
1

Semi-Direct Visual Odometry for Monocular,
Wide-angle, and Multi-Camera Systems

Christian Forster, Zichao Zhang, Michael Gassner, Manuel Werlberger, Davide Scaramuzza

Abstract—Direct methods for Visual Odometry (VO) have
gained popularity due to their capability to exploit information
from all image gradients in the image. However, low com-
putational speed as well as missing guarantees for optimality
and consistency are limiting factors of direct methods, where
established feature-based methods instead succeed at. Based on
these considerations, we propose a Semi-direct VO (SVO) that
uses direct methods to track and triangulate pixels that are
characterized by high image gradients but relies on proven
feature-based methods for joint optimization of structure and
motion. Together with a robust probabilistic depth estimation
algorithm, this enables us to efficiently track pixels lying on weak
corners and edges in environments with little or high-frequency
texture. We further demonstrate that the algorithm can easily be
extended to multiple cameras, to track edges, to include motion
priors, and to enable the use of very large field of view cameras,
such as fisheye and catadioptric ones. Experimental evaluation
on benchmark datasets shows that the algorithm is significantly
faster than the state of the art while achieving highly competitive
accuracy.

SUPPLEMENTARY MATERIAL

Video of the experiments: http://rpg.ifi.uzh.ch/svo2

I. INTRODUCTION

Estimating the six degrees-of-freedom motion of a camera
merely from its stream of images has been an active field
of research for several decades [1–6]. Today, state-of-the-art
visual SLAM (V-SLAM) and visual odometry (VO) algorithms
run in real-time on smart-phone processors and approach
the accuracy, robustness, and efficiency that is required to
enable various interesting applications. Examples comprise the
robotics and automotive industry, where the ego-motion of
a vehicle must be known for autonomous operation. Other
applications are virtual and augmented reality, which requires
precise and low latency pose estimation of mobile devices.

The central requirement for the successful adoption of
vision-based methods for such challenging applications is
to obtain highest accuracy and robustness with a limited
computational budget. The most accurate camera motion esti-
mate is obtained through joint optimization of structure (i.e.,
landmarks) and motion (i.e., camera poses). For feature-based
methods, this is an established problem that is commonly
known as bundle adjustment [7] and many solvers exist,

The authors are with with the Robotics and Perception Group, University
of Zurich, Switzerland. Contact information: {forster, zzhang, gassner,
werlberger, sdavide}@ifi.uzh.ch. This research was partially funded by the
Swiss National Foundation (project number 200021-143607, Swarm of Flying
Cameras), the National Center of Competence in Research Robotics (NCCR),
the UZH Forschungskredit, and the SNSF-ERC Starting Grant.

which address the underlying non-linear least-squares problem
efficiently [8–11]. Three aspects are key to obtain highest
accuracy when using sparse feature correspondence and bundle
adjustment: (1) long feature tracks with minimal feature drift,
(2) a large number of uniformly distributed features in the
image plane, and (3) reliable association of new features to
old landmarks (i.e., loop-closures).

The probability that many pixels are tracked reliably, e.g.,
in scenes with little or high frequency texture (such as sand
[12] or asphalt [13]), is increased when the algorithm is not
restricted to use local point features (e.g., corners or blobs)
but may track edges [14] or more generally, all pixels with
gradients in the image, such as in dense [15] or semi-dense
approaches [16]. Dense or semi-dense algorithms that operate
directly on pixel-level intensities are also denoted as direct
methods [17]. Direct methods minimize the photometric error
between corresponding pixels in contrast to feature-based
methods, which minimize the reprojection error. The great
advantage of this approach is that there is no prior step of
data association: this is implicitly given through the geometry
of the problem. However, joint optimization of dense structure
and motion in real-time is still an open research problem, as
is the optimal and consistent [18, 19] fusion of direct methods
with complementary measurements (e.g., inertial). In terms
of efficiency, previous direct methods are computationally
expensive as they require a semi-dense [16] or dense [15]
reconstruction of the environment, while the dominant cost
of feature-based methods is the extraction of features and
descriptors, which incurs a high constant cost per frame.

In this work, we propose a VO algorithm that combines
the advantages of direct and feature-based methods. We in-
troduce the sparse image alignment algorithm (Sec. V), an
efficient direct approach to estimate frame-to-frame motion
by minimizing the photometric error of features lying on
intensity corners and edges. The 3D points corresponding to
features are obtained by means of robust recursive Bayesian
depth estimation (Sec. VI). Once feature correspondence is
established, we use bundle adjustment for refinement of the
structure and the camera poses to achieve highest accuracy
(Sec. V-B). Consequently, we name the system semi-direct
visual odometry (SVO).

Our implementation of the proposed approach is exception-
ally fast, requiring only 2.5 milliseconds to estimate the pose
of a frame on a standard laptop computer, while achieving
comparable accuracy with respect to the state of the art
on benchmark datasets. The improved efficiency is due to
three reasons: firstly, SVO extracts features only for selected
keyframes in a parallel thread, hence, decoupled from hard

http://rpg.ifi.uzh.ch/svo2

2

real-time constraints. Secondly, the proposed direct tracking
algorithm removes the necessity for robust data association.
Finally, contrarily to previous direct methods, SVO requires
only a sparse reconstruction of the environment.

This paper extends our previous work [20], which was also
released as open source software.1 The novelty of the present
work is the generalization to wide FoV lenses (Sec. VII),
multi-camera systems (Sec. VIII), the inclusion of motion
priors (Sec. IX) and the use of edgelet features. Additionally,
we present several new experimental results in Sec. XI with
comparisons against previous works.

II. RELATED WORK

Methods that simultaneously recover camera pose and scene
structure, can be divided into two classes:

a) Feature-based: The standard approach to solve this
problem is to extract a sparse set of salient image features
(e.g. corners, blobs) in each image; match them in successive
frames using invariant feature descriptors; robustly recover
both camera motion and structure using epipolar geometry;
and finally, refine the pose and structure through reprojection
error minimization. The majority of VO and V-SLAM algo-
rithms [6] follow a variant of this procedure. A reason for the
success of these methods is the availability of robust feature
detectors and descriptors that allow matching images under
large illumination and view-point changes. Feature descriptors
can also be used to establish feature correspondences with
old landmarks when closing loops, which increases both the
accuracy of the trajectory after bundle adjustment [7, 21] and
the robustness of the overall system due to re-localization
capabilities. This is also where we draw the line between VO
and V-SLAM: While VO is only about incremental estimation
of the camera pose, V-SLAM algorithms, such as [22], detect
loop-closures and subsequently refine large parts of the map.

The disadvantage of feature-based approaches is their
low speed due to feature extraction and matching at every
frame, the necessity for robust estimation techniques that
deal with erroneous correspondences (e.g., RANSAC [23], M-
estimators [24]), and the fact that most feature detectors are
optimized for speed rather than precision. Furthermore, relying
only on well localized salient features (e.g., corners), only a
small subset of the information in the image is exploited.

In SVO, features are extracted only for selected keyframes,
which reduces the computation time significantly. Once ex-
tracted, a direct method is used to track features from frame to
frame, resulting in outlier-free and sub-pixel precise matches.
Apart from well localized corner features, this allows tracking
and mapping any pixel with non-zero intensity gradient.

b) Direct methods: Direct methods estimate structure
and motion directly by minimizing an error measure that is
based on the image’s pixel-level intensities [17]. The local
intensity gradient magnitude and direction is used in the
optimization compared to feature-based methods that consider
only the distance to a feature-location. Pixel correspondence
is given directly by the geometry of the problem, eliminating
the need for robust data association techniques. However, this

1http://github.com/uzh-rpg/rpg svo

makes the approach dependent on a good initialization that
must lie in the basin of attraction of the cost function.

Using a direct approach, the six degree of freedom (DoF)
motion of a camera can be recovered by image-to-model
alignment, which is the process of aligning the observed
image to a view synthesized from the estimated 3D map.
Early direct VO methods tracked and mapped few—sometimes
manually selected—planar patches [25–29]. By estimating the
surface normals of the patches [30], they could be tracked
over a wide range of viewpoints. In [31], the local planarity
assumption was relaxed and direct tracking with respect to
arbitrary 3D structures computed from stereo cameras was
proposed. For RGB-D cameras, where a dense depth-map
for each image is given by the sensor, dense image-to-
model alignment was subsequently introduced in [32–34]. In
conjunction with dense depth registration this has become
the standard in camera tracking for RGB-D cameras [35–
38]. With DTAM [15], a direct method was introduced that
computes a dense depthmap from a single moving camera
in real-time. The camera pose is found through direct whole
image alignment using the depthmap. However, inferring a
dense depthmaps from monocular images is computationally
intensive and is typically addressed using GPU parallelism,
such as in the open-source REMODE algorithm [39]. Early
on it was realized that only pixels with an intensity gradient
provide information for motion estimation [40]. In this spirit,
a semi-dense approach was proposed in [41] where the depth
is only estimated for pixels with high intensity gradients. In
our experimental evaluation in Sec. XI-A we show that it is
possible to reduce the number of tracked pixels even more for
frame-to-frame motion estimation without any noticeable loss
in robustness or accuracy. Therefore, we propose the sparse
image-to-model alignment algorithm that uses only sparse
pixels at corners and along image intensity gradients.

A disadvantage of direct methods is that joint optimization
of dense structure and motion in real-time is still an open
research problem. For this reason, the standard approach is to
estimate the latest camera pose with respect to a previously
accumulated dense map and subsequently, given a set of esti-
mated camera poses, update the dense map [15, 42]. Clearly,
this separation of tracking and mapping only results in optimal
accuracy when the output of each stage yields the optimal
estimate. Other algorithms optimize a graph of poses but do
not allow a deformation of the structure once triangulated [16].
Contrarily, some algorithms ignore the camera poses and in-
stead allow non-rigid deformation of the 3D structure [36, 38].
The obtained results are accurate and visually impressive,
however, a thorough probabilistic treatment is missing when
processing measurements, separating tracking and mapping, or
fixating and removing states. To the best of our knowledge, it
is therefore currently not possible to obtain accurate covariance
estimates from dense VO. Hence, the consistent fusion [18, 43]
with complementary sensors (e.g., inertial) is currently not
possible. In the proposed work, we use direct methods only to
establish feature correspondence. Subsequently, bundle adjust-
ment can be used for joint optimization of structure and motion
where it is also possible to include inertial measurements as
we have demonstrated in previous work [44].

http://github.com/uzh-rpg/rpg_svo

3

Sparse Model-based
Image Alignment

Feature Alignment

Pose & Structure
Refinement

Motion Estimation Thread

New Image

Last Frame

Map

Frame
Queue

Feature
Extraction

Initialize
Depth-Filters

Mapping Thread

Is
Keyframe?

yes

Update
Depth-Filters

yes:
insert
new Point

no

Converged?

