	140 dB 15		

Current commercial applications

Internet of Things (IoT)

• Low-power, always-on devices for monitoring and surveillance

> Automotive:

- low-latency, high dynamic range (HDR) object detection
- low-power training & inference
- low-memory storage

> AR/VR

low-latency, low-power tracking

Industrial automation

Fast pick and place

Who sells event cameras and how much are they?

Inivation:

- DAVIS sensor: frames, events, IMU.
- Resolution: ~QVGA (346x260 pixels)
- Cost: 6,000 USD
- Insightness:
 - **RINO sensor**: frames, events, IMU.
 - Resolution: ~QVGA (320x262 pixels)
 - Cost: 6,000 USD
- Prophesee:
 - ATIS sensor: events, IMU, absolute intensity at the event pixel
 - Resolution: 1M pixels
 - Cost: 4,000 USD
- CelexPixel Technology:
 - Celex One: events, IMU, absolute intensity at the event pixel
 - Resolution: 1M pixels
 - Cost: 1,000 USD.
- Samsung Electronics
 - Samsung DVS: events, IMU
 - Resolution: up to 1Mpxl
 - Cost: not listed

Comparison of current event cameras

Table 1

Comparison of commercial or prototype event cameras. Values are approximate since there is no standard measurement testbed.

	pplier		iniVation				ohesee			Samsung			Pixel	Insightness
Ca	mera model	DVS128	DAVIS240	DAVIS346	ATIS	Gen3 CD	Gen3 ATIS	Gen 4 CD	DVS-Gen2	DVS-Gen3	DVS-Gen4	CeleX-IV	CeleX-V	Rino 3
or specifications	Year, Reference	2008 [2]	2014 [4]	2017	2011 [3]	2017 [67]	2017 [67]	2020 [68]	2017 [5]	2018 [69]	2020 [39]	2017 [70]	2019 [71]	2018 [72]
	Resolution (pixels)	128×128	240×180	346×260	304×240	640×480	480×360	1280×720	640×480	640 imes 480	1280×960	768 imes 640	1280×800	320×262
	Latency (µs)	12µs @ 1klux	$12\mu s @ 1klux$	20	3	40 - 200	40 - 200	20 - 150	65 - 410	50	150	10	8	125µs @ 10lux
	Dynamic range (dB)	120	120	120	143	> 120	> 120	> 124	90	90	100	90	120	> 100
	Min. contrast sensitivity (%)	17	11	14.3 - 22.5	13	12	12	11	9	15	20	30	10	15
	Power consumption (mW)	23	5 - 14	10 - 170	50 - 175	36 - 95	25 - 87	32 - 84	27 - 50	40	130	-	400	20-70
	Chip size (mm ²)	6.3×6	5×5	8×6	9.9 imes 8.2	9.6×7.2	9.6×7.2	6.22×3.5	8×5.8	8×5.8	8.4 imes 7.6	15.5×15.8	14.3×11.6	5.3×5.3
	Pixel size (μm^2)	40 imes 40	18.5×18.5	18.5×18.5	30×30	15×15	20×20	4.86×4.86	9×9	9×9	4.95×4.95	18 imes 18	9.8×9.8	13×13
	Fill factor (%)	8.1	22	22	20	25	20	> 77	11	12	22	8.5	8	22
	Supply voltage (V)	3.3	1.8 & 3.3	1.8 & 3.3	1.8 & 3.3	1.8	1.8	1.1 & 2.5	1.2 & 2.8	1.2 & 2.8		1.8 & 3.3	1.2 & 2.5	1.8 & 3.3
	Stationary noise (ev/pix/s) at 25C	0.05	0.1	0.1	-	0.1	0.1	0.1	0.03	0.03		0.15	0.2	0.1
	CMOS technology (nm)	350	180	180	180	180	180	90	90	90	65/28	180	65	180
		2P4M	1P6M MIM	1P6M MIM	1P6M	1P6M CIS	1P6M CIS	BI CIS	1P5M BSI			1P6M CIS	CIS	1P6M CIS
	Grayscale output	no	yes	yes	yes	no	yes	no	no	no	no	yes	yes	yes
	Grayscale dynamic range (dB)	NA	55	56.7	130	NA	> 100	NA	NA	NA	NA	90	120	50
	Max. frame rate (fps)	NA	35	40	NA	NA	NA	NA	NA	NA	NA	50	100	30
ra	Max. Bandwidth (Meps)	1	12	12	-	66	66	1066	300	600	1200	200	140	20
mera	Interface	USB 2	USB 2	USB 3		USB 3	USB 3	USB 3	USB 2	USB 3	USB 3			USB 2
Car	IMU output	no	$1\mathrm{kHz}$	$1\mathrm{kHz}$	no	1 kHz	$1 \mathrm{kHz}$	no	no	$1\mathrm{kHz}$	no	no	no	$1\mathrm{kHz}$