Fig. 1: Tracking and mapping pipeline

III. SYSTEM OVERVIEW

Figure 1 provides an overview of the proposed approach.
We use two parallel threads (as in [21]), one for estimating
the camera motion, and a second one for mapping as the
environment is being explored. This separation allows fast and
constant-time tracking in one thread, while the second thread
extends the map, decoupled from hard real-time constraints.

The motion-estimation thread implements the proposed
semi-direct approach to motion estimation. Our approach is
divided into three steps: sparse image alignment, relaxation,
and refinement (Fig. 1). Sparse image alignment estimates
frame-to-frame motion by minimizing the intensity difference
of features that correspond to the projected location of the
same 3D points. A subsequent step relaxes the geometric
constraint to obtain sub-pixel feature correspondence. This
step introduces a reprojection error, which we finally refine
by means of bundle adjustment.

In the mapping thread, a probabilistic depth-filter is initial-
ized for each feature for which the corresponding 3D point is
to be estimated. New depth-filters are initialized whenever a
new keyframe is selected for corner pixels as well as for pixels
along intensity gradient edges. The filters are initialized with
a large uncertainty in depth and undergo a recursive Bayesian
update with every subsequent frame. When a depth filter’s
uncertainty becomes small enough, a new 3D point is inserted
in the map and is immediately used for motion estimation.

IV. NOTATION

The intensity image recorded from a moving camera C at
timestep k is denoted with IC

k : ΩC ⊂ R2 7→ R, where ΩC is
the image domain. Any 3D point ρ ∈ R3 maps to the image
coordinates u ∈ R2 through the camera projection model:
u = π(ρ). Given the inverse scene depth ρ > 0 at pixel
u ∈ RC

k, the position of a 3D point is obtained using the
back-projection model ρ = π−1

ρ (u). Where we denote with
RC
k ⊆ Ω those pixels for which the depth is known at time

ρ3

Tk,k−1

u′3
Ick−1

Ick

u3

ρ2
ρ1

u1

u2

u′1
u′2

TCB
TCB

Fig. 2: Changing the relative pose Tk,k−1 between the current and the
previous frame implicitly moves the position of the reprojected points in the
new image u′i. Sparse image alignment seeks to find Tk,k−1 that minimizes
the photometric difference between image patches corresponding to the same
3D point (blue squares). Note, in all figures, the parameters to optimize are
drawn in red and the optimization cost is highlighted in blue.

k in camera C. The projection models are known from prior
calibration [45].

The position and orientation of the world frame W with
respect to the kth camera frame is described by the rigid body
transformation TkW ∈ SE(3) [46]. A 3D point Wρ that is
expressed in world coordinates can be transformed to the kth

camera frame using: kρ = TkW Wρ.

V. MOTION ESTIMATION

In this section, we describe the proposed semi-direct ap-
proach to motion estimation, which assumes that the position
of some 3D points corresponding to features in previous
frames are known from prior depth estimation.

A. Sparse Image Alignment

Image to model alignment estimates the incremental camera
motion by minimizing the intensity difference (photometric
error) of pixels that observe the same 3D point.

To simplify a later generalization to multiple cameras, we
introduce a body frame B that is rigidly attached to the camera
frame C with known extrinsic calibration TCB ∈ SE(3) (see
Fig. 2). Our goal is to estimate the incremental motion of the
body frame Tkk−1

.
= TBkBk−1

such that the photometric error
is minimized:

T?kk−1 = arg min
Tkk−1

∑
u∈R̄C

k−1

1

2
‖rIC

u
(Tkk−1)‖2ΣI

, (1)

where the photometric residual rIC
u

is defined by the intensity
difference of pixels in subsequent images IC

k and IC
k−1 that

observe the same 3D point ρu:

rIC
u
(Tkk−1)

.
= IC

k

(
π(TCBTkk−1 ρu)

)
− IC

k−1

(
π(TCB ρu)

)
. (2)

The 3D point ρu (which is expressed in the reference frame
Bk−1) can be computed for pixels with known depth by means
of back-projection:

ρu = TBC π
−1
ρ (u), ∀ u ∈ RC

k−1, (3)

4

(a) Sparse (b) Semi-Dense (c) Dense

Fig. 3: An image from the ICL-NUIM dataset (Sec. XI-B3) with pixels used
for image-to-model alignment (marked in green for corners and magenta for
edgelets) for sparse, semi-dense, and dense methods. Dense approaches (c)
use every pixel in the image, semi-dense (b) use just the pixels with high
intensity gradient, and the proposed sparse approach (a) uses selected pixels
at corners or along intensity gradient edges.

However, the optimization in Eq. (1) includes only a subset
of those pixels R̄C

k−1 ⊆ RC
k−1, namely those for which the

back-projected points are also visible in the image IC
k:

R̄C
k−1 =

{
u
∣∣ u ∈ RC

k−1 ∧ π
(
TCBTkk−1TBC π

−1
ρ (u)

)
∈ ΩC

}
.

Image to model alignment has previously been used in
the literature to estimate camera motion. Apart from minor
variations in the formulation, the main difference among the
approaches is the source of the depth information as well as
the region RC

k−1 in image IC
k for which the depth is known.

As discussed in Section II, we denote methods that know
and exploit the depth for all pixels in the reference view
as dense methods [15]. Converseley, approaches that only
perform the alignment for pixels with high image gradients
are denoted semi-dense [41]. In this paper, we propose a novel
sparse image alignment approach that assumes known depth
only for corners and features lying on intensity edges. Fig. 3
summarizes our notation of dense, semi-dense, and sparse
approaches.

To make the sparse approach more robust, we propose to
aggregate the photometric cost in a small patch centered at
the feature pixel. Since the depth for neighboring pixels is
unknown, we approximate it with the same depth that was
estimated for the feature.

To summarize, sparse image alignment solves the non-linear
least squares problem in Eq. (1) with RC

k−1 corresponding
to small patches centered at corner and edgelet features with
known depth. This optimization can be solved efficiently using
standard iterative non-linear least squares algorithms such
as Levenberg-Marquardt. More details on the optimization,
including the analytic Jacobians, are provided in the Appendix.

B. Relaxation and Refinement

Sparse image alignment is an efficient method to estimate
the incremental motion between subsequent frames. However,
to minimize drift in the motion estimate, it is paramount
to register a new frame to the oldest frame possible. One
approach is to use an older frame as reference for image
alignment [16]. However, the robustness of the alignment
cannot be guaranteed as the distance between the frames in
the alignment increases (see experiment in Section XI-A). We
therefore propose to relax the geometric constraints given by
the reprojection of 3D points and to perform an individual
2D alignment of corresponding feature patches. The alignment

n

δu

(a) Edge alignment.

δu

(b) Corner alignment.

Fig. 4: Different alignment strategies for corners and edgelets. The alignment
of an edge feature is restricted to the normal direction n of the edge.

of each patch in the new frame is performed with respect
to a reference patch from the frame where the feature was
first extracted; hence, the oldest frame possible, which should
maximally minimize feature drift. However, the 2D alignment
generates a reprojection error that is the difference between the
projected 3D point and the aligned feature position. Therefore,
in a final step, we perform bundle adjustment to optimize both
the 3D point’s position and the camera poses such that this
reprojection error is minimized.

In the following, we detail our approach to feature alignment
and bundle adjustment. Thereby, we take special care of
features lying on intensity gradient edges.

2D feature alignment minimizes the intensity difference
of a small image patch P that is centered at the projected
feature position u′ in the newest frame k with respect to
a reference patch from the frame r where the feature was
first observed (see Fig. 4). To improve the accuracy of the
alignment, we apply an affine warping A to the reference
patch, which is computed from the estimated relative pose
Tkr between the reference frame and the current frame [21].
For corner features, the optimization computes a correction
δu? ∈ R2 to the predicted feature position u′ that minimizes
the photometric cost:

u′
?

= u′ + δu?, with u′ = π
(
TCB Tkr TBC π

−1
ρ (u)

)
(4)

δu? = arg min
δu

∑
∆u∈P

1

2

∥∥∥IC
k (u′+δu+∆u)− IC

r(u + A∆u)
∥∥∥2

,

where ∆u is the iterator variable that is used to compute the
sum over the patch P . This alignment is solved using the
inverse compositional Lucas-Kanade algorithm [47].

For features lying on intensity gradient edges, 2D feature
alignment is problematic because of the aperture problem —
features may drift along the edge. Therefore, we limit the
degrees of freedom in the alignment to the normal direction
to the edge. This is illustrated in Fig. 4a, where a warped
reference feature patch is schematically drawn at the predicted
position in the newest image. For features on edges, we
therefore optimize for a scalar correction δu? ∈ R in the
direction of the edge normal n to obtain the corresponding
feature position u′

? in the newest frame:

u′
?

= u′ + δu? · n, with (5)

δu?=arg min
δu

∑
∆u∈P

1

2

∥∥∥IC
k (u′+δu·n+∆u)−IC

r(u + A∆u)
∥∥∥2

.

This is similar to previous work on VO with edgelets, where
feature correspondence is found by sampling along the normal
direction for abrupt intensity changes [14, 48–52]. However,

5

in our case, sparse image alignment provides a very good
initialization of the feature position, which directly allows us
to follow the intensity gradient in an optimization.

After feature alignment, we have established feature corre-
spondence with subpixel accuracy. However, feature alignment
violated the epipolar constraints and introduced a reprojection
error δu, which is typically well below 0.5 pixels. Therefore,
in the last step of motion estimation, we refine the camera
poses and landmark positions X = {TkW,ρi} by minimizing
the squared sum of reprojection errors:

X ? = arg min
X

∑
k∈K

∑
i∈LC

k

1

2
‖u′?i − π

(
TCB TkW ρi

)
‖2 (6)

+
∑
k∈K

∑
i∈LE

k

1

2
‖nT

i

(
u′
?
i − π

(
TCB TkW ρi

))
‖2

where K is the set of all keyframes in the map, LCk the set of
all landmarks corresponding to corner features, and LEk the set
of all edge features that were observed in the kth camera frame.
The reprojection error of edge features is projected along the
edge normal because the component along the edge cannot be
determined.

The optimization problem in Eq. (6) is a standard bundle
adjustment problem that can be solved in real-time using
iSAM2 [9]. In [44] we further show how the objective function
can be extended to include inertial measurements.

While optimization over the whole trajectory in Eq. (6)
results in the most accurate results (see Sec. XI-B), we found
that for many applications (e.g. for state estimation of micro
aerial vehicles [20, 53]) it suffices to only optimize the latest
camera pose and the 3D points separately.

VI. MAPPING

In the previous section, we assumed that the depth at sparse
feature locations in the image is known. In this section, we
describe how the mapping thread estimates this depth for
newly detected features. Therefore, we assume that the camera
poses are known from the motion estimation thread.

The depth at a single pixel is estimated from multiple
observations by means of a recursive Bayesian depth filter.
New depth filters are initialized at intensity corners and along
gradient edges when the number of tracked features falls below
some threshold and, therefore, a keyframe is selected. Every
depth filter is associated to a reference keyframe r, where
the initial depth uncertainty is initialized with a large value.
For a set of previous keyframes2 as well as every subsequent
frame with known relative pose {Ik, Tkr}, we search for a
patch along the epipolar line that has the highest correlation
(see Fig. 5). Therefore, we move the reference patch along
the epipolar line and compute the zero mean sum of squared
differences. From the pixel with maximum correlation, we
triangulate the depth measurement ρ̃ki , which is used to update

2In the previous publication of SVO [20] and in the open source imple-
mentation we suggested to update the depth filter only with newer frames
k > r, which works well for down-looking cameras in micro aerial vehicle
applications. However, for forward motions, it is beneficial to update the depth
filters also with previous frames k < r, which increases the performance with
forward-facing cameras.

Tr,k

Ir

Ik

ρ̂i

ui u′i

ρ̃ki

ρmini

ρmaxi

Fig. 5: Probabilistic depth estimate ρ̂i for feature i in the reference frame r.
The point at the true depth projects to similar image regions in both images
(blue squares). Thus, the depth estimate is updated with the triangulated depth
ρ̃ki computed from the point u′i of highest correlation with the reference patch.
The point of highest correlation lies always on the epipolar line in the new
image.

the depth filter. If enough measurements were obtained such
that uncertainty in the depth is below a certain threshold,
we initialize a new 3D point at the estimated depth, which
subsequently can be used for motion estimation (see system
overview in Fig. 1). This approach for depth estimation also
works for features on gradient edges. Due to the aperture
problem, we however skip measurements where the edge is
parallel to the epipolar line.

Ideally, we would like to model the depth with a non-
parametric distribution to deal with multiple depth hypotheses
(top rows in Fig. 6). However, this is computationally too
expensive. Therefore, we model the depth filter according to
[54] with a two dimensional distribution: the first dimension
is the inverse depth ρ [55], while the second dimension γ
is the inlier probability (see bottom rows in Fig. 6). Hence,
a measurement ρ̃ki is modeled with a Gaussian + Uniform
mixture model distribution: an inlier measurement is normally
distributed around the true inverse depth ρi while an outlier
measurement arises from a uniform distribution in the interval
[ρmin
i , ρmax

i]:

p(ρ̃ki |ρi, γi) = γiN
(
ρ̃ki
∣∣ρi, τ2

i

)
+(1−γi)U

(
ρ̃ki
∣∣ρmin
i , ρmax

i

)
, (7)

where τ2
i the variance of a good measurement that can be

computed geometrically by assuming a disparity variance of
one pixel in the image plane [39].

Assuming independent observations, the Bayesian estima-
tion for ρ on the basis of the measurements ρ̃r+1, . . . , ρ̃k is
given by the posterior

p(ρ, γ|ρ̃r+1, . . . , ρ̃k) ∝ p(ρ, γ)
∏
k

p(ρ̃k|ρ, γ), (8)

with p(ρ, γ) being a prior on the true inverse depth and the
ratio of good measurements supporting it. For incremental
computation of the posterior, the authors of [54] show that (8)
can be approximated by the product of a Gaussian distribution
for the depth and a Beta distribution for the inlier ratio:

q(ρ, γ|ak, bk, µk, σ2
k) = Beta(γ|ak, bk)N (ρ|µk, σ2

k), (9)

where ak and bk are the parameters controlling the Beta
distribution. The choice is motivated by the fact that the
Beta × Gaussian is the approximating distribution mini-

6

0 50 100 150 200 250 300 350 400

Inverse Depth

0

0.5

1

γ

(a) After 3 measurements with 70% inlier probability.

0 50 100 150 200 250 300 350 400

Inverse Depth

0

0.5

1

γ

(b) After 30 measurements with 70% inlier probability.

Fig. 6: Illustration of posterior distributions for depth estimation. The his-
togram in the top rows show the measurements affected by outliers. The
distribution in the middle rows show the posterior distribution when modeling
the depth with a single variate Gaussian distribution. The bottom rows show
the posterior distribution of the proposed approach that is using the model
from [54]. The distribution is bi-variate and models the inlier probability
(vertical axis) together with the inverse depth (horizontal axis).

mizing the Kullback-Leibler divergence from the true poste-
rior (8). Upon the k-th observation, the update takes the form

p(ρ, γ|ρ̃r+1, . . . , ρ̃k) ≈ q(d, γ|ak−1, bk−1, µk−1, σ
2
k−1)

· p(ρ̃k|d, γ) · const, (10)

and the authors of [54] approximated the true posterior (10)
with a Beta × Gaussian distribution by matching the first
and second order moments for d̂ and γ. The updates formulas
for ak, bk, µk and σ2

k are thus derived and we refer to the
original work in [54] for the details on the derivation.

Fig. 6 shows a small simulation experiment that highlights
the advantage of the model proposed in [54]. The histogram
in the top rows show the measurements that are corrupted
by 30% outlier measurements. The distribution in the middle
rows show the posterior distribution when modeling the depth
with a single variate Gaussian distribution as used for instance
in [41]. Outlier measurements have a huge influence on the
mean of the estimate. The figures in the bottom rows show
the posterior distribution of the proposed approach that is
using the model from [54] with the inlier probability drawn
in the vertical axis. As more measurements are received at
the same depth, the inlier probability increases. In this model,
the mean of the estimate is less affected by outliers while the
inlier probability is informative about the confidence of the
estimate. Fig. 7 shows qualitatively the importance of robust

Correct match

Epipolar line

Reference patch

Outlier match

Fig. 7: Illustration of the epipolar search to estimate the depth of the pixel
in the center of the reference patch in the left image. Given the extrinsic and
intrinsic calibration of the two images, the epipolar line that corresponds to
the reference pixel is computed. Due to self-similar texture, erroneous matches
along the epipolar line are frequent.

depth estimation in self-similar environments, where outlier
matches are frequent.

In [39] we demonstrate how the same depth filter can be
used for dense mapping.

VII. LARGE FIELD OF VIEW CAMERAS

To model large optical distortion, such as fisheye and
catadioptric (see Fig. 8), we use the camera model proposed
in [56], which models the projection π(·) and unprojection
π−1(·) functions with polynomials. Using the Jacobians of the
camera distortion in the sparse image alignment and bundle
adjustment step is sufficient to enable motion estimation for
large FoV cameras.

For estimating the depth of new features (c.f., Sec. VI), we
need to sample pixels along the epipolar line. For distorted
images, the epipolar line is curved (see Fig. 7). Therefore, we
regularly sample the great circle, which is the intersection
of the epipolar plane with the unit sphere centered at the
camera pose of interest. The angular resolution of the sampling
corresponds approximately to one pixel in the image plane.
For each sample, we apply the camera projection model π(·)
to obtain the corresponding pixel coordinate on the curved
epipolar line.

VIII. MULTI-CAMERA SYSTEMS

The proposed semi-direct camera motion estimation starts
directly with an optimization of the relative pose Tkk−1. Since
in Sec. V-A we already introduced a body frame B that is
rigidly attached to the camera, it is now straightforward to
generalize sparse image alignment to multiple rigidly attached
and synchronized cameras. Let us assume that given a camera
rig with M cameras (see Fig. 9). The extrinsic calibration of
the individual cameras c ∈ C with respect to the body frame
TCB is assumed to be known from prior extrinsic calibration3.
To use multiple cameras, we only need to add an extra sum-
mation in the cost function of Eq. (1) to use the information
from all images for sparse image alignment:

T?kk−1 = arg min
Tkk−1

∑
C∈C

∑
u∈R̄C

k−1

1

2
‖rIC

u
(Tkk−1)‖2ΣI

. (11)

The same summation is necessary in the bundle adjustment
step to sum the reprojection errors from all cameras. The
remaining steps of feature alignment and mapping are inde-
pendent of how many cameras are used. To summarize, the

3We use the calibration toolbox Kalibr [45], which is available at https:
//github.com/ethz-asl/kalibr

https://github.com/ethz-asl/kalibr
https://github.com/ethz-asl/kalibr

7

(a) Perspective (b) Fisheye (c) Catadioptric

Fig. 8: Different optical distortion models that are supported by SVO.

only modification to enable the use of multiple cameras is to
refer the optimizations to a central body frame, which requires
us to include the extrinsic calibration TCB in the Jacobians as
shown in the Appendix.

IX. MOTION PRIORS

In feature-poor environments, during rapid motions, or in
case of dynamic obstacles it can be very helpful to employ
a motion prior. A motion prior is an additional term that is
added to the cost function in Eq. (11), which penalizes motions
that are not in agreement with the prior estimate. Thereby,
“jumps” in the motion estimate due to unconstrained degrees
of freedom or outliers can be suppressed. In a car scenario for
instance, a constant velocity motion model may be assumed
as the inertia of the car prohibits sudden changes from one
frame to the next. Other priors may come from additional
sensors such as gyroscopes, which allow us to measure the
incremental rotation between two frames.

Let us assume that we are given a relative translation
prior p̃kk−1 (e.g., from a constant velocity assumption) and
a relative rotation prior R̃kk−1 (e.g., from integrating a gyro-
scope). In this case, we can employ a motion prior by adding
additional terms to the cost of the sparse image alignment step:

T?kk−1 = arg min
Tkk−1

∑
C∈C

∑
u∈R̄C

k−1

1

2
‖rIC

u
(Tkk−1)‖2ΣI

(12)

+
1

2
‖pkk−1 − p̃kk−1‖2Σp

+
1

2
‖ log(R̃Tkk−1Rkk−1)∨‖2ΣR

,

where the covariances Σp,ΣR are set according to the uncer-
tainty of the motion prior and the variables (pkk−1, Rkk−1)

.
=

Tkk−1 are the current estimate of the relative position and
orientation (expressed in body coordinates B). The logarithm
map maps a rotation matrix to its rotation vector (see Eq. (18)).
Note that the same cost function can be added to the bundle
adjustment step. For further details on solving Eq. (12), we
refer the interested reader to the Appendix.

X. IMPLEMENTATION DETAILS

In this section we provide additional details on various
aspects of our implementation.