Table from [Guillermo et al., T-PAMI'20], Table 1

[95] P. Lichtsteiner, C. Posch, and T. Delbruck. "A 128×128 120 dB 15 μs latency asynchronous temporal contrast vision sensor". In: *IEEE J. Solid-State Circuits*, 2008, http://dx.doi.org/10.1109/JSSC.2007.914337

[135] C. Posch, D. Matolin, and R. Wohlgenannt. "A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS". In: *IEEE J. Solid-State Circuits* 46.1, 2011, <u>http://dx.doi.org/10.1109/JSSC.2010.2085952</u>

[16] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck. "A 240x180 130dB 3us Latency Global Shutter Spatiotemporal Vision Sensor". In: *IEEE J. Solid-State Circuits* 49.10 (2014), pp. 2333–2341. <u>http://dx.doi.org/10.1109/JSSC.2014.2342715</u>

- [31] https://inivation.com/wp-content/uploads/2019/07/2019-07-09-DVS-Specifications.pdf
- [138] https://www.prophesee.ai/event-based-evk/
- [166] http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Eric_Ryu_Samsung.pdf
- [23] http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_CelePixel.pdf

How do we unlock the outstanding potential of event cameras:

- Low latency
- High dynamic range
- No motion blur

Recall the Generative Event Model

An event is triggered at a single pixel if

$$\log I(\mathbf{x}, t) - \log I(\mathbf{x}, t - \Delta t) = \pm C$$

1st Order Approximation

- Let us define L(x, y, t) = Log(I(x, y, t))
- Consider a given pixel p(x, y) with gradient $\nabla L(x, y)$ undergoing the motion u = (u, v) in pixels, induced by a moving 3D point **P**.
- Then, it can be shown that:

$$-\nabla L \cdot \mathbf{u} = C$$

Gallego et al., Event-based Vision: A Survey, arXiv, 2019. PDF

Proof

The proof comes from the **brightness constancy assumption**, which says that the intensity value of p, before and after the motion, must remain unchanged:

$$L(x, y, t) = L(x + u, y + v, t + \Delta t)$$

By replacing the right-hand term by its 1st order approximation at $t + \Delta t$, we get:

$$L(x, y, t) = L(x, y, t + \Delta t) + \frac{\partial L}{\partial x}u + \frac{\partial L}{\partial y}v$$

$$\Rightarrow L(x, y, t + \Delta t) - L(x, y, t) = -\frac{\partial L}{\partial x}u - \frac{\partial L}{\partial y}v$$

$$\Rightarrow \Delta L = C = -\nabla L \cdot \mathbf{u}$$

This equation describes the **linearized** event generation equation for an event generated by a gradient ∇L that moved by a motion vector **u** (optical flow) during a time interval Δt .

Example 1: Image Reconstruction from events

- \blacktriangleright Probabilistic simultaneous, gradient & rotation estimation from $C = -\nabla L \cdot \mathbf{u}$
- Obtain intensity from gradients via Poisson reconstruction
- The reconstructed image has super-resolution and high dynamic range (HDR)
- In real time on a GPU

Event Camera & Scene

Visualisation of Events

Kim et al., Simultaneous Mosaicing and Tracking with an Event Camera, BMVC'14

Example 2: 6DoF Tracking from Photometric Map

- \blacktriangleright Probabilistic, simultaneous motion & contrast estimation from $C = -\nabla L \cdot \mathbf{u}$
- Assumes photometric map (x,y,z, grayscale Intensity) is given
- Useful for VR/AR applications (low-latency, HDR, no motion blur)
- Requires GPU to run in real time

Gallego et al., Event-based 6-DOF Camera Tracking from Photometric Depth Maps, T-PAMI, 2018. PDF Video

Example 2: 6DoF Tracking from Photometric Map

Bryner et al., Event-based, Direct Camera Tracking from a Photometric Depth Map, ICRA'19. PDF Video

Event camera

Standard camera

Motion estimation **Event-based (EB) Frame-based (FB)**

Gallego et al., Event-based 6-DOF Camera Tracking from Photometric Depth Maps, T-PAMI'18. PDF Video

Example 3: Parallel Tracking & Mapping (SLAM)

Tracking: EKF in 6 DOF pose

- Uses random walk model & inverse depth
- Use 1st order approximation of generative event model to update pose
- Runs in real time on a GPU

Kim et al., Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera, ECCV'16

What if we combined the complementary advantages of event and standard cameras?

Why combining them?

< 10 years research

> 60 years of research!