TBC2
TBC1

Tkk−1
Body Frame

Fig. 9: Visual odometry with multiple rigidly attached and synchronized
cameras. We know the relative pose of each camera to the body frame TBCj
from extrinsic calibration and the goal is to estimate the relative motion of
the body frame Tkk−1.

A. Initialization
The algorithm is bootstrapped to obtain the pose of the first

two keyframes and the initial map using the 5-point relative
pose algorithm from [57].

B. Sparse Image Alignment
For sparse image alignment, we use a patch size of 4 × 4

pixels. In the experimental section we demonstrate that the
sparse approach with such a small patch size achieves com-
parable performance to semi-dense and dense methods in
terms of robustness when the inter-frame distance is small,
which typically is true for frame-to-frame motion estimation.
In order to cope with large motions, we apply the sparse image
alignment algorithm in a coarse-to-fine scheme. Therefore,
the image is halfsampled to create an image pyramid of five
levels. The photometric cost is then optimized at the coarsest
level until convergence, starting from the initial condition
Tkk−1 = I4×4. Subsequently, the optimization is continued
at the next finer level to improve the precision of the result.
To save processing time, we stop after convergence on the
third level, at which stage the estimate is accurate enough to
initialize feature alignment. To increase the robustness against
dynamic obstacles, occlusions and reflections, we additionally
employ a robust cost function [24, 34].

C. Feature Alignment
For feature alignment we use a patch-size of 8 × 8 pixels.

Since the reference patch may be multiple frames old, we
employ an affine illumination model to cope with illumination
changes [58]. For all experiments we limit the number of
matched features to 180 in order to guarantee a constant cost
per frame.

D. Mapping
In the mapping thread, we divide the image in cells of fixed

size (e.g., 32 × 32 pixels). For every keyframe a new depth-
filter is initialized at the FAST corner [59] with highest score
in the cell unless there is already a 2D-to-3D correspondence
present. In cells where no corner is found, we detect the pixel
with highest gradient magnitude and initialize an edge feature.
This results in evenly distributed features in the image.

To speed up the depth-estimation we only sample a short
range along the epipolar line; in our case, the range corre-
sponds to twice the standard deviation of the current depth
estimate. We use a 8 × 8 pixel patch size for the epipolar
search.

8

(a) Synthetic scene (b) Depth of the scene

(c) Sparse (d) Semi-Dense (e) Dense

Fig. 10: An image from the Urban Canyon dataset [60] (Sec. XI-A) with
pixels used for image-to-model alignment (marked in green) for sparse, semi-
dense, and dense methods. Dense approaches use every pixel in the image,
semi-dense use just the pixels with high intensity gradient, and the proposed
sparse approach uses selected pixels at corners or along intensity gradient
edges.

XI. EXPERIMENTAL EVALUATION

We implemented the proposed VO system in C++ and
tested its performance in terms of accuracy, robustness, and
computational efficiency. We first compare the proposed sparse
image alignment algorithm against semi-dense and dense im-
age alignment algorithms and investigate the influence of the
patch size used in the sparse approach. Finally, in Sec. XI-B
we compare the full pipeline in different configurations against
the state of the art on nine different dataset sequences.

A. Image Alignment: From Sparse to Dense

In this section we evaluate the robustness of the proposed
sparse image alignment algorithm (Sec. V-A) and compare
its performance to semi-dense and dense image alignment
alternatives. Additionally, we investigate the influence of the
patch-size that is used for the sparse approach.

The experiment is based on a synthetic dataset with known
camera motion, depth and calibration [60].4 The camera
performs a forward motion through an urban canyon as the
excerpt of the dataset in Fig. 10a shows. The dataset consists
of 2500 frames with 0.2 meters distance between frames and
a median scene depth of 12.4 meters. For the experiment, we
select a reference image Ir with known depth (see Fig. 10b)
and estimate the relative pose Trk of 60 subsequent images
k ∈ {r + 1, . . . , r + 60} along the trajectory by means of
image to model alignment. For each image pair {Ir, Ik}, the
alignment is repeated 800 times with initial perturbation that
is sampled uniformly within a 2 m range around the true
value. We perform the experiment at 18 reference frames along
the trajectory. The alignment is considered converged when
the estimated relative pose is closer than 0.1 meters from
the ground-truth. The goal of this experiment is to study the
magnitude of the perturbation from which image to model

4The Urban Canyon dataset [60] is available at http://rpg.ifi.uzh.ch/fov.html

0 15 30 45 60
0

20

40

60

80

100

co
n
ve

rg
ed

p
os

es
[%

]

sparse (1x1)

0 15 30 45 60
0

20

40

60

80

100

co
n
ve

rg
ed

p
os

es
[%

]

sparse (2x2)

0 15 30 45 60
0

20

40

60

80

100

co
n
ve

rg
ed

p
os

es
[%

]

sparse (3x3)

0 15 30 45 60
0

20

40

60

80

100
co

n
ve

rg
ed

p
os

es
[%

]

sparse (4x4)

0 15 30 45 60
0

20

40

60

80

100

co
n
ve

rg
ed

p
os

es
[%

]

sparse (5x5)

0 15 30 45 60

frames distance

0

20

40

60

80

100

co
n
ve

rg
ed

p
os

es
[%

]

semi-d.

0 15 30 45 60

frames distance

0

20

40

60

80

100

co
n
ve

rg
ed

p
os

es
[%

]

dense

Fig. 11: Convergence probability of the model-based image alignment algo-
rithm as a function of the distance to the reference image and evaluated for
sparse image alignment with patch sizes ranging from 1× 1 to 5× 5 pixels,
semi-dense, and dense image alignment. The colored region highlights the
68% confidence interval.

http://rpg.ifi.uzh.ch/fov.html

9

alignment is capable to converge as a function of the distance
to the reference image. The performance in this experiment
is a measure of robustness: successful pose estimation from
large initial perturbations shows that the algorithm is capable
of dealing with rapid camera motions. Furthermore, large
distances between the reference image Ir and test image Ik
simulates the performance at low camera frame-rates.

For the sparse image alignment algorithm, we extract 100
FAST corners in the reference image (see Fig. 10c) and
initialize the corresponding 3D points using the known depth-
map from the rendering process. We repeat the experiment
with patch-sizes ranging from 1×1 pixels to 5×5 pixels. We
evaluate the semi-direct approach (as proposed in the LSD
framework [41]) by using pixels along intensity gradients (see
Fig. 10d). Finally, we perform the experiment using all pixels
in the reference image as proposed in DTAM [15].

The results of the experiment are shown in Fig. 11. Each
plot shows a variant of the image alignment algorithm with the
vertical axis indicating the percentage of converged trials and
the horizontal axis the frame index counted from the reference
frame. We can observe that the difference between semi-dense
image alignment and dense image alignment is marginal. This
is because pixels that exhibit no intensity gradient are not
informative for the optimization as their Jacobians are zero
[40]. We suspect that using all pixels becomes only useful
when considering motion blur and image defocus, which is
out of the scope of this evaluation. In terms of sparse image
alignment, we observe a gradual improvement when increasing
the patch size to 4× 4 pixels. A further increase of the patch
size does not show improved convergence and will eventually
suffer from the approximations adopted by not warping the
patches according to the surface orientation.

Compared to the semi-dense approach, the sparse ap-
proaches do not reach the same convergence radius, partic-
ularly in terms of distance to the reference image. For this
reason SVO uses sparse image alignment only to align with
respect to the previous image (i.e., k = r + 1), in contrast to
LSD [41] which aligns with respect to the last keyframe.

In terms of computational efficiency, we note that the
complexity scales linearly with the number of pixels used
in the optimization. The plots show that we can trade-off
using a high frame rate camera and a sparse approach with
a lower frame-rate camera and a semi-dense approach. The
evaluation of this trade-off would ideally incorporate the power
consumption of both the camera and processors, which is out
of the scope of this evaluation.

B. Real and Synthetic Experiments

In this section, we compare the proposed algorithm against
the state of the art on real and synthetic datasets. Therefore,
we present results of the proposed pipeline on the EUROC
benchmark [61], the TUM RGB-D benchmark dataset [62],
the synthetic ICL-NUIM dataset [37], and our own dataset that
compares different field of view cameras. A selection of these
experiments, among others (e.g., from the KITTI benchmark),
can also be viewed in the video attachment of this paper.

1) Euroc Datasets: The EUROC dataset [61] consists of
stereo images and inertial data that was recorded using a VI-
Sensor [63] that was mounted on a micro aerial vehicle and
flown inside a machine hall. Extracts from the dataset are
shown in Fig. 12a and 12b. The dataset provides a precise
ground-truth trajectory that was obtained using a Leica MS50
laser tracking system. In Table I we present results of various
monocular and stereo configurations of the proposed algorithm
on the first two trajectories of the dataset. The trajectories are
65 and 58 meters long respectively.

We compare our algorithm against the open-source versions
of ORB-SLAM [22] and LSD-SLAM [16] on these datasets
with their default parameter settings. In contrast to SVO, ORB-
SLAM and LSD-SLAM detect loop-closures and subsequently
perform a global optimization. Hence, during loop-closure
refinements, the latest camera pose may undergo significant
“jumps”. For this reason, we base the evaluation on the final
poses of all keyframes in the trajectory. We observed that
the initial poses of LSD-SLAM are not accurate due to the
initialization procedure and therefore discard the first 350
frames in the evaluation for LSD-SLAM.

To understand the influence of the proposed extensions of
SVO, we run the algorithm in various configurations. “SVO
Mono” (only corners) uses only the images that were recorded
with the left camera of the sensor. “SVO Mono + Prior”
indicates that we use measurements from the gyroscope as
priors in the image alignment step as we discussed in Sec. IX.
In the next setting we additionally use edgelet features in
combination with corner features. In these first three settings,
we only optimize the latest pose; conversely, the keyword
“Bundle Adjustment” indicates that results were obtained
by optimizing the whole history of keyframes by means of
the incremental smoothing algorithm iSAM2 [9]. Therefore,
we insert and optimize every new keyframe in the iSAM2
graph when a new keyframe is selected. In this setting, we
do neither use motion priors nor edgelets. Since SVO is a
visual odometry, it does not not detect loop-closures and only
maintains a small local map of the last keyframes. To provide
a fair comparison with ORB-SLAM and LSD-SLAM, we
deactivated their capability to detect large loop closures via
image retrieval. Additionally, we provide results using both
image streams of the stereo camera. Therefore, we apply the
approach introduced in Sec. VIII to estimate the motion of a
multi-camera system.

To obtain a measure of accuracy of the different approaches,
we align the final trajectory of keyframes with the ground-truth
trajectory using the least-squares approach proposed in [64].
Since scale cannot be recovered using a single camera, we also
rescale the estimated trajectory to best fit with the ground-truth
trajectory. Subsequently, we compute the Euclidean distance
between the estimated and ground-truth keyframe poses and
compute the mean, median, and Root Mean Square Error
(RMSE) in meters. We chose the absolute trajectory error
measure instead of relative drift metrics [62] because the final
trajectory in ORB-SLAM consists only of a sparse set of
keyframes, which makes drift measures on relatively short
trajectories less expressive. The reported results are averaged
over three runs.

10

(a) (b) (c) Machine Hall 1 (d) Machine Hall 2

Fig. 12: Figures (a) and (b) show excerpts of the EuRoC dataset [61] with tracked corners marked in green and edgelets marked in magenta. Figures (c) and
(d) show the reconstructed trajectory and pointcloud on the first two trajectories of the dataset.

Machine Hall 1 Machine Hall 2 Timing
Mean Median RMSE [m] Mean Median RMSE [m] Mean [ms] St.D. CPU@20 fps

SVO Mono 0.224 0.198 0.269 0.531 0.356 0.652 2.53 0.42 55 ±10 %
SVO Mono + Prior 0.199 0.131 0.270 0.345 0.314 0.408 2.32 0.40 70 ± 8 %
SVO Mono + Prior + Edgelet 0.171 0.149 0.201 0.368 0.318 0.425 2.51 0.52 73 ± 7 %
SVO Mono + Bundle Adjustment 0.048 0.042 0.057 0.061 0.060 0.072 5.25 10.89 72 ±13 %

SVO Stereo 0.096 0.092 0.104 0.064 0.063 0.070 4.70 1.31 90 ± 6 %
SVO Stereo + Prior 0.071 0.066 0.078 0.067 0.059 0.072 3.86 0.86 90 ± 7 %
SVO Stereo + Prior + Edgelet 0.072 0.060 0.083 0.072 0.062 0.077 4.12 1.11 91 ± 7 %
SVO Stereo + Bundle Adjustment 0.039 0.037 0.043 0.046 0.042 0.053 7.61 19.03 96 ±13 %

ORB Mono SLAM (No loop closure) 0.105 0.126 0.114 0.175 0.209 0.190 29.81 5.67 187 ±32 %
LSD Mono SLAM (No loop closure) 0.111 0.107 0.125 0.388 0.357 0.428 23.23 5.87 236 ±37 %

TABLE I: Absolute translation errors in meters after 6 DoF alignment with the ground-truth trajectory and timing measurements on laptop computer with Intel
Core i7-4810MQ CPU (2.80 GHz) averaged over three runs of the EUROC Machine Hall 01 dataset. Loop closure detection and optimization was deactived
for ORB and LSD SLAM to allow a fair comparison with SVO. The first and second column report mean and standard devitation of the processing time.
Since all algorithms use multi-threading, the third column reports the average CPU load when providing new images at a constant rate of 20 Hz.

Thread Intel i7 [ms] Jetson TX1 [ms]

Sparse image alignment 1 0.66 2.54
Feature alignment 1 1.04 1.40
Optimize pose & landmarks 1 0.42 0.88
Extract features 2 1.64 5.48
Update depth filters 2 1.80 2.97

TABLE II: Mean time consumption in milliseconds by individual components
of SVO Mono on the EUROC Machine Hall 1 dataset. We report timing results
on a laptop with Intel Core i7 (2.80 GHz) processor and on the NVIDIA Jetson
TX1 ARM processor.

The results show that using a stereo camera in general
results in much higher accuracy. Apart from the additional
visual measurements, the main reason for the improved results
is that the stereo system does not drift in scale and inter camera
triangulations allow to quickly initialize new 3D landmarks
in case of on-spot rotations. Notice that SVO with bundle
adjustment is twice as accurate as ORB and LSD SLAM.

However, the power of the less accurate configurations
of SVO becomes obvious when analyzing the timing and
processor usage of the approaches, which are reported in the
right columns of Table I. In the table, we report the mean time
to process a single frame in milliseconds and the standard
deviation over all measurements. Since all algorithms make
use of multi-threading and the time to process a single frame
may therefore be misleading, we additionally report the CPU
usage (continuously sampled during execution) when provid-
ing new images at a constant rate of 20 Hz to the algorithm.
All measurements are averaged over 3 runs of the first EUROC
dataset and computed on the same laptop computer (Intel Core

i7-2760QM CPU). In Table II, we further report the average
time consumption of individual components of SVO on the
laptop computer and an NVIDIA TX1 ARM processor, which
is popular in mobile robotics applications. The results show
that the SVO approach is up to ten times faster than ORB-
SLAM and LSD-SLAM and requires only a fourth of the CPU
usage. The reason for this significant difference is that SVO
does not extract features and descriptors in every frame, as in
ORB-SLAM, but does so only for keyframes in the concurrent
mapping thread. Additionally, ORB-SLAM—being a SLAM
approach—spends most of the processing time in finding
matches to the map (see Table I in [65]), which in theory
results in a pose-estimate without drift in an already mapped
area. Contrarily, in the first three configurations of SVO, we
estimate only the pose of the latest camera frame with respect
to the local map. Compared to LSD-SLAM, SVO is faster
because it operates on significantly less numbers of pixels,
hence, also does not result in a semi-dense reconstruction
of the environment. This, however, could be achieved in a
parallel process as we have shown in [39, 53, 66]. We further
remark that the bundle adjustment version has a significantly
higher standard deviation in the timing as we update iSAM2
at every keyframe, which takes approximately 10 milliseconds
longer than processing a regular frame. Using a motion prior
further helps to improve the efficiency as the sparse-image-
alignment optimization can be initialized closer to the solution,
and therefore needs less iterations to converge.

An edgelet provides only a one-dimensional constraint in
the image domain, while a corner provides a two-dimensional

11

(a) fr2 desk (b) fr2 xyz

Fig. 13: Impressions from the TUM RGB-D benchmark dataset [62] with
tracked corners in green and edgelets in magenta.

(a) fr2 desk (side) (b) fr2 desk (top)

Fig. 14: Estimated trajectory and pointcloud of the TUM “fr2 desk” dataset.

fr2 desk fr2 xyz
RMSE [cm] RMSE [cm]

SVO Mono (with edgelets) 9.7 1.1
SVO Mono + Bundle Adjustment 6.7 0.8

LSD-SLAM [16] © 4.5 1.5
ORB-SLAM [22] © 0.9 0.3
PTAM [21] × / × 0.2 / 24.3
Semi-Dense VO [41] 13.5 3.8

Direct RGB-D VO [34] F 1.8 1.2
Feature-based RGB-D SLAM [67] F © 9.5 2.6

TABLE III: Results on the TUM RGB-D benchmark dataset [62]. Results for
[16, 34, 41, 67] were obtained from [16] and for PTAM we report two results
that were published in [22] and [41] respectively. Algorithms marked with F
use a depth-sensor, and © indicates loop-closure detection. The symbol ×
indicates that tracking the whole trajectory did not succeed.

constraint. Therefore, whenever sufficient corners can be de-
tected, the SVO algorithm prioritizes the corners. Since the
environment in the EUROC dataset is well textured and
provides many corners, the use of edgelets does not improve
the accuracy. However, the edgelets bring a benefit in terms of
robustness when the texture is such that no corners are present.

2) TUM Datasets: A common dataset to evaluate visual
odometry algorithms is the TUM Munich RGB-D benchmark
[62]. The dataset was recorded with a Microsoft Kinect RGB-
D camera, which provides images of worse quality (e.g.
rolling shutter, motion blur) than the VI-Sensor EUROC
dataset. Fig. 13 shows excerpts from the “fr2_desk” and
“fr2_xyz” datasets which have a trajectory length of 18.8 m
and 7 m respectively. Groundtruth is provided by a motion
capture system. Table III shows the results of the proposed
algorithm (averaged over three runs) and comparisons against
related works. The resulting trajectory and the recovered
landmarks are shown in Fig. 14. The results from related works

(a) (b)

Fig. 15: Impressions from the synthetic ICL-NUIM dataset [37] with tracked
corners marked in green and edgelets in magenta.

(a) Living Room 0 (b) Living Room 1

(c) Living Room 2 (d) Living Room 3

Fig. 16: Results on the ICL-NUIM [37] noisy synthetic living room dataset.

lr kt0 lr kt1 lr kt2 lr kt3
RMSE RMSE RMSE RMSE

SVO Mono (with edgelets) 0.02 0.07 0.1 0.07

LSD SLAM × × × ×
ORB SLAM [22] © × × 0.03 0.12

DVO [34] F 0.29 0.12 0.47 0.54
FOVIS [68] F 2.05 1.87 1.49 1.47
ICP [69] F 0.07 0.005 0.01 0.36
ICP+RGB-D [70] F 0.39 0.021 0.12 0.86

TABLE IV: Results on the ICL-NUIM Dataset [37]. Algorithms marked with
F use a depth-sensor, and © indicates loop-closure detection. The symbol
× indicates that tracking the whole trajectory did not succeed.

were obtained from the evaluation in [22] and [16]. We argue
that the better performance of ORB-SLAM and LSD-SLAM
is due to the capability to detect loop-closures.

3) ICL-NUIM Datasets: The ICL-NUIM dataset [37] is
a synthetic dataset that aims to benchmark RGB-D, visual
odometry and SLAM algorithms. The dataset consists of four
trajectories of length 6.4 m, 1.9 m, 7.3 m, and 11.1 m. The
synthesized images are corrupted by noise to simulate real

12

camera images. Ground-truth and calibration are provided by
the dataset. Most reported results on this dataset use the syn-
thetsized measurements from the depth sensor together with
the rendered images. Indeed, the datsets are very challenging
for purely vision-based odometry due to difficult texture and
frequent on-spot rotations as can be seen in the excerpts from
the dataset in Fig. 15.

Table IV reports the results of the proposed algorithm (aver-
aged over three runs) and the results from other algorithms on
the “living room” sequence. Similar to the previous datasets,
we report the root mean square error after rotation, translation
and scale alignment with the ground-truth trajectory. Fig. 16
shows the reconstructed maps and recovered trajectories. The
maps are very noisy due to the fine grained texture of the
scene. We also run ORB-SLAM and LSD-SLAM on the
dataset. ORB-SLAM fails to initialize on the second sequence
and we did not manage to obtain any results from LSD-
SLAM on all datasets. The reason for the failures is lack of
texture for initialization and frequent on-spot rotations. For
SVO, this also required us to set a particularly low FAST
corner detection threshold on this dataset (to 5 instead of 20).
A lower threshold results in detection of many low-quality
features. However, features are only used in SVO once their
corresponding scene depth is sucessfully estimated by means
of the robust depth filter described in Sec. VI. Hence, the
process of depth estimation helps to identify the stable features
with low score that can be reliably used for motion estimation.