Event Camera

Standard Camera

Update rate	High (asynchronous): 1 MHz	Low (synchronous)
Dynamic Range	High (140 dB)	Low (60 dB)
Motion Blur	No	Yes
Static motion	No (event camera is a high pass filter)	Yes
Absolute intensity	No (reconstructable up to a constant)	Yes
Maturity	< 10 years of research	> 60 years of research!

DAVIS sensor: Events + Images + IMU

 \blacktriangleright Combines an event and a standard camera in the same pixel array (\rightarrow the same pixel can both trigger events and integrate light intensity).

It also has an IMU

Brandli et al. A 240x180 130dB 3us latency global shutter spatiotemporal vision sensor. IEEE JSSC, 2014

time

Example 1: Deblurring a blurry video

- A blurry image can be regarded as the integral of a sequence of latent images during the exposure time, while the events indicate the changes between the latent images.
- Finding: sharp image obtained by subtracting the double integral of event from input image

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR'19

Example 1: Deblurring a blurry video

- A blurry image can be regarded as the integral of a sequence of latent images during the exposure time, while the events indicate the changes between the latent images.
- Finding: sharp image obtained by subtracting the double integral of event from input image

Input blur image

Output sharp video

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR'19

Example 1: Deblurring a blurry video

- A blurry image can be regarded as the integral of a sequence of latent images during the exposure time, while the events indicate the changes between the latent images.
- Finding: sharp image obtained by subtracting the double integral of event from input image

Input blur image

Output sharp video

Pan et al., Bringing a Blurry Frame Alive at High Frame-Rate with an Event Camera, CVPR'19

What about an asynchronous Luca-Kanade-Tomasi (KLT) Tracker for Event Cameras?

Gehrig et al., EKLT: Asynchronous, Photometric Feature Tracking using Events and Frames, IJCV 2019. <u>PDF</u>, <u>YouTube</u>, <u>Evaluation Code</u>, <u>Tracking Code</u> Asynchronous, Photometric Feature Tracking using Events and Frames

- Goal: Extract features on frames and track them using only events in the blind time between two frames
- Uses the event generation model via joint estimation of patch warping and optic flow

Gehrig et al., EKLT: Asynchronous, Photometric Feature Tracking using Events and Frames, IJCV 2019. <u>PDF</u>, <u>YouTube</u>, <u>Evaluation Code</u>, <u>Tracking Code</u>

High-Speed, Near-Eye Gaze Tracking

Task: Estimate gaze-vector of the eye at >1'000Hz in real-time on portable system

- Update Rate beyond 10 kHz
- Accuracy comparable to commercial product (EyeLink)
- Portable and low-power

Example Applications:

- AR/VR
- Driver drowsiness detection

Angelopoulos et al., "Event Based, Near-Eye Gaze Tracking Beyond 10,000Hz", Arxiv20. PDF

High-Speed, Near-Eye Gaze Tracking

Task: Estimate gaze-vector of the eye at >1'000Hz in real-time on portable system

- Update Rate beyond 10 kHz
- Accuracy comparable to commercial product (EyeLink)
- Portable and low-power

Example Applications:

- AR/VR
- Driver drowsiness detection

system	update rate (Hz)	accuracy ($^{\circ}$)	portable
Pupil Labs [1]	200	~ 1	\checkmark
Tobii [3]	120	0.5–1.1	\checkmark
EyeLink [2,14]	1,000	~ 0.5	
Ours	> 10,000	0.45–1.75	\checkmark

Angelopoulos et al., "Event Based, Near-Eye Gaze Tracking Beyond 10,000Hz", Arxiv20. PDF

High-Speed Human-Motion Tracking

Task: 3D human motion capture at 1'000 Hz

- 30x lower data-bandwidth than high-speed frame-based approach
- Works even in low-light

Xu et al., "EventCap: Monocular 3D Capture of High-Speed Human Motions using an Event Camera", CVPR20. <u>PDF</u> Calabreset al., "DHP19: Dynamic Vision Sensor 3D Human Pose Dataset", CVPRW19. <u>PDF</u>

Recap

All the approaches seen so far enable asynchronous, low-latency (~10µs) algorithmic update on an event-by-event fashion

> However:

- Event-by-event update requires GPU for real-time processing
- Additionally, they make use of the generative event model

$$\pm C = \log I(\mathbf{x}, t) - \log I(\mathbf{x}, t - \Delta t)$$

or its 1st order approximation

$$\pm C = -\nabla L \cdot \mathbf{u}$$
 ,

which **requires knowledge of the contrast sensitivity** *C* (which is **scene dependent** and might **differ from pixel to pixel**)

Focus Maximization for:

- Motion estimation
- 3D reconstruction
- SLAM
- Optical flow estimation
- Feature tracking
- Motion segmentation
- Unsupervised learning

Gallego et al., A Unifying Contrast Maximization Framework for Event Cameras, CVPR18, <u>PDF</u>, <u>YouTube</u> Gallego et al., Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, <u>PDF</u>.