In this dataset, we were not able to refine the results of
SVO with bundle adjustment. The reason is that the iSAM2
backend is based on Gauss Newton which is very sensitive to
underconstrained variables that render the linearized problem
indeterminant. The frequent on-spot rotations and very low
parallax angle triangulations result in many underconstrained
variables. Using an optimizer that is based on Levenberg
Marquardt or adding additional inertial measurements [44]
would help in such cases.

For comparison, Table IV also shows the results reported in
[37] of algorithms that also use the depth measurements.

4) Circle Dataset: In the last experiment, we want to
demonstrate the usefulness of wide field of view lenses for
VO. We recorded the dataset with a micro aerial vehicle that
we flew in a motion capture room and commanded it to fly a
perfect circle with downfacing camera. Subsequently, we flew
the exact same trajectory again with a wide fisheye camera.
Excerpts from the dataset are shown in Fig. 17. We run SVO
(without bundle adjustment) on both datasets and show the
resulting trajectories in Fig. 18. To run SVO on the fisheye
images, we use the modifications described in Sec. VII. While
the recovered trajectory from the perspective camera slowly
drifts over time, the result on the fisheye camera perfectly
overlaps with the groundtruth trajectory. We also run ORB-
SLAM and LSD-SLAM on the trajectory with the perspective
images. The result of ORB-SLAM is as close to the ground-
truth trajectory as the SVO fisheye result. However, if we
deactivate loop-closure detection (shown result) the trajectory
drifts more than SVO. We were not able to run LSD-SLAM
and ORB-SLAM on the fisheye images as the open source
implementations do not support very large FoV cameras. Due

(a) Perspective. (b) Fisheye.

Fig. 17: SVO tracking with (a) perspective and (b) fisheye camera lens.

−1.0 −0.5 0.0

0.0

0.5 1.0 1.5 2.0 2.5 3.0
y [m]

−2.5

−2.0

−1.5

−1.0

−0.5

x
[m

]

ORB SLAM (no loop-closure) SVO Perspective
SVO Fisheye Groundtruth

Fig. 18: Comparison of perspective and fisheye lense on the same circular
trajectory that was recorded with a micro aerial vehicle in a motion capture
room. The ORB-SLAM result was obtained with the perspective camera
images and loop-closure was deactivated for a fair comparison with SVO.
ORB-SLAM with a perspective camera and with loop-closure activated
performs as good as SVO with a fisheye camera.

to the difficult high-frequency texture of the floor, we were
not able to initialize LSD-SLAM on this dataset. A more in-
depth evaluation of the benefit of large FoV cameras for SVO
is provided in [60].

XII. DISCUSSION

In this section we discuss the proposed SVO algorithm in
terms of efficiency, accuracy, and robustness.

A. Efficiency

Feature-based algorithms incur a constant cost of feature
and descriptor extraction per frame. For example, ORB-SLAM
requires 11 milliseconds per frame for ORB feature extraction
only [22]. This constant cost per frame is a bottleneck for
feature-based VO algorithms. On the contrary, SVO does not
have this constant cost per frame and benefits greatly from the
use of high frame-rate cameras. SVO extracts features only for
selected keyframes in a parallel thread, thus, decoupled from
hard real-time constraints. The proposed tracking algorithm,
on the other hand, benefits from high frame-rate cameras:
the sparse image alignment step is automatically initialized
closer to the solution and, thus, converges faster. Therefore,

13

Fig. 19: Successful tracking in scenes of high-frequency texture.

increasing the camera frame-rate actually reduces the compu-
tational cost per frame in SVO. The same principle applies to
LSD-SLAM. However, LSD-SLAM tracks significantly more
pixels than SVO and is, therefore, up to an order of magnitude
slower. To summarize, on a laptop computer with an Intel i7
2.8 GHz CPU processor ORB-SLAM and LSD-SLAM require
approximately 30 and 23 milliseconds respectively per frame
while SVO requires only 2.5 milliseconds (see Table I).

B. Accuracy

SVO computes feature correspondence with sub-pixel accu-
racy using direct feature alignment. Subsequently, we optimize
both structure and motion to minimize the reprojection errors
(see Sec. V-B). We use SVO in two settings: if highest
accuracy is not necessary, such as for motion estimation of
micro aerial vehicles [53], we only perform the refinement
step (Sec. V-B) for the latest camera pose, which results
in the highest frame-rates (i.e., 2.5 ms). If highest accuracy
is required, we use iSAM2 [9] to jointly optimize structure
and motion of the whole trajectory. iSAM2 is an incremental
smoothing algorithm, which leverages the expressiveness of
factor graphs [8] to maintain sparsity and to identify and
update only the typically small subset of variables affected
by a new measurement. In an odometry setting, this allows
iSAM2 to achieve the same accuracy as batch estimation of the
whole trajectory, while preserving real-time capability. Bundle
adjustment with iSAM2 is consistent [44], which means that
the estimated covariance of the estimate matches the esti-
mation errors (e.g., are not over-confident). Consistency is a
prerequisite for optimal fusion with additional sensors [18]. In
[44], we therefore show how SVO can be fused with inertial
measurements to achieve a drift that is approximately 0.1%
of the traveled distance. LSD-SLAM, on the other hand, only
optimizes a graph of poses and leaves the structure fixed once
computed (up to a scale). The optimization does not capture
correlations between the semi-dense depth estimates and the
camera pose estimates. This separation of depth estimation
and pose optimization is only optimal if each step yields the
optimal solution.

C. Robustness

SVO is most robust when a high frame-rate camera is used
(e.g., between 40 and 80 frames per second). This increases
the resilience to fast motions as it is demonstrated in the
video attachment. A fast camera, together with the proposed
robust depth estimation, allows us to track the camera in
environments with repetitive and high frequency texture (e.g.,
grass or asphalt as shown in Fig. 19). The advantage of
the proposed probabilistic depth estimation method over the
standard approach of triangulating points from two views only
is that we observe far fewer outliers as every depth filter un-
dergoes many measurements until convergence. Furthermore,
erroneous measurements are explicitly modeled, which allows
the depth to converge in highly self-similar environments.

A further advantage of SVO is that the algorithm starts
directly with an optimization. Data association in sparse image
alignment is directly given by geometry of the problem and
therefore, no RANSAC [23] is required as it is typical in
feature-based approaches. Starting directly with an optimiza-
tion also simplifies greatly the use of multi-camera systems,
which greatly improves resilience to on-spot rotations as the
field of view of the system is enlarged and depth can be
triangulated from inter-camera-rig measurements.

Finally, the use of gradient edge features (i.e., edgelets)
increases the robustness in areas where only few corner
features are found. Our simulation experiments have shown
that the proposed sparse image alignment approach achieves
comparable performance as semi-dense and dense alignment
in terms of robustness of frame-to-frame motion estimation.

XIII. CONCLUSION

In this paper, we proposed the semi-direct VO pipeline
“SVO” that is significantly faster than the current state-of-the-
art VO algorithms while achieving highly competitive accu-
racy. The gain in speed is due to the fact that features are only
extracted for selected keyframes in a parallel thread and feature
matches are established very fast and robustly with the novel
sparse image alignment algorithm. Sparse image alignment
tracks a set of features jointly under epipolar constrains and
can be used instead of KLT-tracking [71] when the scene
depth at the feature positions is known. We further propose
to estimate the scene depth using a robust filter that explicitly
models outlier measurements. Robust depth estimation and
direct tracking allows us to track very weak corner features
and edgelets. A further benefit of SVO is that it directly
starts with an optimization, which allows us to easily integrate
measurements from multiple cameras as well as motion priors.
The formulation further allows using large FoV cameras with
fisheye and catadioptric lenses. The SVO algorithm has further
proven successful in real-world applications such as vision-
based flight of quadrotors [53] or 3D scanning applications
with smartphones.

Acknowledgments The authors gratefully acknowledge
Henri Rebecq for creating the “Urban Canyon” datasets that
can be accessed here: http://rpg.ifi.uzh.ch/fov.html

http://rpg.ifi.uzh.ch/fov.html

14

APPENDIX

In this section, we derive the analytic solution to the multi-
camera sparse-image-alignment problem with motion prior.

Given a rig of M calibrated cameras c ∈ C with known
extrinsic calibration TCB, the goal is to estimate the incremental
body motion TBB−1 by minimizing the intensity residual rIC

i

of corresponding pixels in subsequent images. Corresponding
pixels are found by means of projecting a known point on the
scene surface ρi

.
= B−1ρi (prefix B− 1 denotes that the point

is expressed in the previous frame of reference) into images of
camera C that were recorded at poses k and k− 1, which are
denoted IC

k and IC
k−1 respectively. To improve the convergence

properties of the optimization (see Sec. XI-A), we accumulate
the intensity residual errors in small patches P centered at
the pixels where the 3d points project. Therefore, we use
the iterator variable ∆u to sum the intensities over a small
patch P . We further assume that a prior of the incremental
body motion T̃kk−1

.
= (R̃, p̃) is given. The goal is to find the

incremental camera rotation and translation Tkk−1
.
= (R,p)

that minimizes the sum of squared errors:

(R?,p?) = arg min
(R,p)

C(R,p), with (13)

C(R,p) =
∑
C∈C

N∑
i=1

∑
∆u∈P

1

2
‖rIC

i,∆u
‖2ΣI

+
1

2
‖rR‖2ΣR

+
1

2
‖rp‖2Σp

,

where N is the number of visible 3D points. We have furder
defined the image intensity and prior residuals as:

rIC
i,∆u

.
= IC

k

(
π(TCB(Rρi + p)) + ∆u

)
− IC

k−1

(
π(TCB ρi) + ∆u

)
rR

.
= log(R̃TR)∨

rp
.
= p− p̃ (14)

For readability, we write the cost function in matrix form

C(R,p) = r(R,p)TΣ−1r(R,p), (15)

where Σ is a block-diagonal matrix composed of the measure-
ment covariances. Since the residuals are non-linear in (R,p),
we solve the optimization problem in an iterative Gauss-
Newton procedure [72]. Therefore, we substitute the following
perturbations in the cost function:

R ← R exp(δφ∧), p ← p + Rδp, (16)

where the hat operator (.)∧ forms a 3 × 3 skew-symmetric
matrix from a vector in R3.