Idea: Warp spatio-temporal volume of events to **maximize focus** (e.g., sharpness) of the resulting image

Gallego et al., A Unifying Contrast Maximization Framework for Event Cameras, CVPR18, <u>PDF</u>, <u>YouTube</u> Gallego et al., Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, <u>PDF</u>.

Focus Maximization Framework

Can be implemented in a sliding-window fashion to enable per low-latency, per-event update rate **Runs in real time on a CPU**

Gallego et al., A Unifying Contrast Maximization Framework for Event Cameras, CVPR18, <u>PDF</u>, <u>YouTube</u> Gallego et al., Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, <u>PDF</u>.

Application 1: Image Stabilization

- Problem: Estimate rotational motion (3DoF) of an event camera
- Can process millions of events per second in real time on a smartphone CPU (OdroidXU4)
- Works up to over ~1,000 deg/s

Gallego et al., Accurate Angular Velocity Estimation with an Event Camera, IEEE RAL'16. PDF. Video.

Application 3: 3D Reconstruction from a Train at 200km/h

Rebecq et al., EVO: A Geometric Approach to Event-based 6-DOF Parallel Tracking and Mapping, RAL'17. <u>PDF</u>. <u>Video</u> Rebecq et al., EMVS: Event-based Multi-View Stereo, IJCV, 2018. <u>PDF</u> <u>Video</u> <u>Source Code</u>

Application 4: Motion Segmentation

Conventional Frames

Sequence: Fan and Coin

One motion model is used per cluster; one for the fan, modelling rotation, one for the coin, modelling optic flow

Motion-Compensated Segmented Events

Stoffregen et al., Motion Segmentation by Motion Compensation, ICCV'19. PDF. Video.

Application 4: Motion Segmentation

Stoffregen et al., Motion Segmentation by Motion Compensation, ICCV'19. PDF. Video.

Application 5: Drone Dodging Dynamic Obstacles

Event-based Dynamic Obstacle Detection & Avoidance

- Works with relative speeds of up to 10 m/s
- Perception latency: 3.5 ms

Falanga et al., Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020. PDF. Video Falanga et al. How Fast is too fast? The role of perception latency in high speed sense and avoid, RAL'19. PDF. Video How can we separate events triggered by ego-motion from events triggered by the moving object?

Falanga et al., Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020. PDF. Video Falanga et al. How Fast is too fast? The role of perception latency in high speed sense and avoid, RAL'19. PDF. Video Idea: Warp spatio-temporal volume of events to maximize contrast of the resulting image: Static objects will appear sharp, while moving ones will appeared blurred.

Falanga et al., Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020. PDF. Video Falanga et al. How Fast is too fast? The role of perception latency in high speed sense and avoid, RAL'19. PDF. Video

Falanga et al., *Dynamic Obstacle Avoidance for Quadrotors with Event Cameras*, **Science Robotics**, 2020. <u>PDF</u>. <u>Video</u> Falanga et al. *How Fast is too fast? The role of perception latency in high speed sense and avoid*, RAL'19. <u>PDF</u>. <u>Video</u>

UltimateSLAM:

combining **events**, **images**, and **IMU** for robust visual SLAM in HDR and High Speed Scenarios

UltimateSLAM: combining Events + Frames + IMU

Front End: Feature tracking from Events and Frames

Back-End State-of-the-art Sliding-Window Visual-inertial Fusion

Rosinol et al., Ultimate SLAM? **RAL'18 – Best RAL'18 Paper Award Honorable Mention** <u>PDF</u>. <u>Video</u>. <u>IEEE Spectrum</u>. Mueggler et al., Continuous-Time Visual-Inertial Odometry for Event Cameras, **TRO'18**. <u>PDF</u>

Application: Autonomous Drone Navigation in Low Light

UltimateSLAM running on board (CPU: Odroid XU4)

Rosinol et al., Ultimate SLAM? **RAL'18 – Best RAL'18 Paper Award Honorable Mention** <u>PDF</u>. <u>Video</u>. <u>IEEE Spectrum</u>. Mueggler et al., Continuous-Time Visual-Inertial Odometry for Event Cameras, **TRO'18**. <u>PDF</u>

UltimateSLAM: Frames + Events + IMU

85% accuracy gain over standard Visual-Inertial SLAM in HDR and high speed scenes

Rosinol et al., Ultimate SLAM? **RAL'18 – Best RAL'18 Paper Award Honorable Mention** <u>PDF</u>. <u>Video</u>. <u>IEEE Spectrum</u>. Mueggler et al., Continuous-Time Visual-Inertial Odometry for Event Cameras, **TRO'18**. <u>PDF</u>

Learning with Event Cameras

- Synchronous, Dense, Artificial Neural Networks (ANNs) designed for standard images
- Asynchronous, Sparse ANNs
- Asynchronous, Spiking Neural Networks (SNNs)

Input representation

How do we pass sparse events into a convolutional neural network designed for standard images?

Video from Zhu et al. (link)

Input representation

[Maqueda CVPR'18], [Zhu'RSS'18]

- Aggregate positive and negative events into separate channels
- Discards temporal information

[Zhu ECCVW'18], [Rebecq, CVPR'19], [Zhu, CVPR'19]

- Represent events in space-time into a 3D voxel grid (x,y,t)
- Each voxel contains sum of ON and OFF events falling within the voxel
- Preserves temporal information but discards polarity information

[Gehrig, ICCV'19]

- Represent events in space-time as a 4D Event Spike Tensor (x,y,t,p)
- Polarity information is preserved

Input representation

Discretized 3D volume (x,y,t): events are inserted into the volume with trilinear interpolation, resulting in minimal loss in resolution

Video from [Zhu et all, CVPR'19]

[Zhu, ECCVW'18], [Zhu, CVPR'19], [Gehrig, ICCV'19], [Rebecq, CVPR'19]

Focus as Loss Function for Unsupervised Learning

Focus used as loss: maximize sharpness of the aggregated event image.

Video from here

Zhu, Unsupervised Event-based Learning of Optical Flow, Depth and Egomotion, CVPR 19. <u>PDF</u> Gallego et al., Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, <u>PDF</u>.

Focus as Loss Function for Unsupervised Learning

- We proposed and benchmarked 22 focus loss functions
- Focus is the "data fidelity" term

Gallego et al., Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, PDF.

Application: Unsupervised Learning of Optical Flow, Depth and Ego Motion

Focus used as loss: maximize sharpness of the aggregated event image.

Fidget Spinner w/ Challenging Lighting

Grayscale Image w/ Sparse Flow Quiver

Dense Flow Output

Zhu et al., Unsupervised Learning of Optical Flow, Depth and Ego Motion, CVPR'19

Application: Learning High-speed and HDR Video Rendering from an Event Camera

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

Image Reconstruction from Events

Events

Reconstructed image from events (Samsung DVS)

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

Overview

- Recurrent neural network (main module: Unet)
- Input: last reconstructed frame + sequences of event tensors (spatiotemporal 3D voxels grid: each voxel contains sum of ON and OFF events falling within the voxel)
- Network processes last N events (10,000)
- Trained in simulation only (without seeing a single real image) (we used our event camera simulator: <u>http://rpg.ifi.uzh.ch/esim.htm</u>l)

Event Camera Simulator

Event Camera Simulator (ESIM): <u>http://rpg.ifi.uzh.ch/esim.html</u>

Rebecq, ESIM: an Open Event Camera Simulator, CORL'18. PDF, YouTube, Project page

High Speed Video Reconstruction Results

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

Bullet shot by a gun (376m/s (=1,354km/h)

Recall: trained in simulation only!

Huawei P20 Pro (240 FPS)

Our reconstruction (5400 FPS)

We used Samsung DVS

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

Real time

Bullet shot by a gun (1,300 km/h)

Recall: trained in simulation only!

Huawei P20 Pro (240 FPS)

Our reconstruction (5400 FPS)

100 x slow motion

We used Samsung DVS

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

Bullet shot by a gun (1,300 km/h)

Recall: trained in simulation only!

Huawei P20 Pro (240 FPS)

Our reconstruction (4800 FPS)

We used Samsung DVS

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

Bullet shot by a gun (1,300 km/h)

Recall: trained in simulation only!

Huawei P20 Pro (240 FPS)

 We used Samsung DVS

 Code & datasets: https://github.com/uzh-rpg/rpg_e2vid

Code & datasets. <u>https://github.com/uzh-rpg/rpg_ezvid</u>

Popping a water balloon

Recall: trained in simulation only!

Apple iPad (120 FPS)

Our reconstruction (4800 FPS)

We used Samsung DVS

Real time

* different sequences, recorded in identical conditions

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

Popping a water balloon

Recall: trained in simulation only!

Apple iPad (120 FPS)

Our reconstruction (4800 FPS)

* different sequences, recorded in identical conditions

100 x slow motion

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

HDR Video Reconstruction Results

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

HDR Video: Driving out of a tunnel

Recall: trained in simulation only!

Events

Our reconstruction

Phone camera

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

HDR Video: Night Drive

Recall: trained in simulation only!