As it is common practice for optimizations involving rota-
tions [44, 72], we use the exponential map exp(·) to perturb
the rotation in the tangent space of SO(3) which avoids
singularities and provides a minimal parametrization of the
rotation increment. The exponential map (at the identity)
exp : so(3) → SO(3) associates a 3 × 3 skew-symmetric
matrix to a rotation and coincides with the standard matrix
exponential (Rodrigues’ formula):

exp(φ∧) = I +
sin(‖φ‖)
‖φ‖ φ∧ +

1− cos(‖φ‖)
‖φ‖2

(
φ∧
)2
. (17)

The inverse relation is the logarithm map (at the identity),
which associates R ∈ SO(3) to a skew symmetric matrix:

log(R) =
ϕ · (R− RT)

2 sin(ϕ)
with ϕ = cos−1

(
tr (R)− 1

2

)
. (18)

Note that log(R)∨ = aϕ, where a and ϕ are the rotation axis
and the rotation angle of R, respectively.

Substituting the perturbations makes the residual errors a
function defined on a vector space. This allows us to linearize
the quadratic cost at the current estimate, form the normal
equations, and solve them for the optimal perturbations:

JTΣ−1J [δφT δpT]T = −JTΣ−1r(R,p), (19)

where we introduced the variable J, which stacks all Jacobian
matrices from the linearization. The solution is subsequently
used to update our estimate in (R,p) according to (16). This
procedure is repeated until the norm of the update vectors is
sufficiently small, which indicates convergence.

In the following, we show how to linearize the residuals to
obtain the Jacobians. Therefore, we substitute the perturbations
in the residuals and expand:

rR(R exp(δφ∧)) (20)

= log(R̃TR exp(δφ∧))∨
(a)' rR(R) + J−1

r (log(R̃TR)∨)δφ

rp(p + Rδp) (21)
= (p + Rδp)− p̃ = rp(p) + Rδp

rIC
i
(R exp(δφ∧)) (22)

= IC
k

(
π(TCB(R exp(δφ∧)ρi + p))

)
− IC

k−1

(
π(TCB ρi)

)
(b)' IC

k

(
π(TCB(Rρi + p))

)
− IC

k−1

(
π(TCB exp(δφ∧)−1ρi)

)
(c)' IC

k

(
π(TCB(Rρi + p))

)
− IC

k−1

(
π(TCB(I− δφ∧)ρi)

)
(d)
= IC

k

(
π(TCB(Rρi + p))

)
− IC

k−1

(
π(TCBρi + TCBρ

∧
i δφ)

)
(e)' rIC

i
(R)− ∂IC

k−1(u)

∂u

∣∣∣
u=π(cρi)

∂π(ρ)

∂ρ

∣∣∣
ρ=cρi

RCBρ
∧
i δφ

rIC
i
(p + Rδp) (23)

= IC
k

(
π(TCB(Rρi + p + Rδp))

)
− IC

k−1

(
π(TCB ρi)

)
(b)' IC

k

(
π(TCB(Rρi + p))

)
− IC

k−1

(
π(TCB(ρi − δp))

)
(e)' rIC

i
(R) +

∂IC
k−1(u)

∂u

∣∣∣
u=π(cρi)

∂π(ρ)

∂ρ

∣∣∣
ρ=cρi

RCBδp

In step (a), we have used a first-order expansion of the matrix
logarithm:

log
(

exp(φ∧) exp(δφ∧)
)∨ ≈ φ + J−1

r (φ)δφ, (24)

which holds for small values of δφ. The term J−1
r is the

inverse of the right Jacobian of SO(3) [72, 73]:

J−1
r (φ) = I +

1

2
φ∧ +

(
1

‖φ‖2 +
1 + cos(‖φ‖)
2‖φ‖ sin(‖φ‖)

)
(φ∧)2.

In step (b), we invert the perturbation and apply it to the
reference frame. This trick stems from the inverse compo-
sitional [47] formulation, which allows us to keep the term

15

containing the perturbation constant such that the Jacobian of
the intensity residual remains unchanged over all iterations,
greatly improving compuational efficiency. In (c), we first used
that exp(δφ∧)−1 = exp(−δφ∧) and subsequently used the
first-order approximation of the exponential map:

exp(δφ) ' I + δφ∧. (25)

For step (d), we used a property of skew symmetric matrices

δφ∧ρ = −ρ∧δφ. (26)

Finally, in step (e), we perform a Taylor expansion around the
perturbation. The term ∂IC

k−1(u)

∂u denotes the image derivative
at pixel u and ∂π(ρ)

∂ρ is the derivative of the camera projection
function, which for standard pinhole projection with focal
length (fx, fy) and camera center (cx, cy) takes the form

∂π(ρ)

∂ρ
=

[
fx

x
z 0 − cxz2

0 fy
y
z − cyz2

]
with ρ = [x, y, z]T. (27)

To summarize, the Jacobians of the residuals are:

∂rR
∂δφ

= J−1
r (Log(R̃TR)) (28)

∂rp
∂δp

= R

∂rIC
i

∂δφ
= −∂I

C
k−1(u)

∂u

∣∣∣
u=π(cρi)

∂π(ρ)

∂ρ

∣∣∣
ρ=cρi

RCBρ
∧
i

∂rIC
i

∂δp
=
∂IC

k−1(u)

∂u

∣∣∣
u=π(cρi)

∂π(ρ)

∂ρ

∣∣∣
ρ=cρi

RCB

REFERENCES

[1] S. Ullman. The Interpretation of Visual Motion. MIT
Press: Cambridge, MA, 1979.

[2] C. Tomasi and T. Kanade. Shape and motion from image
streams: a factorization method. Int. J. Comput. Vis.,
(7597):137–154, 1992.

[3] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. Structure
from motion causally integrated over time. IEEE Trans.
Pattern Anal. Machine Intell., 24(4):523–535, Apr 2002.

[4] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry.
In Proc. IEEE Int. Conf. Computer Vision and Pattern
Recognition, volume 1, pages 652–659, June 2004.

[5] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. IEEE
Trans. Pattern Anal. Machine Intell., 29(6):1052–1067,
June 2007.

[6] D. Scaramuzza and F. Fraundorfer. Visual odometry
[tutorial]. Part I: The first 30 years and fundamentals.
IEEE Robotics Automation Magazine, 18(4):80 –92, De-
cember 2011. ISSN 1070-9932. doi: 10.1109/MRA.
2011.943233.

[7] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.
Bundle adjustment – a modern synthesis. In W. Triggs,
A. Zisserman, and R. Szeliski, editors, Vision Algorithms:
Theory and Practice, volume 1883 of LNCS, pages 298–
372. Springer Verlag, 2000.

[8] F. Dellaert and M. Kaess. Square Root SAM: Simultane-
ous localization and mapping via square root information

smoothing. Int. J. of Robotics Research, 25(12):1181–
1203, December 2006.

[9] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard,
and F. Dellaert. iSAM2: Incremental smoothing and
mapping using the Bayes tree. Int. J. of Robotics
Research, 31:217–236, February 2012.

[10] A. Agarwal, K. Mierle, and Others. Ceres solver. http:
//ceres-solver.org.

[11] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and
W. Burgard. g2o: A general framework for graph opti-
mization. In IEEE Int. Conf. on Robotics and Automation
(ICRA), Shanghai, China, May 2011.

[12] M. Maimone, Y. Cheng, and L. Matthies. Two years of
visual odometry on the mars exploration rovers. J. of
Field Robotics, 24(3):169–186, 2007. ISSN 1556-4967.
doi: 10.1002/rob.20184. URL http://dx.doi.org/10.1002/
rob.20184.

[13] S. Lovegrove, A. J. Davison, and J. Ibañez Guzmán.
Accurate visual odometry from a rear parking camera.
IEEE Intelligent Vehicles Symposium, Proceedings, pages
788–793, 2011. ISSN 1931-0587. doi: 10.1109/IVS.
2011.5940546.

[14] G. Klein and D. Murray. Improving the agility of
keyframe-based SLAM. In Eur. Conf. on Computer
Vision (ECCV), pages 802–815, 2008.

[15] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.
DTAM: Dense tracking and mapping in real-time. In
Int. Conf. on Computer Vision (ICCV), pages 2320–2327,
November 2011.

[16] J. Engel, J. Schöps, and D. Cremers. LSD-SLAM:
Large-scale direct monocular SLAM. In Eur. Conf. on
Computer Vision (ECCV), 2014.

[17] M. Irani and P. Anandan. All about direct methods. In
Proc. Workshop Vis. Algorithms: Theory Pract., pages
267–277, 1999.

[18] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation
with Applications To Tracking and Navigation. John
Wiley and Sons, 2001.

[19] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis.
Observability-based rules for designing consistent EKF
SLAM estimators. Int. J. of Robotics Research, 29:502–
528, May 2010.

[20] C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast
semi-direct monocular visual odometry. In IEEE Int.
Conf. on Robotics and Automation (ICRA), pages 15–
22, 2014. URL http://dx.doi.org/10.1109/ICRA.2014.
6906584.

[21] G. Klein and D. Murray. Parallel tracking and mapping
for small AR workspaces. In IEEE and ACM Int. Sym. on
Mixed and Augmented Reality (ISMAR), pages 225–234,
Nara, Japan, November 2007.

[22] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós.
ORB-SLAM: a versatile and accurate monocular SLAM
system. IEEE Trans. Robotics, 31(5):1147–1163, 2015.

[23] M. A. Fischler and R. C. Bolles. Random sample
consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Commun.
ACM, 24(6):381–395, 1981. ISSN 0001-0782. doi:

http://ceres-solver.org
http://ceres-solver.org
http://dx.doi.org/10.1002/rob.20184
http://dx.doi.org/10.1002/rob.20184
http://dx.doi.org/10.1109/ICRA.2014.6906584
http://dx.doi.org/10.1109/ICRA.2014.6906584

16

http://doi.acm.org/10.1145/358669.358692.
[24] K. MacTavish and T. D. Barfoot. At all costs: A compar-

ison of robust cost functions for camera correspondence
outliers. In Conf. on Computer and Robot Vision (CRV),
2015.

[25] H. Jin, P. Favaro, and S. Soatto. A semi-direct approach
to structure from motion. The Visual Computer, 19(6):
377–394, 2003.

[26] S. Benhimane and E. Malis. Integration of euclidean con-
straints in template based visual tracking of piecewise-
planar scenes. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2006.

[27] G. Silveira, E. Malis, and P. Rives. An efficient direct
approach to visual slam. IEEE Trans. Robotics, 2008.

[28] C. Mei, S. Benhimane, E. Malis, and P. Rives. Efficient
homography-based tracking and 3-d reconstruction for
single-viewpoint sensors. IEEE Trans. Robotics, 24(6):
1352–1364, December 2008. ISSN 1552-3098. doi: 10.
1109/TRO.2008.2007941.

[29] A. Pretto, E. Menegatti, and E. Pagello. Omnidirec-
tional dense large-scale mapping and navigation based on
meaningful triangulation. In IEEE Int. Conf. on Robotics
and Automation (ICRA), pages 3289–3296. IEEE, May
2011. ISBN 978-1-61284-386-5. doi: 10.1109/ICRA.
2011.5980206.

[30] N. D. Molton, A. J. Davison, and I. D. Reid. Locally
planar patch features for real-time structure from mo-
tion. In British Machine Vision Conf. (BMVC). BMVC,
September 2004.

[31] A.I. Comport, E. Malis, and P. Rives. Real-time quadri-
focal visual odometry. Int. J. of Robotics Research, 29
(2-3):245–266, January 2010. ISSN 0278-3649. doi:
10.1177/0278364909356601.

[32] M. Meilland, A. Comport, and P. Rives. Real-time dense
visual tracking under large lighting variations. In British
Machine Vision Conf. (BMVC), 2011. ISBN 1-901725-
43-X. doi: 10.5244/C.25.45.

[33] T. Tykkala, C. Audras, and A.I. Comport. Direct iterative
closest point for real-time visual odometry. In Int. Conf.
on Computer Vision (ICCV), 2011.

[34] C. Kerl, J. Sturm, and D. Cremers. Robust odometry
estimation for rgb-d cameras. In IEEE Int. Conf. on
Robotics and Automation (ICRA), 2013.

[35] M. Meilland and A.I. Comport. On unifying key-frame
and voxel-based dense visual SLAM at large scales. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Tokyo, Japan, 3-8 November 2013. IEEE/RSJ.

[36] T. Whelan, M. Kaess, H. Johannsson, M.F. Fallon, J.J.
Leonard, and J.B. McDonald. Real-time large scale dense
RGB-D SLAM with volumetric fusion. Int. J. of Robotics
Research, 2014.

[37] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison.
A benchmark for RGB-D visual odometry, 3D recon-
struction and SLAM. In IEEE Int. Conf. on Robotics
and Automation (ICRA), Hong Kong, China, May 2014.

[38] T. Whelan, S. Leutenegger, R. F. Salas-Moreno,
B. Glocker, and A. J. Davison. ElasticFusion: Dense
SLAM without a pose graph. In Robotics: Science and

Systems (RSS), Rome, Italy, July 2015.
[39] M. Pizzoli, C. Forster, and D. Scaramuzza. REMODE:

Probabilistic, monocular dense reconstruction in real
time. In IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 2609–2616, 2014. URL http://dx.doi.org/
10.1109/ICRA.2014.6907233.

[40] F. Dellaert and R. Collins. Fast image-based tracking by
selective pixel integration. In ICCV Workshop on Frame-
Rate Vision, 1999.

[41] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual
odometry for a monocular camera. In Int. Conf. on
Computer Vision (ICCV), 2013.

[42] P. Ondruska, P. Kohli, and S. Izadi. Mobilefusion:
Real-time volumetric surface reconstruction and dense
tracking on mobile phones. In IEEE and ACM Int. Sym.
on Mixed and Augmented Reality (ISMAR), Fukuoka,
Japan, October 2015.

[43] D. G. Kottas, J. A. Hesch, S. L. Bowman, and S. I.
Roumeliotis. On the consistency of vision-aided inertial
navigation. In Int. Sym. on Experimental Robotics
(ISER), 2012.

[44] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza.
On-manifold preintegration theory for fast and accurate
visual-inertial navigation. December 2015. URL http:
//arxiv.org/pdf/1512.02363v1.pdf.

[45] P. Furgale, J. Rehder, and R. Siegwart. Unified temporal
and spatial calibration for multi-sensor systems. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2013.

[46] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An
Invitation to 3-D Vision: From Images to Geometric
Models. Springer Verlag, 2005.

[47] S. Baker and I. Matthews. Lucas-kanade 20 years on: A
unifying framework. Int. J. Comput. Vis., 56(3):221–255,
2004.

[48] C. Harris and C. Stennett. RAPiD - a video-rate object
tracker. In British Machine Vision Conf. (BMVC), pages
73–78, 1990.

[49] T. Drummond and R. Cipolla. Real-time visual track-
ing of complex structures. IEEE Trans. Pattern Anal.
Machine Intell., 24:932–946, 2002.

[50] A. I. Comport, E. Marchand, and F. Chaumette. A real-
time tracker for markerless augmented reality. In IEEE
and ACM Int. Sym. on Mixed and Augmented Reality
(ISMAR), 2003.

[51] L. Vacchetti, V. Lepetit, and P. Fua. Combining edge
and texture information for real-time accurate 3d camera
tracking. In IEEE and ACM Int. Sym. on Mixed and
Augmented Reality (ISMAR), 2004.

[52] G. Reitmayr and T.W. Drummond. Going out: robust
model-based tracking for outdoor augmented reality. In
IEEE and ACM Int. Sym. on Mixed and Augmented
Reality (ISMAR), pages 109–118, October 2006.

[53] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Piz-
zoli, and D. Scaramuzza. Autonomous, vision-based
flight and live dense 3D mapping with a quadrotor MAV.
J. of Field Robotics, pages 1556–4967, 2015. URL
http://dx.doi.org/10.1002/rob.21581.

http://dx.doi.org/10.1109/ICRA.2014.6907233
http://dx.doi.org/10.1109/ICRA.2014.6907233
http://arxiv.org/pdf/1512.02363v1.pdf
http://arxiv.org/pdf/1512.02363v1.pdf
http://dx.doi.org/10.1002/rob.21581

17

[54] G. Vogiatzis and C. Hernández. Video-based, real-time
multi view stereo. Image Vision Comput., 29(7):434–441,
2011.

[55] J. Civera, A.J. Davison, and J. Montiel. Inverse depth
parametrization for monocular slam. IEEE Trans.
Robotics, 24(5), 2008.

[56] D. Scaramuzza, A. Martinelli, and R. Siegwart. A flexible
technique for accurate omnidirectional camera calibration
and structure from motion. In Int. Conf. on Computer
Vision Systems (ICVS), pages 45–45, 2006.

[57] D. Nister. An efficient solution to the five-point relative
pose problem. IEEE Trans. Pattern Anal. Machine Intell.,
26(6):756–777, 2004.

[58] H. Jin, P. Favaro, and S. Soatto. Real-time feature track-
ing and outlier rejection with changes in illumination.
Int. Conf. on Computer Vision (ICCV), 1, 2001. doi:
10.1109/ICCV.2001.937588.

[59] E. Rosten, R. Porter, and T. Drummond. Faster and
better: A machine learning approach to corner detec-
tion. IEEE Trans. Pattern Anal. Machine Intell., 32
(1):105–119, January 2010. ISSN 0162-8828. doi:
10.1109/TPAMI.2008.275.

[60] Z. Zhang, H. Rebecq, C. Forster, and D Scaramuzza.
Benefit of large field-of-view cameras for visual odom-
etry. In IEEE Int. Conf. on Robotics and Automation
(ICRA), 2016.

[61] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Re-
hder, S. Omari, M. Achtelik, and R. Siegwart. The
EuRoC MAV datasets. Int. J. of Robotics Research,
2015. URL http://projects.asl.ethz.ch/datasets/doku.php?
id=kmavvisualinertialdatasets.

[62] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers. A benchmark for the evaluation of rgb-
d slam systems. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), Oct. 2012.

[63] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger,
P. Furgale, and R. Siegwart. A synchronized visual-
inertial sensor system with FPGA pre-processing for
accurate real-time SLAM. In IEEE Int. Conf. on Robotics
and Automation (ICRA), 2014.

[64] S. Umeyama. Least-squares estimation of transformation
parameters between two point patterns. IEEE Trans.
Pattern Anal. Machine Intell., 13(4), 1991.

[65] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós.
ORB-SLAM: a versatile and accurate monocular SLAM
system. arXiv:1502.00956, February 2015.

[66] C. Forster, M. Faessler, F. Fontana, M. Werlberger, and
D. Scaramuzza. Continuous on-board monocular-vision–
based aerial elevation mapping for quadrotor landing. In
IEEE Int. Conf. on Robotics and Automation (ICRA),
pages 111–118, 2015. URL http://dx.doi.org/10.1109/
ICRA.2015.7138988.

[67] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers,
and W. Burgard. An evaluation of the RGB-D SLAM
system. In IEEE Int. Conf. on Robotics and Automation
(ICRA), 2012.

[68] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Mat-
urana, D. Fox, and N. Roy. Visual odometry and mapping

for autonomous flight using an RGB-D camera. In Proc.
of the Int. Symp. of Robotics Research (ISRR), Flagstaff,
USA, August 2011.

[69] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli,
O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges,
D. Kim, and A. Fitzgibbon. KinectFusion: Real-time
dense surface mapping and tracking. In IEEE and ACM
Int. Sym. on Mixed and Augmented Reality (ISMAR),
pages 127–136, Basel, Switzerland, October 2011.

[70] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and
J. B. McDonald. Robust real-time visual odometry for
dense RGB-D mapping. In IEEE Int. Conf. on Robotics
and Automation (ICRA), Karlsruhe, Germany, May 2013.

[71] B. D. Lucas and T. Kanade. An iterative image regis-
tration technique with an application to stereo vision. In
Int. Joint Conf. on Artificial Intelligence, pages 121–130,
1981.

[72] T. D. Barfoot. State Estimation for Robotics - A Matrix
Lie Group Approach. Cambridge University Press, 2015.

[73] G. S. Chirikjian. Stochastic Models, Information The-
ory, and Lie Groups, Volume 2: Analytic Methods and
Modern Applications (Applied and Numerical Harmonic
Analysis). Birkhauser, 2012.

http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://dx.doi.org/10.1109/ICRA.2015.7138988
http://dx.doi.org/10.1109/ICRA.2015.7138988

	Introduction
	Related Work
	System Overview
	Notation
	Motion Estimation
	Sparse Image Alignment
	Relaxation and Refinement

	Mapping
	Large Field of View Cameras
	Multi-Camera Systems
	Motion Priors
	Implementation Details
	Initialization
	Sparse Image Alignment
	Feature Alignment
	Mapping

	Experimental Evaluation
	Image Alignment: From Sparse to Dense
	Real and Synthetic Experiments
	Euroc Datasets
	TUM Datasets
	ICL-NUIM Datasets
	Circle Dataset

	Discussion
	Efficiency
	Accuracy
	Robustness

	Conclusion