GoPro Hero 6

Our reconstruction from events

Code & datasets: https://github.com/uzh-rpg/rpg_e2vid

Color video reconstruction Color events

- Each pixel is sensitive to red, green or blue light.
- Transmits brightness changes in each color channel

Color Event Camera Reconstruction (HDR)

Color events

Our reconstruction

Color frame

Color Event Camera Datasets: <u>http://rpg.ifi.uzh.ch/CED.html</u>

Scheerlinck, Rebecq, Stoffregen, Barnes, Mahony, Scaramuzza CED: Color Event Camera Dataset. CVPRW, 2019. <u>PDF</u> <u>YouTube</u> <u>Dataset</u> Downstream Applications: What if we input the reconstructed frames to state of the art ML algorithms?

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

Monocular Depth Estimation

Events

Our reconstruction

Monocular depth estimation (Megadepth) applied on the reconstructed frames

Code & datasets: <u>https://github.com/uzh-rpg/rpg_e2vid</u>

Object detection

Events

Our reconstruction + object detections (YOLOv3)

Code & datasets: https://github.com/uzh-rpg/rpg e2vid

Does it mean that in order to use event cameras we must first reconstruct an image?

NO!

These results were only to show that it should be possible to design more efficient algorithms that process events end-to-end without passing through image reconstruction!

However, to design end-to-end approaches for event cameras, we need more data! But event cameras are new, so there is a shortage of large scale datasets compared to standard cameras!

Is it possible to **recycle existing** large-scale **video datasets** recorded with standard cameras **for event cameras**?

Idea: convert Standard videos to events!

Code: https://github.com/uzh-rpg/rpg_vid2e

Gehrig et al., "Video to Events: Recycling Video Datasets for Event Cameras", CVPR20. PDF Video Code.

How to we convert a standard video to events?

- > Typical video has a low temporal resolution and needs to upsampled first
- We use off-the-shelf upsampling techniques (Super SloMo [Jiang, CVPR'18])
- Event generation using our event camera simulator (<u>http://rpg.ifi.uzh.ch/esim.html</u>)
- > Noise free simulation. We randomize the contrast sensitivity

Code: https://github.com/uzh-rpg/rpg_vid2e

Gehrig et al., "Video to Events: Recycling Video Datasets for Event Cameras", CVPR20. PDF Video Code.

Experiments on Semantic Segmentation

frames

segmentation labels

events

predictions on events

Code: https://github.com/uzh-rpg/rpg_vid2e

Method: Gehrig et al., "Video to Events: Recycling Video Datasets for Event Cameras", CVPR20. <u>PDF Video Code</u>. Dataset: Binas et al., "DDD17: End-To-End DAVIS Driving Dataset", ICMLW'17. <u>Dataset</u>

Generalization to challenging HDR scenario

frames

prediction on frames

events

prediction on events

Code: https://github.com/uzh-rpg/rpg_vid2e

Gehrig et al., "Video to Events: Recycling Video Datasets for Event Cameras", CVPR20. <u>PDF Video Code</u>. Binas et al., "DDD17: End-To-End DAVIS Driving Dataset", ICMLW'17.

Computational Photography Revolution

Event-based Super-Resolution

- Given low-resolution events as input, reconstruct a high-resolution image
- > For standard images, the spatial resolution is fixed and cannot change
- For event data, high spatial resolution may be hidden in the temporal resolution of the data. Networks can exploit this!

Mostafavi I. et al., "Learning to Super Resolve Intensity Images from Events", CVPR20 Wang et al. "EventSR: From Events to Image Reconstruction, Restoration, and Super-Resolution", CVPR20

Learning with Event Cameras

- Synchronous, Dense, Artificial Neural Networks (ANNs) designed for standard images
- Asynchronous, Sparse ANNs
- Asynchronous, Spiking Neural Networks (SNNs)

Adapting Neural Networks To Event-based Data

Messikommer et al., "Event-based Asynchronous Sparse Convolutional Networks", ECCV'20. PDF Video.

Event-based Asynchronous Sparse Convolutional Networks

- Convolutional neural networks process events as dense image
- However, event-data is inherently sparse and asynchronous, meaning that wasteful computation is being performed
- We can save computation by adopting sparse convolutions [Graham CVPR'18] which only compute the convolution at active pixels

Messikommer et al., "Event-based Asynchronous Sparse Convolutional Networks", ECCV'20. PDF Video.

Event-based Asynchronous Sparse Convolutional Networks

- For each new event we do not have to update the full network layers. Just the pixels which are in the receptive field of the pixel which triggered the event.
- For regular convolutions this receptive field grows quadratically with the depth of the network. However, for sparse convolutions it grows much more slowly.
- This growth rate of the receptive field is related to the fractal dimension, which is an intrinsic property of event data.

Messikommer et al., "Event-based Asynchronous Sparse Convolutional Networks", ECCV'20. PDF Video.

Learning with Event Cameras

- Synchronous, Dense, Artificial Neural Networks (ANNs) designed for standard images
- Asynchronous, Sparse ANNs
- Asynchronous, Spiking Neural Networks (SNNs)

Spiking Neural Networks (SNN)

- Common processing units based on Von Neumann architectures (CPU and GPU) are inefficient & very power consuming for event-by-event processing [1]
- There exists very efficient, specialized hardware for event-by-event inference: IBM TrueNorth [1], Intel Loihi [2], DynapSE & Speck (AiCTX) [3]
- Promising for Robotics, IoT, VR/AR/MR
 - Low power
 - Low latency
 - Leverage event-based sensing
- Promise ultra-low carbon footprint!

[1]: Merolla et. al. A million spiking-neuron integrated circuit with a scalable communication network and interface. *Science*. 2014

[2]: Davies M. et. al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro. 2018
[3]: Moradi S. et. al.. A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors. IEEE transactions on biomedical circuits and systems. 2017. <u>https://aictx.ai/</u>

The Cost of Current Computer Technologies is Not Sustainable

- In 2017, > 10 zettabytes of data were produced.
- IT infrastructures and consumer electronics absorbed > 10% of the global electricity supply.
- By 2025, over 50 billion of Internet-of-Things (IoT) devices will be interconnected.
- Over 180 zettabytes of data will be generated annually, potentially leading to a consumption of onefifth of global electricity (source, Nature, Feb., 2018)

nature

EDITORIAL · 06 FEBRUARY 2018

Big data needs a hardware revolution

Artificial intelligence is driving the next wave of innovations in the semiconductor industry.

"Software companies make headlines but research on computer could bring bigger rewards. "

MIT Technology Review

Training a single AI model can emit as much carbon as five cars in their lifetimes

Deep learning has a terrible carbon footprint.

Jun 6, 2019

The artificial-intelligence industry is often compared to the oil industry: once mined and refined, data, like oil, can be a highly lucrative commodity. Now it seems the metaphor may extend even further. Like its fossil-fuel counterpart, the process of deep learning has an outsize environmental impact. Radical paradigm shift in computer hardware technologies

- Our brain is slow, noisy ("speed" is not a requirement)
- Massively parallel distributed computation, local connectivity(minimize wiring)
- Real-time interaction with the environment
- Complex spatio-temporal pattern recognition

Model of a Spiking Neuron

Mior Roberto (2010). Spiking Neural Network. https://youtu.be/lhldisK7akl

Origins of Spiking Neural Networks

- First model (integrate-and-fire) of a spiking neuron in 1907 by Louis Lapicque [1]
- **First computational model for neural networks in 1943** [2]: Neural network research split into biological processes in the brain and the application for artificial intelligence
- First scientific model of biological spike propagation by Hodgkin and Huxley in **1951** [3] (**Nobel Prize in Physiology**)
- A range of more general spiking neuron models are available nowadays [4]

[1]: Lapicque L. Recherches quantitatives sur l'excitation electrique des nerfs traitee comme une polarization. *Journal de Physiologie et de Pathologie Generale*. 1907

[2]: McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. *The bulletin of mathematical biophysics*. 1943

[3]: Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. *The Journal of physiology*. 1952

[4]: Gerstner W. Time structure of the activity in neural network models. *Physical review*. 1995

SNNs: Current Applications and Demos

- IBM TrueNorth
 - Targeting ultra low-power gesture control, video-surveillance and IoT with SNN on digital processor
 - At CVPR 2017 gesture recognition demo (10 gestures)
 - 96.5 % recognition accuracy
 - **200 mW power consumption** (event-camera + processing)
- Intel Loihi:
 - Targeting ultra low-power surveillance and IoT with SNN on analog processor
- aiCTX (Zurich-based startup):
 - Targeting ultra low-power surveillance and IoT with SNN on analog processor
 - At CES'19 and CVPR'19, they demonstrated face recognition from event data on an SNN processor; total power consumption: 1mW

[1]: https://aictx.ai/

[2]: Merolla et. al. A million spiking-neuron integrated circuit with a scalable communication network and interface. *Science*. 2014

Spiking Neural Network (SNN) Regression

Task: Estimate angular velocity of an event camera with an SNN

- SNNs are asynchronous networks that consume events
- Hence,
 - no additional latency
 - no preprocessing necessary
- We show that **SNNs are competitive to ANNs** on this task

Gehrig et al., "Event-Based Angular Velocity Regression with Spiking Networks", ICRA20 PDF

Conclusions, Takeaways, Resources

Recap

> Event cameras have many advantages:

- high dynamic range (HDR)
- high speed
- low latency
- low power

Current commercial applications

- IoT
 - monitoring and surveillance
- Automotive:
 - low-latency detection, object classification, low-power and low-memory storage
- AR/VR
 - low-latency, inter-frame pose estimation, low-power
- Industrial automation
 - Fast pick and place

Research Challenges with Event Cameras

- Quantify the trade-offs:
 - Latency vs. power consumption and accuracy
 - Sensitivity vs. bandwidth and processing capacity
- Active parameter adaptation
- > Hardware:
 - pairing event cameras with dedicated hardware (SNN hardware, e.g., Intel Loihi, aiCTX Speck)
 - How do we make sparse convolution in space and time efficient?
- Learning with event cameras:
 - How do we exploit knowledge from image-based learning to event cameras?
 - Asynchronous inference
 - Where do we find learning data? Event data is much more rare than frames. Potential solutions: unsupervised Learning, learning in simulation, transfer learning from frames to events

Reference: T-PAMI 2020 paper

Event-based Vision: A Survey

Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger, Andrew Davison, Jörg Conradt, Kostas Daniilidis, Davide Scaramuzza

Abstract— Event cameras are bio-inspired sensors that work radically different from traditional cameras. Instead of capturing images at a fixed rate, they measure per-pixel brightness changes asynchronously. This results in a stream of events, which encode the time, location and sign of the brightness changes. Event cameras posses outstanding properties compared to traditional cameras: very high dynamic range (140 dB vs. 60 dB), high temporal resolution (in the order of μ s), low power consumption, and do not suffer from motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as high speed and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world.

Index Terms-Event Cameras, Bio-Inspired Vision, Asynchronous Sensor, Low Latency, High Dynamic Range, Low Power.

1 INTRODUCTION AND APPLICATIONS

I HE brain is imagination, and that was exciting to me; I wanted to build a chip that could imagine something¹." that is how Misha Mahowald, a graduate student at Caltech in 1986, started to work with Prof. Carver Mead on the stereo problem from a joint biological and engineering per-

as well as new computer vision and robotic tasks. Sight is, by far, the dominant sense in humans to perceive the world, and, together with the brain, learn new things. In recent years, this technology has attracted a lot of attention from both academia and industry. This is due to the availability of prototype event cameras and the advantages that these dovices offer to tackle problems that are currently unfeasible

http://rpg.ifi.uzh.ch/docs/EventVisionSurvey.pdf

CVPR19 Workshop on Event-based Vision

- Full-day workshop with talks by 23 researchers on event-based cameras, including Samsung, Intel, and event-camera companies
- Slides and video recordings:

http://rpg.ifi.uzh.ch/CVPR19_event_vision_workshop.html

Second International Workshop on Event-based Vision and Smart Cameras June 17, Long Beach

Held in conjuction with the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach.

List of Event-based Vision resources

Code, datasets, papers, videos, companies on event cameras

https://github.com/uzh-rpg/event-based vision resources

♥ GitHub - uzh-rpg/event-based_vi × +			- 🗆
\leftrightarrow \rightarrow C $\$ G GitHub, Inc. [US] https:	//github.com/uzh-rpg/event-based_vis	sion_resources	☆ ◙ & ⊖
uzh-rpg / event-based_vision_re	esources	• Watch	77 🖈 Star 444 😵 Fork 146
♦ Code ① Issues 1 ⑦ Pull reques	ts 2 🕕 Security 📊 Insights		
No description, website, or topics provia	led.		
334 commits	کا 2 branches	𝔝 0 releases	23 contributors
Branch: master ▼ New pull request			Find File Clone or download -
🥃 guillermogb Update README.md			Latest commit f2df89e 3 hours ago
Contributing.md	abbrev link ieee		6 months ago
README.md	Update README.n	nd	3 hours ago
E README.md			
Event-based Vis	sion Resources	Γ	1:2:3:0 D
Table of Contents:		អ	
Survey paper			
Devices and Manufacturers		Ï	714CCD
Companies working on Event-based Vision		Ľ	1 M G-776

UZH-FPV Drone Racing Dataset & Competition

- Recorded with a drone flown by a professional pilot up to over 20m/s
- Contains over 30 sequences with images, events, IMU, and ground truth from a robotic total station: <u>http://rpg.ifi.uzh.ch/uzh-fpv.html</u>
- IROS 2019 Drone Racing VIO competition: <u>https://github.com/uzh-rpg/IROS2019-FPV-VIO-Competition</u> Win up to \$2,000 plus invited talk . <u>Submission deadline: Sep. 27, 2020</u>

Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA'19 <u>PDF</u>. <u>Video</u>. <u>Datasets</u>.

Thanks!

Code, datasets, simulators, papers, and videos: <u>http://rpg.ifi.uzh.ch/research_dvs.html</u>

Research updates:

